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The present paper is concerned with the retarded many-time thermodynamic Green's function 
method in classical statistical mechanics. In the formulation of the nonlinear response of a dynamical 
variable, unaveraged Green's functions are specified and used to discuss the physical meaning of many
time Poisson-bracket nests. Equilibrium ensemble averages of these Green's functions are relevant to 
the classical Kubo response theory, the latter of which is interpreted from the viewpoints of both the 
classical "Heisenberg" and "SchrMinger" pictures. A method for evaluating the many-time thermo
dynamic Green's functions based on their definition in terms of the resolvent operator is suggested and 
discussed in relation to the linear dielectric function and the anharmonic oscillator. The many-time 
Green's function equations of motion are shown to be equivalent to identities based on the resolvent 
operator. It is shown how microscopic equations of motion can be used to derive the Bogoliubov
Sadovnikov (B-S) hierarchy from the lowest-order many-time Green's function equation of motion. 

I. INTRODUCTION 

The employment of thermodynamic Green's func
tions in classical statistical mechanics has received 
some attention in recent years.1- S 

By means of a theorem concerning the linear varia
tion of the mean value of a dynamical quantity, a 
hierarchy of double-time Green's functions has been 
derived.1 The basic Green's function of the hierarchy is 
((Nx ; N XI»",' where N X is the Klimontovich phase
space density operator.6 (The notation is defined in 
Appendix A.) A decoupling of this hierarchy corre
sponds to a particular decoupling of the BBKGY 
hierarchy.7 In fact, one can invoke the theorem on 
variations to transform a kinetic equation for the 
single-time one-particle distribution function into a 
corresponding Green's function equation.1- a The 
entire double-time hierarchy is equivalent to a Liou
ville equation.4 

The double-time theory enables one to evaluate 
two-time correlations and these are related to linear 
transport coefficients.8•9 Indeed, the theorem on 
variations is based on the linear response of the 
expectation value of a dynamical variable to an 
infinitesimal perturbation. Consideration of non
linear response shows that multiple-time Green's 
functions can be invoked to determine nonlinear 
transport coefficients.10•n .s Quantum statistically these 
Green's functions have been evaluated by means of a 
hierarchy of equations which couple the n-time 
Green's function to the (n + I)-time Green's func
tions.10 

Under certain assumptions the many-time Green's 
functions can be written as a product of the lowest
order Green's function,u One may also determine the 
many-time Green's functions through their general 
expressibility in terms of the resolvent operator.s This 
is a generalization of ideas presented for the quantum 
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statistical two-time case.12 In this connection the 
many-time equations of motion can be shown to be 
equivalent to identities based on the resolvent.5 

Kubo1a has referred to an important theorem on 
linear response, which states that "the response of a 
system in a quantity B(t) to a pulsive force Fat t = 0 
is given by the expectation of the Poisson bracket 
{A(O); B(t)} defined with respect to the natural 
motion of the system, where A is the conjugate 
quantity to F." He also pointed out that "a response 
function may be called a Green's function in its 
general sense, so that a Poisson bracket essentially 
represents a Green's function or a response function." 

The present paper commences with a generalized 
qualification of this viewpoint via an examination of 
the nonlinear response of a dynamical variable in a 
single system.14

•1S Many-time unaveraged Green's 
functions are defined. In terms of these functions the 
physical meaning of multiple-time Poisson-bracket 
nests is discussed. Unaveraged Green's functions have 
been mentioned in the literature.12 

In Sec. III it is shown that the ensemble averages 
of these classical Green's functions are consistent with 
those defined in Ref. 1016 and with the previously 
defined, classical, double-time ones.1 The work of Sec. 
II is seen to lead directly to a classical "Heisenberg" 
picture of nonlinear response, in contrast with which 
the procedure analogous to that of Ref. 10 is essenti
ally based on a "Schrodinger" picture. The perturba
tion of interest in this section is harmonic and turned 
on adiabatically at t = - 00. The many-time equations 
of motion of the Green's functions are seen to be 
derivable in a way analogous to that of the quantum 
case.10 Appendix A indicates the method for deriving 
the B-S hierarchy from the lowest-order many-time 
equation via microscopic equations of motion. 

Section IV derives the general resolvent-operator 
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form of the Green's functions and demonstrates the 
equivalence of the equations of motion and the 
resolvent-operator identitiesY This viewpoint is linked 
with earlier work by Rons on the linear dielectric 
function of a many-body system. Appendix B dis
cusses some relevant mathematical points concerning 
many-time nests of Poisson brackets. 

In Sec. V the same anharmonic-oscillator problem, 
as discussed in Ref. 10, is treated classically. The 
equation-of-motion method is contrasted with that 
based on the resolvent operator.17 

II. UNA VERAGED GREEN'S FUNCTIONSls 

Consider a single system governed by a Hamiltonian 
H which is not explicitly time dependent. Let B be a 
dynamical variable which also is not explicitly time 
dependent. 

The natural motion of B is then determined by 

dB = {B' H} 
dt " 

(1) 

where { } denote Poisson brackets. If one designates 
the entire set of canonical coordinates of the system 
(Xl' PI"" ,'" ,XN' PN) by f, then the solution to 
(1) may be written 

(2) 

where B(t) == B[f(t)] and B == B(O). 
If a perturbation HI is applied to the system, one 

can use the general perturbation result of Garrido 
and Gasc6n,15 except that here the perturbation is to 
be turned on at t = - 00. The dynamical variable in 
the presence of HI is then given by 

(3) 

where Sl(t) is the solution to the integral equation 
(the operational procedure of Ref. 15 is not used here) 

SI(t) = 1 - foodtfS1(tf){H1[r(tf); tf]; } (4) 

and 
HI = -AF(t), (5) 

where A is the dynamical variable conjugate to the 
force F(t). Iteration of (4) gives 

Sl(t) = 1 - Eoodtl{HI[f(tl), td; } 

+ ... + (-l)"Eoodtl .. 'E:-'{HI[r(tn), tn]; 

{ ... {HI[r(tI); t1 ]; } ••• }} + .. '. (6) 

Thus bearing in mind (3), one can write L'l"B(t) , 

the nth-order correction to B(t), as 

L'lnB(t) = (-I)nfoodtI" J~:-'dtn 
X {HI[r(tn); tnl; 

{- .. {HI[f(tI); tIl; B(t)} ... }}. (7) 

If one now takes the external potential to be 
harmonic and adiabatically switched on at t = - 00, 

one can writeI9 

(8) 

Rearranging the Poisson-bracket nest, and changing 
the time variables according to I n- l - t" = T", etc., 
and t - tl = T1, one then obtains 

L'lnB(t) 

= (_1)ne-in(ro+iE>t100 

dTI ... 100 

dT" 

X {{- .• {B(t); A(t - TI)};" .}; A(t - T1'" - Tn)} 

X exp [i(w + iE)(nTl + (n - 1)T2 + ... + Tn)]. 
(9) 

Now introducing the Heaviside function Je, and 
then defining the unaveraged Green's function as 

uGn+l(B; A( -T1); ... A( -TI ... - T,,» 
== Jeh)'" Je(Tn){{'" {B; A(-T1)}" .}; 

A( -T1 ... - T,,)} (10) 

together with the Fourier transforms 

uGn+l(B, A)ro+iE 

== (1/217)" L: dTI .. ·L: dT ri 

X uG,,+l(B; A( -TI); ... ; A( -T1 ... Tn» 

X exp [i(w + iE)(nTI + ... + Tn») , (11) 

one has 

L'lnB(t) = (-217)"e-in(ro+iE)teiLt uG,,+l(B, A)ro+iE' (12) 

The retarded Green's functions defined in Eq. (10) 
can be interpreted in terms of responses to impulsive 
forces. In this regard one can generalize the above
mentioned considerations due to Kubo. 

Taking F(t1) = b(tl) in (7), one obtains L'lIB(t) = 
{A; B(t)} as the change in B at time t> 0 due to an 
impulsive force applied at t = 0.19 This result agrees 
with similar considerations made by Kub020 in 
discussing the physical meaning of the two-time 
Poisson bracket. Since {A; B(t)} is the linear response 
at time t due to an impulsive force acting at t = 0, it 
should be zero for t < 0 in accord with causality 
requirements. The causality aspect is qualified mathe
matically through multiplication by the step function 
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Je(t). Thus the Green's function Je(t){A( -t); B(O)} 
is the linear response at t = 0 due to an impulsive 
force acting at time (-t). Equation (7) implies that 

~nB(O)lpulse 

= (-It{{··· {{B(O); A(t1)}; A(t2)};" .}; A(tn)} 

X Je( - tl)Je(tl - t2) ... Je(tn-l - tn) (13) 

is the nth-order response, at zero time, due to impul
sive forces acting at t1 , ••• , tn. The causality con
dition that the nonlinear response ~nB(O)lpulse is 
nonzero only if 0> t1 > ... > tn is imposed by the 
Heaviside functions. One sees that the result (13) is 
just the Green's function defined in (10) apart from a 
phase factor.21 The term "Green's function" is thus 
being used here in its general sense. 

III. RETARDED THERMODYNAMIC GREEN'S 
FUNCTIONS 

Multiple-time retarded thermodynamic Green's 
functions can be defined as 

Gn+1(B; A) 

= (uGn+1(B, A» 

= Jeh) ... Je( T n)( {{- .. {B; A( -Tl)}; ... }; 

A( -Tl ... - Tn)}), (14) 

where the average is taken over the equilibrium 
ensemble Pe = Q-1e-H /

6
, Q being the partition 

function. The Fourier transform of (14) then is the 
ensemble average of (11). The definition (14) is a 
generalization of the two-time Green's functions 
defined in (1)1. 

If in Ref. 10 one were not to take Ii = 1, then there 
the definition of the Green's function would read 

Gn+1(B, A) 

= (-ijlitJe(Tl)' .. Je(Tn) 

X ([[ ... [B; A( -Tl)]; ... ]; A( -Tl ... - Tn)]), 

(15) 
and since 

(-ijli)[A; B] --+- {A; B}, (16) 
n-+O 

one sees that the functions defined in (14) are the 
c1assicallimit of (15). 

The present viewpoint is essentially that of the 
"Heisenberg" picture.22 This is borne out by the fact 
that the expectation value of B at time t is given by23 

(BR(t» = J dfBR(t)Pe, (17) 

where Pe is the initial (equilibrium) distribution when 
the perturbation is switched on at t = - 00 and 
BR(t) is determined by the classical Heisenberg 

equation of motion 

dBR { } -- = BR ; H + HI , 
dt 

(18) 

the solution of which is 
<1:! 

BR(t) = B(t) + L~nB(t), (19) 
n=1 

where ~nB(t) is given by (7). BR(t) was defined 
earlier in (3). 

Combining (12), (17), and (19), and using the fact 
that23 

f dfeiLtA = f dfA, (20) 

one sees that the nth-order response to the perturba
tion, (8), is given by 

(~nB(t» = (_21T)ne-in(w+iEltGn+1(B, A)ro+i<' (21) 

which agrees with the classical limit of (13)1°. 
In the equivalent "SchrOdinger" picture 

(BR(t» = f dfBp(t), (22) 

with pet) being determined by the total Hamiltonian 
(H + HI) through the Liouville equation atp = 
-{p; H + HI}' When the Liouville-operator formal
ism is used, the derivation of (21) from this direction 
is similar to that followed in Ref. 10. However, in the 
derivation of the classical counterpart of (10)10 from 
that of (9)10, one now makes repeated use of 

f dfA{B; C} = f drC{A; B} (23) 

in lieu of the trace operation. [An integration by parts 
readily proves (23).] 

Just as in quantum mechanics, one can obtain the 
classical equations of motion for the Green's functions 
from the identity 

new + iE)Gn+1(B, A)W+iE 

nf<1:! foo 1 a = (lj21T) dTI . . . dT nGn+1(B, A) -: -
-00 -00 1 aTI 

X exp [i(w + iE)(nTl + ... + Tn)]. (24) 

Because of (20) and the fact that Pe is stationary 
with respect to the canonical displacement operator 
eiLt , the Green's functions are invariant under time 
translations and (24) leads, via an integration by 
parts, to 

-in(w + iE)Gn+l(B, A)w+i< 

= (lJ21T)Gn({B; A}, A)w+iE + Gn+I({B; H}, A)ro+iE' 

(25) 
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where 
G1({B; A}, A),u+i' = ({B; A}). 

When one uses appropriate microscopic equations 
of motion, one sees that the equation of motion given 
by (25) with n = 1 generates the Bogoliubov
Sadovnikov hierarchy. This point is discussed further 
in Appendix A. 

is 

IV. RESOLVENT-OPERATOR FORMS OF 
THE GREEN'S FUNCTIONS 

The explicitform of (14), when Fourier transformed, 

Gn+l(B, A)'Hif 

= (1/27T)nL:dTl" ·L:dTnJe(T1)··· Je(Tn) 

X ({{- .• {B; A(-T1)};" .}; A(-Tl'" -Tn)}) 

X exp [i(w + i€)(nT1 + ... + Tn)]. (26) 

Utilizing the invariance of the Green's functions 
under time translation, one shifts the time by 
(Tl + T2 + ... + Tn) SO that A( -Tl ... -Tn) -+ A, 
etc. One then has that 

Gn+l(B, A)CU+if 

= (1/27TtL:dTI .. ·L:dTnJeh)· .. Je(Tn) 

X ({ eiLTn{- .. {eiLT1B; A}; ... }; A}) 

X exp [i(w + i€)(nTI + ... + Tn)]. (27) 

Defining the resolvent operator24 

g(w) = (L - W)-1 (28) 
so that 

g(w) = iL:dTJe(T)eiCUTe-iLOT, (29) 

one sees that (27) can be re-expressed as 

Gn+l(B, A)cu = (-1/27Ti)n 

X ({g(-w){g( -2w) 

X {- •. {g(-nw)B;A}" .}; A}; A}). 

(30) 

In obtaining (30) from (27), one assumes that € is 
positive definite. 

The "Schrodinger"-picture development of the non
linear response theory leads directly to the equivalent 
result 

Gn+l(B, A)w+i< = (1/27T)nL:dT1" ·L:dTn 

X Je(Tl)' .. Je(Tn) f drB{A(-Tl); 

{A( -T1 - T2); ... {A( -T1 ... -Tn); Pe} ... }} 
X exp [i(w + ie)(nTl + ... + Tn)]. (31) 

[As implied earlier, the equivalence of (26) and (31) 
is readily demonstrated via (23).] 

Equation (31) is directly expressible as 

Gn+1(B, A)w = (1/27TWJ drB 

X g(nw){A; g({n - l}w) 

X {A; ... ; g(w){A; Pe} •.. }}. (32) 

On the basis of one or the other of the two forms 
(30) and (32), one can readily show that the equations 
of motion (25) are equivalent to identities based on 
the resolvent operator. 

The definition (28) implies that 

({g( -w){g( -2w){' .. {[g( -nw)(L + nw) - 1] 

X B; A}; ... }; A}; A}) == 0, (33) 

and that 

J drB[g(nw)(L - nw) - l]{A; g({n - l}w) 

X {A; ... ; g(w){A; Pel ... }} == O. (34) 

One obtains (25) from each of these identities by 
multiplying them out with respect to the square 
brackets, noting that L = -i{ ; H}, and multiplying 
by the appropriate "27Ti" factors. In the case of (34), 
one also needs to employ the equation 

J drALA' = -J drA'LA, 

where A and A' are arbitrary functions. 
(In Appendix B, a number of mathematical observa

tions concerning many-time Poisson-bracket nests are 
made.) 

The two important forms of the response are 
abstractly summarized by (17) and (22). Rons has 
discussed the linear expressions corresponding to each 
of these, pointing out that the former is more appro
priate for physical interpretation and is linked to 
Kubo's theory of transport coefficients.13•2o See also 
Kubo's widely known 1957 paper.25 

Reference 8 does not mention retarded thermo
dynamic Green's functions. However, in principle, 
the form (32), corresponding to (22), was used there 
to evaluate the linear dielectric function using the 
Prigogine-Balescu diagram technique.24 

One can readily show that the linear dielectric 
function €(k, w) can be written in terms of 

«n(k); n(-k»), 
where 

n(k, t) = 2 (I :;:;; j :;:;; N) exp [ik. xlt)] 
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is the spatial Fourier transforms of the configuration
space density operator 

n(x, t) = ! (I ~ j ~ N)lJ(x - xit» 

for an N-body system. (The brackets, «», are 
standard notation for double-time Green's functions.) 
Thus 

l/E(k, w) = 1 + (27TiA2/V)cp(k)«n(k); n( - k»).", 

A2cp being the interparticle potentials and V the volume 
of a system of the ensemble. 

It is seen that evaluation of many-time Green's 
functions from the present point of view has the 
advantage that the already well-developed resolvent
operator techniques can be used. 

V. THE ANHARMONIC OSCILLATOR 

Here the first-order-in-A approximation for G3(x, x)", 
of the anharmonic oscillator problem1o will be calcu
lated classically. More specifically, the Green's
function method based on the equations of motionlO 

will be contrasted with that based on the resolvent 

Thus one sees that the equation-of-motion method 
leads directly to an expression for G3(x; x)", in closed 
form. 

Turning to the resolvent-operator approach, one 
finds that the appropriate form to be employed in the 
present problem is that of (30). In particular, 

G3(x; x)", = -(1/27T)2({g( -w){g( -2w)x; x}; x}). 

(43) 

In the Poisson-bracket nest, one is effectively 
concerned with the Liouville operator 

L = Lo +.u, 
where 

Lo = i(mw~",x ~ - p", .?.) (44) 
op", m",orc 

and 

T' ., 2 a 
L = -IJl.",X -. 

op", 
Then writing 

g( -w) = (L + W)-l 
and (45) 

operator approach. go( -w) = (Lo + w)-l, 
As in Ref. 10, again following Armstrong et al.,26 

a simplified Hamiltonian will be employed; namely one obtains the expansion
24 

and 

i=x,'Y,z 

The notation is essentially that used in Ref. 10. 
As mentioned in Sec. III of the present paper, 

Gn(B, A)~-i-~' ---+ Gn(B, A)",w, (37) 
li-.O 

so that it is not surprising that, using (25), one 
obtains equations of exactly the same form as the 
corresponding quantum-mechanical ones: 

(38) 

2wG3(p",; x)", = - im",w~",G3(X; x)", + iA",G3(X
2; x)",. 

(39) 
Directly from (38) and (39) one has 

G3(x; x)", = (Arc/mrc)[GaCx2, x)w/(w~", - 4(2
)], (40) 

so that one needs G3(X2; x)", only to zeroth order 27 

in A: 
G3(X

2, x)", = [(27Tm",)2(w2 - w~",)2r\ (41) 

and (40) and (41) then give 

GaCx; x)", 

= (27Tr2m;3A",[(w2 - W~",)2(W~", - 4(2)]-1. (42) 

00 

g( -w) =! go( -w){ -I:go( _w)}n. (46) 
n=O 

To first order in A, Eq. (43) then becomes 

G3(x; x)", 

= -(1/27T)2[({gO( -w){go( -2w)x; x}; x}) 

- ({go(-w){go(-2w)L'go(-2w)x; x}; x}) 

- ({go( -w)L'go( -w){go( -2w)x; x}; x})]. (47) 

Since go( -nw)x and go( -nw)prc are first-degree 
homogeneous polynomials in x and p"" and since 
{x; x} = 0 and {p",; x} = -I, it follows that only the 
second term of (47) gives a nonzero contribution. 

In general, 

go( -nw)xn' = n'An.(nw)xn' 

+ n'An'_l(nw)xn'-lp", 

+ ... + n'Ao(nw)p",n' (48) 
and, similarly, 

go( -nw)p",'" = n'Bn.(nw)xn' + ... + n'Bo(nw)p",n', 

(49) 

where the A's and B's arise as series in w, and those 
relevant to the present approximation are easily 
expressible in closed forms [see Eq. (42)]. An examina
tion of the relevant elementary Poisson brackets 
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reveals that the second term of (47) can be written as 

G3(x; x)", = [-iA. .. /(27T)2] lAo(2w) 

x [2Al(2w) 1AO(W) + 2 2AO(2w) 1BO(W)]. (50) 

The A and .Ii coefficients can be obtained by 
expanding go( -w) and go( -2w) as binomial series of 
differential operators and then summing the terms 
contributing to a particular coefficient. 

In contrast to the equation-of-motion method 
discussed above, the present approach is thus seen to 
provide a statement of the problem in the familiar 
terminology of the resolvent operator. A clear meaning 
of the first-order-in-A. approximation is afforded by 
the second term of (47). However, the latter method 
does not lead immediately to closed-form results. 
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APPENDIX A 

In order to clearly show the relationship between 
the B-S hierarchy and the first member of the many
time hierarchy (25), the construction of the former 
through the repeated use of the latter will be indicated 
here using a method closely analogous to that usually 
employed in quantum statistical mechanics. See, for 
example,Zubarev's review article,28 Secs, 2 and 6. 

With the familiar notation «B; A»", = G2(B, A)"" 
the lowest-order equation of the hierarchy, (25), 
reads 

-i«B; A»{J) = (27T)-I({B; A}) + «{B; H}, A».,. 

(AI) 

The dynamical-variable arguments of the Green's 
functions of the B-S hierarchy are generalizations, 
A x, ..... x, (t), of the Klimontovich phase-space density 
operator N(X, t), where X = (x, p). Thus, 

Ax, ." .x.(t) 

== ! t5(Xl - Xi,(t) ... t5(Xs - Xi.(t», 
(1::;i, < ... <i.::;N) 

(A2) 

with N(X, t) == Ax(t). As mentioned in Ref. I, 
(Xl' PI' ... , XS ' Ps) are independent variables playing 
the role of parameters. The lowest-order Green's 
function of the B-S hierarchy is thus «N(X); N(X'»).,. 
Its equation of motion can be constructed from that 
of N as follows. 

Taking the Hamiltonian of the system to be 

2 

H == HN = .! Pj + .! <D(IXj - xnl), (A3) 
l::;j::;N2m l";'j<n::;N 

one can write29 

~ N(X
t
) + PI • oN 

at maXI 

= ~ N(Xt ) • ~ JdX2<D(lX1 - x2\)N(X2) 

OPl OXI 

=JdX2 [l.-<D(IXl - X21)] .1.. 
OXl OPl 

x ! t5(Xl - X;Ct»t5(X2 - Xj(t», (A4) 
l::;i<j::;N 

or briefly 

oN at = {N; H}. (AS) 

In obtaining the lowest-order equation of the 
hierarchy from (AI), one is interested in writing the 
zero-time Poisson bracket {B; H} of (AI) explicitly 
with B = Nx, . This bracket appears in a phase-space 
integral wherein the other integrand factors (Pe and 
Nx ) are symmetric under any interchange Xi ~ Xi' , 
Thus, in the present context, one can write 

so that (A4) becomes 

= _ ~ • oN + 2JdXl 
maXI 

a oAx,x. 
x -<D(lxl - x 21)·--..:= 

aXl OPl 

= {:~ ; N} + 2 J dX2{<D(lxl - x21); Ax,x.}. (A7) 

When this is substituted into (AI) with A = Ax' and 
B = Ax , on the basis of (A5) evaluated at zero time, , 
one obtains 

- i«Ax ,; Ax'»., 

= (27T)-l({Ax,; Ad> + {:l ; «Ax,; Ax,»co} 

+ 2 J d~2{<D(lxl - x21); «Ax,x.; Ax,»",}· (A8) 

The first term on the right can be written explicitly 
in terms of the equilibrium one-particle distribution 
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function by means of the general formula4 

({Ax1 ".x.; Ad) = n
S

, 2: {(j(X' - Xi); F~}. (A9) 
S.I:O;i:O;. 

From (AS) it is seen that «Ax; Ax'»w is coupled 
1 

through the interaction to «Ax x ; Ax'»w' 
1 2 • f 

In order to obtain the sth equation 0 the B-S 
hierarchy, one substitutes 

~ A x1 ··· x.(t) I 
at t=o 

= {Ax1 ··· x.;H} 
= {Hs(X1 " • X s); Ax, ... xJ 

+ (s + 1) 2: fdXs+1{(J>(IXi - xs+11); Ax1 · .. x.+J 
l<i<s 
- - (AlO) 

into (AI) with B == Ax ... x and A == Ax" 
1 • 

APPENDIX B 

In order that the time-displacement properties of 
eiLt be consistent, one must have, in addition to (2), 

iLt a a iLt (Bl) e -=--e , 
api apj(t) 

and similarly for any a/axj .14 

The explicit interpretation of (21), for example, is 
then 

(/lnB(t» 

= (_1)ne-in(w+if ltL:dTl" ·L:dTnJe(TI)··· ,Je(Tn) 

X f drB{A( -Tl); {A( -T1 - T2); ... 

X {A(-Tl'" -Tn); Pe}(-r1"'-rnl" '}(-r1-T2l}(-T1l 

X exp [i(w + iE)(nTI + ... + Tn)], (B2) 

where 

{A(t); B}t == 2: {_a_ A[r(t)] _a_. B 
l<oj<oN axit) ap/t) 

__ a_ A[r(t)] _a_}. 
apl t) axit) 

(B3) 

Equations (2) and (B1) imply that the phase-space 
integral of (B2) may' be rewritten as 

f drB(r)e-iLT'{A(r); {A( -T2); ... 

{A(-T2'" -Tn); Pe}(-r2"'-Tnl " '}(-T2)}' (B4) 

[The functional form of Lis 

where Xi == x;(r) and Pi == Pi(r).] 
Proceeding in this waY,one arrives finally at (32) in 

which the Poisson brackets are to be understood .as 
"referring to" zero-time differential operators 
{a/ax} and {a/ap }. , , 

* This work has been financed with a Melbourne University 
Research Grant. 

1 N. N. Bogoliubov, Jr.,and B. I. Sadovnikov, Zh. Eksp. Teor. 
Fiz. 43,677 (1962) [Sov. Phys.-JETP 16, 482 (1963»). 

2 B. I. Sadovnikov, Physica 32, 858 (1966). 
3 V. N. Mel'nikov, Dokl. Akad. Nauk SSSR 171,1072 (1966) 

[Sov. Phys-Dok!. 11, 1076 (1967»). 
4 J. C. Herzel, J. Math. Phys. 8, 1650 (1967). 
5 J. C. Herzel, Phys. Letters 27A, 654 (1968). 
6 Yu. L. Klimontovich, Zh. Eksp. Teor. Fiz. 33, 982 (1957) 

[Sov. Phys-JETP 6, 753 (1958»). 
7 D. C. Montgomery and D. A. Tidman, Plasma Kinetic Theory 

(McGraw-Hill Book Co., Inc., New York, 1964). 
8 A. Ron, J. Math. Phys. 4, 811 (1963). 
6 A. G. Sitenko,Electromagnetic Fluctuations in Plasma (Khar'kov 

University Press, Khar'kov, USSR, 1965) [English trans!.: Academic 
Press Inc., New York, 1967). 

10 T. Tanaka, K. Moorjani, and T. Morita, Phys. Rev. 155, 388 
(1967). 

11 T. Kawasaki,Progr.Theoret. Phys. (Kyoto) 39,331 (1968). 
12 E. R. Pike, Proc. Phys. Soc. (London) 84, 83 (1964). 
13 R. Kubo, in Statistical Mechanics of Equilibrium and Non

equilibrium, J. Meixner, Ed. (North-Holland Pub!. Co., Amsterdam, 
1965). 

14 L. M. Garrido, Proc. Phys. Soc. (London) 76, 33 (1960). 
15 L. M. Garrido and F. Gascon, Proc. Phys. Soc. (London) 81, 

1115 (1963). 
16 In the text, (i)l denotes equation (i) of reference j. 
17 The principal relationships have already been presented in the 

short communication-Ref. 5. 
18 For later convenience the notation of this section follows that 

of Ref. 10 rather than that of Refs. 14 and 15. 
16 From now on, following Ref. 10, any constant factor Fo of F 

will be included in A for brevity. 
20 R. Kubo, Rept. Progr. Phys. (London) 29, Pt. I, 255 (1966). 
21 As will be seen from Sec. III, this phase factor has arisen only 

because of convention. 
22 The classical counterparts of the Heisenberg, Schrodinger, 

and interaction pictures have been discussed by R. Aronson, J. 
Math. Phys. 7, 589 (1966). 

23 Integrations extend over the entire phase space and assume that 
all distribution functions, Green's functions, and dynamical 
variables obey periodic boundary conditions in configuration space 
and homogeneous boundary conditions in momentum space, such 
that they approach zero exponentially as any canonical momentum 
variable on which they depend approaches infinity. 

24 P. Resibois,in Physics of Many-Body Systems, E. Meeron, Ed. 
(Gordon & Breach, Science Publishers, Inc., New York, 1966), 
Vol. I. 

25 R. Kubo, J. Phys. Soc. (Japan) 12, 570 (1957). 
28 J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. 

Pershan, Phys. Rev. 127, 1918 (1962). 
27 The result (41) is larger by a factor of 2 than that in Ref. 10. 
28 D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [Sov. Phys. 

Usp. 3, 320 (1960»). 
29 A lucid account of the derivation of (A4) is given by E. P. 

Gross, J. N uc!. Energy, Pt. C, 2, 173 (1961). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 3 MARCH 1970 

Global and Infinitesimal Nonlinear Chiral Transformations* 

A. JOSEPHt AND A. I. SOLOMONt 

Tel Aviv University, Israel 

(Received 6 January 1969) 

The problem of determining arbitrary nonlinear representations of a given compact Lie group is 
studied with the object of constructing Lagrangians invariant under the group. To achieve this, expres
sions for the covariant derivatives are obtained and it is shown how previous treatments based on global 
and on infinitesimal considerations are related. The noncompact case, the relationship between non
linearity and zero-mass particles, and the possibility of embedding the representation manifold in a 
higher-dimensional space are all discussed. 

1. INTRODUCTION 

The treatment of pion-nucleon scattering in the 
framework of Lagrangian dynamicsl has motivated 
the study of nonlinear representation of Lie groups. 
This study has involved essentially two different 
methods of approach. The first of these, initiated by 
the physical models of Gell-Mann and Levy, 2 Giirsey 
and others,3 has been developed by Coleman, Wess, 
and Zumino,4 and Callan et al.5 It may be identified as 
a global procedure, and the nonlinear representations 
so derived are closely related to those described by 
the regular representation. The second method 
originates from a nonlinear transformation of the 
pion fields introduced by Schwinger6 to show that the 
group structure of a certain Lagrange function was 
precisely SU(2) x SU(2). As pointed out by Fairlie 
and Yoshida, 7 this is just the transformation which is 
used to describe the extra symmetry of the hydrogen 
atom in nonrelativistic quantum mechanics.s It has 
been developed by several authors,9.lo and may be 
identified as an infinitesimal procedure. Thus the 
nonlinear representations are described by the solu
tions of a set of nonlinear partial-differential equa
tions resulting from consistency requirements imposed 
by the Lie algebraic structure. 

In the present work, we interrelate these two 
approaches and extend the results of both. The dis
cussion is subdivided into several sections. In Sec. 2 
we outline briefly the abstract theory underlying 
nonlinear group representations and discuss the 
canonical form obtained for these in the case of 
compact groups by the global procedure. In Sec. 3 
we present the representation problem in infinitesimal 

sented by noncompactness are briefly considered. In 
Sec. 8 covariant derivatives are derived and invariant 
Lagrangians constructed. We relate, in Sec. 9, the 
nonlinearity of the representations to the appearance 
of massless particles in the theory. In Sec. 10 it is 
pointed out that linearization of the representation 
can always be effected by embedding the representation 
manifold in a sufficiently high-dimensional space. The 
significance of this result is discussed, and attention is 
given throughout to the physical applications of the 
theory. 

Notation: Dimension of G = no: A, /-t, Y go from 
1,2,'" ,no; dimension of H = nH: ri, p, Y go from 
(no - nH + 1), ... ,no; dimension of G/H = no -
nH: IX, p, Y go from 1,2, ... , (no - nH); dimension 
of M = n: i,j, k, go from 1,2,'" ,n; dimension of 
~ = same as G/H; dimension of ~ = n - no + nH: 
r, s, t, go from (no - nH + 1), ... , n. 

2. GLOBAL METHOD 

Let G be an no-parameter Lie group and M a real 
analytic manifold of dimension n. Then the mapping 
T from G x Minto M is said to form a group of 
transformations [Ref. 11 (b), Chap. III, p. 66] if, for 
each g E G, P EM, there is an element T(g)p EM, 
such that 

T: (g, p) ---+ T(g)p is analytic, (2.1) 

T(e)p = p, for all p EM, 

where e is the identity in G, (2.2) 

T(g)T(g')p = T(gg')p for all g, g' E G, all p EM. 

(2.3) 

form and relate this in Sec. 4 to the global problem Implicit in this definition is that [T(g)]-l exists and is 
by use of classical theorems due to Lie,u This enables equal to T(g-l). In physical applications, G is identi
us to derive the infinitesimal form of the canonical fied with the invariance group (or approximate in
representation, which is given explicitly in Sec. 5. In variance group) of the Lagrangian and M with the 
Sec. 6 we outline the infinitesimal analog of the changes space spanned by the field components. 
of variable used in deriving the canonical form of the At each point Po E M, local coordinates may be 
global representation. In Sec. 7 the difficulties pre- introduced by mapping an open neighborhood of Po 

748 
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into an open neighborhood of Euclidean space Rn. 
Such a map is called a chart [Ref. 11 (b), Chap. I, 
pp. 4-6]. If two charts can be defined at a given point, 
then the corresponding pair of coordinates must be 
analytic functions of one another. Let us use x to 
denote the coordinates of a general point p E M. 
Similarly, we write a for the group parameters of an 
element g E G in a neighborhood of e. Then (2.1) 
expresses the fact that T(g)p can be expressed as an 
analytic function hex, a) (in general, nonlinear) of 
both x and a. It is in this form that group transforma
tions are usually considered in physical problems. 
Thus we define a nonlinear group representation as the 
set of analytic functions hex, a) arising from a suitable 
parametrization of M (and G). Naturally, representa
tions which differ only through a choice of coordi
nates ought to be regarded as being equivalent. 
However, in the physical problem with which we are 
concerned, not all coordinate transformations are 
allowed.4 In more detail, it is assumed that there is a 
special point on M, referred to as the base point, 
which must be represented by the origin 0 in all 
coordinates. With this restriction we must necessarily 
confine our attention to neighborhoods of the base 
point. Similarly, we may consider only those elements 
g of G which are sufficiently close to the identity so that 
T(g)p is in some neighborhood of the base point for 
given p in such a neighborhood. Such elements 
generate G if and only if G is connected [Ref. 11 (b), 
Chap. II, p. 40], so that it is convenient to assume 
that G is connected. This restriction is of no great 
importance since we may always choose the connected 
component of identity Go of G, which, since it is a 
normal subgroup [Ref. l1(b), Chap. II, p. 39], allows 
us to recover a general representation of G by com
bining the representations of the groups GIGo and Go. 

With the above points in mind, we define two rep
resentations12 T(g) and T(g) to be locally equivalent 
if, in terms of admissible coordinates defined at the 
base point, there exists a possibly nonlinear operator 
A from Rn _ Rn such that 

A:x - A(x) is analytic and has an analytic 
inverse at 0, (2.4) 

A [T(g)x] = T(g)A(x) for all g E G in a suitable 
neighborhood of the identity and all 
x in a neighborhood of 0, (2.5) 

A(O) = O. (2.6) 

The mapping A which effects the local equivalence 
between T(g) and T(g) defines a transformation from 
one set of admissible coordinates to another. Because 
it is invertible, the elements of locally equivalent 

representations must be in one-to-one correspondence. 
In addition, we shall call a representation linearizable 
if it is locally equivalent to a linear representation. If 
both Tand Tare linear, then, without loss of generality, 
A may be chosen to be a linear operator. In this case 
Eq. (2.6) holds trivially and Eq. (2.5) reduces to the 
usual condition for equivalent representations. 

We now derive a canonical form for an arbitrary 
finite-dimensional nonlinear representation of a com
pact connected Lie group G. The method used is a 
modification13 of that developed by Coleman et al. 
for the case of compact connected semisimple Lie 
groups. It will be referred to as the global procedure. 

Let H denote the set of all hE G such that T(h)O = 
O. This is a closed, and hence compact, subgroup of 
G (it is known as the isotropy subgroup of the origin). 
If we then expand T(h)x in the power series 

T(h)x = D(h)x + O(X2), (2.7) 

it follows that D(h) is a linear representation of Hand 
that the change of coordinates defined by 

y == Ax =JH D(h-1){T(h)x}dh, (2.8) 

where dh is the normalized Haar measure on H, 
establishes a local equivalence between D(h) and the 
restriction of T(g) to H. Indeed Eq. (2.8) is just the 
usual averaging procedure for the construction of 
intertwining operators [Ref. lI(a), Chap. III, p. 101], 
and local equivalence is a consequence of the implicit 
function theorem [Ref. lI(b), Appendix, p. 161] and the 
fact that the Jacobian of the transformation is non
zero at the origin. A useful illustration of this lineariza
tion is given in Appendix A. 

Since H is closed, it is generated by a sub algebra L 
of the Lie algebra K of G [Ref. l1(b), Chap. VI, p. 
123]. The adjoint map [Ref. l1(d), Chap. II, p. 116] 
defines a representation of H on K. Since H is compact 
and K finite dimensional, this representation is com
pletely reducible [Ref. lIed), Chap. III, p. 161]. Let 
the Va, oc = no - nH + 1, ... , no, be a basis for L. 
The subalgebra property 

(2.9) 

expresses the fact that L is an invariant subspace of K. 
Let the A", IX = 1,2,··· , no - nH' be a basis for 
the complementary invariant subspace. Then 

[Va, Ap] = capyAy, (2.10) 

no terms in V appearing on the right-hand side. On 
the other hand, it will not in general be true that 

(2.11) 
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though, when this does hold, we shall refer to it as the 
parity case. It is the situation which has been of most 
physical interest. 

In a neighborhood of the identity we may write a 
given element go E G uniquely in the form 

go = exp;. A exp u· V, (2.12) 

where (;, u) form a real no-component vector. Then, 
since H is the subgroup which leaves the origin fixed, 
the orbit N of 0 under G separates the GjH cosets 
defined by exp; • A. Hence the ~a variables may be 
chosen as coordinates for N. However,14 in doing this 
it is important to observe that left multiplication of go 
by an arbitrary element g E G induces, through the 
commutation relations of the' generators, an action on 
the function space of the ~ variable and not on the 
~ itself. For T to be a representation, we must write 

(gF)(x) = F[T(g-l)X], (2.13) 

so that the above choice of coordinates in N gives the 
action 

(2.14) 

We remark that,for the case when H = e, this choice of 
coordinates is known as the canonical chart [Ref. 
ll(b), Chap. VI, p. 110]. 

For the coordinates of M we write x = (;, ~), with 
N all the vectors of the form (;, 0). The action of H 
on M is linear, whereas the action by the GjH cosets 
takes the form 

T(e-;'A)(O,~) = (;'(;, ~), ~'(;, ~», (2.15) 

where ;'(;,~) and ~'(;,~) are analytic functions, 
and by (2.14) 

;'(;,0) =;, ~'(;, 0) = 0, 

;'(O,~) = 0, ~'(O,~) =~. (2.16) 

This admits a coordinate transformation in the 
sense of (2.4) such that 

(2.17) 

since the Jacobian of the transformation is the identity 
at O. 

Dropping the tilde, we now define (;', u') as the 
unique vector determined by the left translation 

(2.18) 

where (see above) g EGis in a suitable neighborhood 
of the identity. 

The action of the whole group on M is now com
pletely defined. We have 

T(g-l)(;,~) = T(g-l)T(e-;'A)(O,~) 
= T(e-;"A)T(e-u"V)(O,~) 
= T(e-;"A)(O, D(e-u"v)~) 

= (;', D(e-u"V)~), (2.19) 

where D is an arbitrary real linear finite-dimensional 
representation of H. 

This describes a canonical form with respect to 
which any finite-dimensional nonlinear representation 
is locally equivalent. In the subsequent discussion we 
refer to it as the canonical representation. 

It is important to note that, as a consequence of Eq. 
(2.10), not only the ~-, but also the ;-components of 
M transforms linearly under H. The latter transforma
tion is defined by 

e;'·A = h-1e;·A h, (2.20) 

with h E H. On the other hand, except in special cases, 
the GjH co sets act nonlinearly on the whole manifold, 
since u' is a function of;. [We shall, however, find 
(cf. Sec. 6) that a further coordinate transformation 
can be introduced to remove this dependence.] More
over, the transformation properties of the ;-com
ponents are independent of the~, being determined 
essentially by the regular representation of G. It is a 
remarkable fact that the number of components of ; 
which describe the nonlinear part of the representation 
can be chosen to be equal to the difference in the 
number of generators of G and the subgroup H. In 
Sec. 6 we attempt to give some insight into the reason 
for this by studying the group representation in 
infinitesimal form. It suffices for the present to remark 
that this separation of variables into ; and ~ com
ponents with markedly different transformation 
properties is not only of mathematical, but also of 
physical, interest. Thus one may regard these com
ponents as representing two different sets of particles, 
both arising from a single transformation law. 
Typically the components are identified as the meson 
field and the baryon field. The physical predictions 
that this leads to are discussed in subsequent para
graphs. 

3. INFINITESIMAL METHOD 

Let K be a Lie algebra with elements X"' A = 1, 
2, ... , no, and M a real analytic manifold of arbitrary 
dimension n, with coordinates Xi' i = I, 2, ... , n, 
chosen at any given point Po E M. Therefore, we have 

(3.1) 



                                                                                                                                    

NONLINEAR CHIRAL TRANSFORMATION 751 

Let the analytic functions !u(x) be defined by the 
following equations: 

[X"' Xi] = !M(X), (3.2) 

which hold for all X" E K and all Xi' These functions 
cannot be arbitrary, but must satisfy the following 
consistency requirement imposed by the Jacobi 
identity 

(3.3) 

where the C",.v are the structure constants of K above, 
and the comma denotes differentiation. The integ
rability requirements of this set of nonlinear differ
ential equations are expressed by the familiar identities 
[Ref. l1(a), Chap. VIII, p. 301] 

Hence (3.3) may be integrated to yield a solution to 
(3.2). The differential operators !;'i(X)a/axi then close 
on a Lie algebra homomorphic to K which is said to be 
a representation of K, and act linearly on M if and 
only if the !"i(X) are linear functions. We may identify 
Xi and a/ aXi as canonically conjugate operators; 
insofar as the particle creation and annihilation 
operators derive their transformation laws from these 
(cf. Sec. 9), then particle number is conserved if and 
only if the representation is linear. This fact underlies 
the motivation for the use of nonlinear representations 
to describe the symmetries of interacting systems. 

In solving Eq. (3.3), a change of variable may be 
admitted. Hence it is natural to identify representations 
of K related by an invertible coordinate transformation. 
In more detail, suppose that it is possible to choose a 
new set of coordinates x at Po EM (with the same 
number of components as x) such that 

[X"' Xi] = h.i(X), 

for all X" E K and all Xi' Then the representations! 
and l are said to be equivalent, if the Xi can be 
expressed as analytic functions of the Xi and vice 
versa. Following Macfarlane and Weisz,lO we note 
that this holds if and only if the pair of equations 

xufu(x) = h.i(X), 

Xi.ih.;(x) = hi (x) (3.5) 

are integrable [Ref. 11 (a), Chap. V, p. 104]. Now, 
use of Eq. (3.3) and a similar relation which holds for 
the I shows that 

!".!,.t(X;.st - x;.!s) = 0, 

h.J,.ix;.st - xi . tS) = o. (3.6) 

Hence a sufficient condition for equivalence is the 
invertibility of both the functions! and J Unfortu
nately, this is not also a necessary condition, though 
it does prove useful in discussing the canonical repre
sentation. 

The above argument can be extended if K contains 
a subalgebra L of order nH on which the representation 
is linear. Then, if the change of coordinates leaves the 
linear subrepresentation unaltered, Eq. (3.6) still 
holds, but with (no - nH) being the range of Greek 
indices. Although invertibility depends on the range 
of indices in the function! being the same, so that 
Eq. (3.6) may seem to be seldom applicable, this 
condition is satisfied by the; component of the canoni
cal representation (see Secs. 2 and 6). 

4. THEOREMS OF LIE 

Thus far two nonlinear representation theories have 
been presented, one for the group and the other for 
the algebra. These may be interrelated by application 
of a fundamental result due to Lie described briefly 
below. It will enable us to derive the solution of Eq. 
(3.3) corresponding to the canonical representation 
and to reconstruct from solutions to Eq. (3.3) repre
sentations of the Lie group. 

Let G be a no-parameter Lie group. Assign to each 
g E G the no-component vector a. Then a representa
tion T of G may be given the form 

T(a)x == x' = h(x, a). (4.1) 

The functions h cannot be arbitrary. Besides being 
analytic in both x and a, they must satisfy a stringent 
requirement imposed by the 'group structure, namely, 

h[h(x, a), b) = h[x, cj>(a, b)), (4.2) 

where cp is an analytic function of a and b [Ref. 11 (a), 
Chap. 8, p. 286]. From this it may be shown [Ref. 
lI(a), Chap. 8, pp. 295-301] that 

ax; ( ')~ () - = vo. x ~",. a , aa,. (4.3) 

with 

(4.4) 

The functions viAx') and E;.,.(a), which are analytic, 
must also satisfy 

and 

(4.6) 

where the C",.v are constants satisfying Eq. (3.4). 
This important result shows that both the sets of 

functions v and 3-1 provide nonlinear (or linear) 
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representations of the Lie algebra of G. Conversely, 
given analytic functions satisfying (4.5) and (4.6), we 
may reconstruct the nonlinear ( or linear) representa
tion ofG. This is obtained by integration of Eq. (4.3) 
for which Eqs. (4.5) and (4.6) are the integrability 
conditions. For a suitable choice of the S"/l' it may be 
shown (see Appendix B) that we may choose 

T(a) = exp a • X, (4.7) 

where the X .. are the infinitesimal generators of the Lie 
algebra and are given by 

X" = - - = Vi..(X)-. (aX;) a a 
oa .. a=O oXi oXi 

(4.8) 

We note that T(a) leaves the origin fixed if and only 
if Vi).(O) = 0, for all i, A. Also, T(a) is a linear repre
sentation if and only if vi;.(x) is a linear function. 

Finally, we remark that the relationship between 
Eq. (3.5) and the previously given equivalence con
dition (2.4) and (2.5) may be established by setting 

a - J a x .. = !M(X);-, x .. = M(X) a-=- , (4.9) 
uX j Xj 

and defining A as the operator effecting the coordinate 
transformation 

Ax = x(x), A-IX = x(x) (4.10) 

involved in the Eqs. (3.5). 
From (3.5) and (4.9) we have that 

Hence, 

7 _ a of i a x .. = J M(X);-:- = ! .. ix) ;-- ;-:-
uX j uXk uX j 

a 
=!"ix) - = X". 

oXk 

(exp a· X)x(x) = (exp a· X)x(x) 

holds trivially. Application of Lemma 2 (Appendix 
B) then gives 

x{(exp a . X)x} = (exp a • X)x(x), 

which may be written, using Eqs. (4.7) and (4.10), in 
the form 

A[T(a)x] = T(a)(Ax), (4.11) 

as required by Eq. (2.5). Finally, we note that Eq. (2.6) 
may be chosen as an initial condition in the integration 
of Eqs. (3.5) [Ref. l1(b), Chap. V, p. 104]. 

5. CANONICAL REPRESENTATION IN 
INFINITESIMAL FORM 

Let us write the general group element effecting the 
transformation (2.18) in the form 

g = e".Aeb.V. (5.1) 

Transformations of the ; and I.jJ components are 
induced by the action of the generators V and A 
appearing in Eq. (5.1), although they do not themselves 
act on ; and I.jJ directly. The content of the theory 
outlined in Sec. 4 is that we may define new operators 
V* and A * with the same commutation properties as 
V and A, but which act directly on ; and 1.jJ. These new 
operators are given explicitly by Eq. (4.8), which in 
the present context takes the form 

It is convenient to drop the star, though the dis
tinction between these two sets of generators must be 
kept in mind, particularly with regard to Eq. (2.13), 
which interrelates their action. We shall also drop 
the prime for convenience, as the meaning is other
wise clear. 

From Eq. (5.2) we obtain the commutation relations 

(O~p) [Va, ~p] = ob
a

; 

(O~p) [Aa, ~p] = oaa 0; 

[Vii' ~r] = G~jo' 
[Aa, ~r] = G::t (5.3) 

which describe the representation in infinitesimal 
form. It is of interest to note that these relations are 
more general than Eq. (5.2) in that they hold irrespec
tive of the explicit form of the generators V and A; the 
generators are merely required to satisfy the correct 
commutation relations. 

In order to compute the differential coefficients 
appearing in Eq. (5.3), we first note the formulasI5 

(5.4) 
and 

(5.5) 

where Llx denotes the operator [X, ]. Then, from 
Eqs. (2.18) and (5.1), by differentiation with respect 
to bii and setting a = b = 0, we obtain 

(O~p) Ap ab
ii 

0 = Ll~'A Vii (5.6) 

In the following we derive the infinitesimal form of or 
the canonical representation using the general theory 
outlined above. 
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and 

(5.7) 

where biip is the Kronecker delta. The first of these 
relations, which shows that the ;-components trans
form linearly under the subgroup H, is the infinites
imal analog of Eq. (2.20). The second is an elementary 
consequence of Eqs. (2.10) and (2.18), which together 
imply that u' = b under the subgroups. 

Similarly, from Eqs. (2.18) and (5.1), by differ
entiating with respect to aa and setting a = b = 0, we 
obtain (dropping the subscript; . A on the operator 
6.J;'A) 

e'" Aa = (e
A 

- 1) (O;p) Ap + (OU ii) Vii' (5.8) 
6. oaa 0 oaa 0 

To simplify this expression, we define the ;-dependent 
functions Fap , G aii' HaP' and Kaii by the following 
relations: 

6.-1(eA - I)Aa = FapAp + GaiiV" 

eAAa = HapAp + KaiiVii . (5.9) 

The leading term of both Fap and HaP is the Kro
necker delta, so these functions are invertible [Ref. 
l1(b), Appendix, p. 158]. Thus, by substituting Eq. 
(5.9) in Eq. (5.8) and equating coefficients of A and 
V, we obtain 

(~::)o = H ayF;pl , 

(
OU ii) -IG - = Kaii - HapFpy yii' 
oaa 0 

(5.10) 

These expressions take a particularly simple form 
in the parity case [Eq. (2.11)]. This is because, re
calling Eq. (2.10), terms in A and V appear alternately 
in the action of the operator 6. == 6.J;'A on A. Thus, 
from Eq. (5.8), we obtain after a little reduction 

( O;p)Ap = 6.coth6.Aa , (5.11) 
oaa 0 

( OU a) Vii = (sinh6.rl(cosh6. - l)Aa' (5.12) 
oaa 0 

from which the differential coefficients are readily 
obtained in series form. 

Equations (5.6) and (5.11) define the action on the 
;-components. To derive the corresponding result for 
the ~-components, we note from Eq. (2.19) that 

( 01p) = {~ D(e-U
'
V )} 1p 

ohii 0 ohii 0 

{ 
0 -U.R} = - e 1p 

ohii 0 

= -Rii1p, (5.13) 

where R is the linear representation of the subalgebra 
corresponding to the linear representation D of the 
subgroup H. Similarly, 

( 01p) = _ (OU ii )R_1p (5.14) 
oaa 0 oaa a' 

To summarize, we may write down a "standard 
representation" for the commutation relations (cf. 
Secs. 6 and 8) as follows: 

[Vii' ;p] = CiiPY;y' 

[Va'1p] = -Ra1p, 

[Aa' ;p] =faP(;), 

[Aa,1p] = -gaii(;)Rii1p, (5.15) 

where the faP , gaii' and Rii are restricted by the various 
Jacobi identities. We have shown here that in the 
special case of the canonical representation, when 
parity is assumed, !ape;) == (o;p/oaa)o and gaii(;) == 
(ouii/oaa)o are given in the form of infinite series by 
Eqs. (5.11) and (5.12), respectively. 

6. REPRESENTATION PROBLEM FOR THE 
ALGEBRA 

Nonlinear representations in infinitesimal form 
have been derived by an indirect method involving 
knowledge of the global form. In the following we 
attempt a direct solution of the representation problem 
in infinitesimal form, as described by the set of non
linear partial-differential equations (3.3). Much of the 
emphasis is placed on deriving the infinitesimal ana
logs of the transformations which lead in the global 
theory to the canonical representation. 

The first step is to derive conditions under which 
linearization of a given representation can be effected. 
In principle this is' straightforward, for it is sufficient 
to establish the integrability conditions (3.5) corre
sponding to a change of variable effecting lin
earization. Unfortunately, owing to the general 
noninvertibility of the tensor fai which describes a 
linear representation, the method outlined in Sec. 3 
is not immediately applicable, and we must seek 
an alternative approach. 

By analogy with the global theory, we are led to 
consider the linearization of the representation on the 
maximal subset Xii for which fiii(O) = 0, for all i. 
This is a subalgebra L of K, so that we have 

[Xc., Xp] = Ciit1yXy , 

which imposes a condition analogous to Eq. (3.3) on 
the fii.' From this, on differentiating with respect to 
Xk and setting x = 0, we obtain 

fgi,if%i,k - f%i,d~i,k = c7iiiyf~i,k' (6.1) 

where the superscript denotes the value of the function 
at O. Equation (6.1) is just the condition for f~i';' 
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which is the first coefficient in the expansion of fai' to 
be a linear representation of the subalgebra L. This 
is exactly as obtained in the global analysis, though 
we have yet to show that the representations described 
bY!a,i and !gi,j are equivalent. Indeed, this fails to be 
true in general, as the example in Sec. 7 shows. 

However, in the case when L is compact, we may 
appeal to the global argument to establish equivalence. 
This is because the subgroup H generated by L is 
compact and hence the linearization procedure given 
in Sec. 2 may be applied. Combining this with the 
analysis given in the latter part of Sec. IV, the equiv
alence of the representations described by fai and 
jgi.i is easily verified. It would be of interest to give a 
more direct argument involving only the Lie algebra, 
though this is apparently less easy. Indeed, it is 
generally true that changes of variable are more 
readily carried out globally. 

We may write an arbitrary representation, linear 
on some subalgebra L (not necessarily that defined 
above), in the form 

[Xa" Xi] = - Ra,ijxj; [Xp, Xi] = !Pi(X), 

Let us further assume that K is semisimple, with the 
Killing form diagonal, and that Ra,ii is antisymmetric 
in the Latin indices. In this case we have the further 
equation (cf. 2.10): 

[Xa" Xp] = ca,pyXy. 

It then follows from the Jacobi identities that 

Ra,jjRpjk - RPijRa,jk = Ca,p"}Ryik' (6.2) 

!aURpjkXk = RPiilaj - /yiCPay, (6.3) 

!ai.JPj - !Pi.ifaj = CaP'iR'jijXj + CaPyhi' (6.4) 

The first of these expressions implies that Ra,ii is 
a linear representation of L. The second, that !Pi is a 
mixed tensor transforming according to the linear 
representations Ra,jj and ca,yP of L. 

Evaluated at the origin, Eq. (6.3) gives 

Rpjjfaj(O) = !Yi(O)CPay. (6.5) 

The simple interpretation of Eq. (6.5) is that the 
matrix M with components Mia == !aj(O) is an inter
twining operator for the representations of L defined 
by (Ra,)jj == Ra,ii and (Ca,)py == ca,yp. Hence, by Schur's 
Lemma and the assumed anti symmetry of Ra" if!a.j 
starts with a constant term, Ra, must contain in its 
reduction at least one of the irreducible subrepre
sentations of Ca,. We use this fact in Sec. 7. This 
decomposition underlies the separation of the repre
sentation manifold M in ; and '-/I components as 
described in Sec. 2. 

For compact Lie algebras, this argument may be 
considerably strengthened. In this case, L can be 
chosen to be the maximal subalgebra for which the 
representation vanishes at the origin. This implies that 
the (nG - nH) vectors aa with components fuAO) are 
linearly independent. As the Lie bracket is itself 
linear, we may choose 

!a.;(0) = t5ai , (6.6) 

which corresponds to the orthonormalization of the 
aa' Substituting back in (6.3) and setting x = (;,'-/1) 
(identifying the; with the Greek indices), we find that 
the ;-coordinates form an invariant subspace of the 
linear representation described by Ra,jj. Since L is 
compact and M is assumed finite dimensional, it 
follows that the '-/I-coordinates also form an invariant 
subspace [Ref. 11 (d), Chap. III, p. 161] and we obtain 

[Xa" ~p] = ca,py~y, (6.7) 

[Xa.' ~p] =!a.p(;, '-/I), 

[Xa'V'r] =!ar(;' '-/I), 

(6.8) 

(6.9) 

(6.10) 

where the subscripts have the ranges given under 
Notation in Sec. 1. 

Equations (6.7) and (6.8) illustrate the separation of 
Minto ;- and '-/I-components, though the representation 
is not yet in canonical form. For this, two further 
coordinate transformations are necessary. First we 
note that Eq. (6.6) is equivalent, though to first order 
only in the group parameters, to the choice made in 
Sec. 2 of the; as the coordinates of the orbit N of 0 
under G/H. For this to hold to all orders, we must also 
have 

If this does not hold, we must find new coordinates 
in which it does. Given such a transformation, it then 
follows from Eq. (6.4) that !a.p(;, 0) is a representa
tion of K - L. Moreover, by (6.6) this tensor is 
invertible at the origin, and hence, by an argument 
parallel to that given in Sec. 3, is equivalent to any 
such invertible representation. In particular, we may 
choose f.p(;, 0) to have the canonical form. 

Secondly, the transformation carried out in the 
global procedure, as described by Eqs. (2.15) and 
(2.17), indicates that it is possible to choose coordi
nates such that 

!a.P(;, '-/I) =!a.p(;, 0) ==!a.p(~), 

!a.r(;' '-/I) = gClrs(;)V's' (6.11) 

Indeed the canonical representation can be recovered 
by setting 

(6.12) 
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where gaa = (ouajoaa)O is given by Eq. (5.10). [When 
gars(~) separates in the manner described by Eq. (6.12), 
we shall say that it is of standard form, the canonical 
representation being a special case. The importance of 
this form arises in the construction of invariant 
Lagrangians (cf. Sec. 8).] Moreover, we may show 
that any analytic function gars(~) gives an equivalent 
representation to Eq. (6.11) above by considering the 
following coordinate transformation: 

ta = ;a, ifr = Ars(~}rps' 
Substituting in 

[Xa' ifr] = - Rars"Ps; [Xa, "Pr] = gars(~)if., 

we obtain the differential equations for the function 
Ar.(~): 

A,s.pcapy;y = RartAts + RatsArt, 

A,..p/ap + Attgats = gartAts· 

(6.13) 

(6.14) 

The first of these [Eq. (6.13)] merely expresses the 
fact that Ars must be a tensor with respect to the 
representation Rars of L. As for the second, one may 
show from the defining equations (6.7)-(6.10) for a 
representation that 

(Ars .ap - A,s,pa)fya/~p = O. 

On account ofthe invertibility of!ap, this shows that 
Eq. (6.14) is integrable and thus establishes the equiv
alence of the representations gars and gars' In partic
ular, we may choose gars to be independent of the 
~ coordinate. This is a generalization of a result 
obtained by MacFarlane and Weisz10 for Kn. However, 
in general, such a choice for gars may not be of stand
ard form, whereas the canonical representation always 
has this property. Constant gars means that the repre
sentation manifold separates out into a subspace which 
transforms linearly under the whole group. Moreover, 
any two such linear representations are equivalent if 
and only if they are unitarily equivalent on the sub
group H corresponding to L. This holds even if they 
are not unitarily equivalent on G. A result of a rather 
similar nature has been obtained from the global 
analysis. 4 

Finally, we remark that if we identify the t;- and~
components of the canonical representation with the 
meson and baryon fields respectively, then, insofar as 
the creation and annihilation operators for the particles 
obey similar transformation laws (cf. Secs. 3 and 9), 
the particle number of the baryons, but not that of the 
mesons, is conserved by the action of the infinitesimal 
generators on the state space. 

7. NONCOMPACT CASE 

In the global procedure, the compactness of G is 
required only to ensure compactness of the isotropy 
subgroup H. Hence the results of Sec. 2 also apply to 
representations of noncompact groups where the 
isotropy subgroup is compact. However, this is not 
the most general situation, and consequently non
compact groups may admit representations not 
equivalent to the canonical one. This is conveniently 
illustrated by a study of SO(2, 1), the Lie algebra of 
which takes the form 

[L1 ,L2]=La, [L2 ,La]=-L1 , 

(7.1) 

We consider a representation of this algebra linear 
when restricted to La. We suppose further that it is 
nonzero at the origin. Then, according to the argu
ment given in Sec. 6, its restriction to La must contain 
an irreducible component of the representation of La 
induced by the commutation relations (7.1). The 
latter is 2-dimensional and has irreducible com
ponents given by 

[La, L±] = ±L±, 

where 
L± = L1 ± L 2 • 

We choose a representation transforming under 
La like the L+ component. That is, 

[La, z] = z. 

For the nonlinear part, we introduce functions 
f±(z) defined by 

[L±, z] = f±(z). 

These must satisfy, on account of the Jacobi 
identities, 

f- df+ _ f+ df- = 2z, z df+ = 2f+, Z df- = O. 
dz dz dz dz 

Hence the representation takes the form 

[L, z] = HAZ2 + 1jA), [L2' z] = HAZ2 - l/A), 

[La, z] = z, (7.2) 

where A is an arbitrary real constant. This representa
tion is not equivalent to the canonical representation. 
Moreover, it cannot be linearized even on the (non
compact) subalgebra La, L+. This is in spite of the 
fact that on this subalgebra the representation 
vanishes at the origin. 

By complexification we may obtain from Eq. (7.2) 
a representation of SO(3). This takes the form 

[L1' z] = t(AZ2 + I/A), [L2' z] = ti(AZ2 - I/A), 

[L3' z] = iz. 
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However, the introduction of i means that we must 
interpret z as a complex variable. In order to derive 
the form of this representation on a real manifold, 
we write z = x + iy and identify real and imaginary 
parts. The representation so obtained can be shown to 
be equivalent to the canonical representation. Fur
thermore, the maximal subalgebra on which the 
representation vanishes is the subalgebra La on which 
it is linear. This is in agreement with the general 
theory. 

The above result suggests a method for constructing 
nonlinear representations for arbitrary noncompact 
semisimple Lie algebras, since every such algebra has 
a compact real form obtained by complexification 
[Ref. Il(a), Chap. 8, p. 31OJ. Thus, given an arbitrary 
nonlinear representation of a noncompact semisimple 
Lie algebra, complexification and separation into real 
and imaginary parts gives a nonlinear representation 
of the compact algebra which must be equivalent to the 
canonical representation. Thus, starting with the 
canonical representation for the compact form, a 
reversal of the above procedure must give all possible 
nonlinear representations of an arbitrary noncompact 
semisimple Lie algebra. Unfortunately, the reverse 
procedure is less easy to perform. 

8. CONSTRUCTION OF INVARIANT 
LAGRANGIANS 

The physical motivation behind the preceding work 
is the construction of Lagrangians which exhibit the 
supposed symmetries of nature and whose predictions 
may be compared with experiment. The preliminary 
step is therefore to construct a Lagrangian which is 
invariant under a desired symmetry, for example, 
8U(2) X 8U(2). A subsequent step, which we shall 
not discuss here, is to break the symmetry in a well
defined way consistent with experiment, for example, 
by means of the PCAC hypothesis. It has been shown4 

that the results of calculations made on such Lagran
gians in certain well-defined approximations (tree 
approximations) are in accord with results obtained 
from more laborious calculations based on current 
algebra. We also note that, although from the point of 
view of a symmetric Lagrangian all representations of 
the fields are equivalent, once symmetry breaking is 
introduced, different schemes may give different 
results [Ref. 3 (d), p. 17 57J. 

The construction of invariant Lagrangians is highly 
facilitated by the standard transformation property 
(6.12), satisfied in particular by the canonical baryon 
field, which ensures the following result: Any function, 
invariant under the linear subgroup, of fields with the 
transformation properties under the whole group of 

the standard baryon fields, is an invariant function 
under the whole group.16 Thus, if I("P) is the invariant 
function, 

[Xii,/("P)J = -I,rRars"P. = 0, 

which implies 

[X .. , I("P)J = -1,rg .. iiRiirs"Ps = o. 
We also note that there can be no nontrivial invariant 
function of the; fields; this is a consequence of the 
transitive action of the group on the ; component in 
the global form. Infinitesimally, 

[X .. , I(~)J = l,pf .. P(~) = 0 => I,p = 0 or 1= const, 

from the invertibility of J..p(~). 
A Lagrange function should in general depend upon 

the gradients of the fields with respect to the space
time coordinates. Such gradients transform linearly 
under the whole group, but need not fulfill the re
quirement of transforming in the standard way. The 
problem then arises of constructing analogous quanti
ties, the so-called covariant derivatives, which do 
transform in the standard fashion. Thus, given the 
standard transformation equations 

[A .. , ~p] = J..p(~), [Va, ~pJ = capy~y; 

[Va' "PJ = -Rii"P; [A .. , "P] = -g"ii(~)Ra"P, (8.1) 

we require that the covariant derivatives obey 

[Va, DIl~pJ = capyDIl~y, 

[A .. , DIl~p] = g"ii.(~)ciiPyDIl~Y' 

[Vii' DIl"P] = -RiiDIl"P, 

[A .. , DIl"P] = -g .. i~)RiiDIl"P' 

(8.2) 

It is easy to show that such covariant derivatives exist, 
providingf .. p(~) is invertible. For if we define 

DIl~p = h .. p(~)all~'" 

DIl"P = ap"P + kp .. (~)(Dp~ .. )Rp"P' (8.3) 

then substituting Eq. (8.3) in Eqs. (8.1) and (8.2) 
ultimately leads to 

(h .. p,« - h"p".)fy.f~, = 0, 

(kp .. ,Et - kp .. ,t<)j;.f~, = 0, 

which are integrable providedJ..p is invertible. We also 
have that hand k are tensors under the subalgebra, 
and that h is invertible. 

We may exhibit a general form of the covariant 
derivatives as follows. Given differential operators 
which obey 

[Vii' Ap] = ciipyAy' [A .. , Ap] = g"ii( ~)ciiPyAy, (8.4) 

we may then define covariant derivatives DIl~ and 
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D,.1p by 
O,,~p = [A", ~p]D"~,,, 

DJl1p = dJl1p - [A", 1p]DJl~'" (8.5) 

which, given that (A", ~p] is invertible, may be shown 
to have the correct transformation properties. Now 
given /"p invertible, solutions to Eq. (8.4) necessarily 
exist, for it may be shown that we may write A" in the 
form 

h-l a k R a (8 6) 
A" = p" d~p - P" /iij1pj d1pi ' . 

where h"p and kpa. are defined by Eq. (8.3). However, 
the important fact is that we may further obtain 
solutions to Eq. (8.4) in the form 

A" = La.p(~)Ap + Ma.p(~)Vp, (8.7) 

where L,,(J and Ma.p are suitable functions of ;. Indeed, 
by comparison of Eqs. (8.6) and (8.7), we obtain 

h{j; = L"y/Y(J + M,,'lYpy~Y' 
kya. = L"ygyy + M"r' 

and it is easy to show that these equations have a 
solution for L"p and Ma.p, given/a.p invertible. 

The importance of this result is that we may go on to 
construct higher-order covariant derivatives trans
forming under G as prescribed by Eq. (8.2), but which 
involve several space-time differentiations. For ex
ample, DJl D,.1p, which is a space-time invariant, takes 
the form 

DJlDp,1p = d"D,,1p - [All.' Dp,1p](DP,~,,) 

= dJld,,1p - (d"(Ap, 1p])D,.~(J - (A(J' 1p]dJlD,.~p 

- [All.' dJl1p](DP,~a.) 

+ (A", [Ap, 1p]](DP,~,,)(DJl~p), 

In the parity case, assuming the structure constants 
totally antisymmetric(cf. Ref. 11 (a), Chap. 8, pp. 310 
and 311] and ga.ii a constant, the solution takes the 
particularly simple form 

L"p = b"p, M,,{J = g"p, (8.8) 

and hence the covariant derivatives become 

This generalizes a result of MacFarlane and Weiszlo 

obtained in the special case when G = Kn and H = 
SU(n). As might be expected, the covariant derivatives 
for the ~ field are trivial, though it is perhaps worth 
noting that we may add an arbitrary multiple of the 
term 

to o,.1p and still obtain a covariant derivative. Thus the 
choice of D,,1p is not unique, there being a correspond
ing arbitrariness in the choice of the Lagrangian. 

It should be noted that in the constant case the ex
pressions for L,,(J and Ma.p are simpler than the corre
sponding expression for ha.p. Moreover, the former 
involve only the gaP term. It might be anticipated 
from this that the general expressions will involve only 
ga.P and its first derivatives as in the construction of 
Christoffel symbols, though we have been unable to 
verify this conjecture. 

In the case of the canonical representation, the 
covariant derivatives can be evaluated explicitly.5.l? 
The solution takes the form 

DJl~(J = Fa.p(~)d,,~a., 

D,.1p = dJl1p + Ga.{J(~)(dJl~a.)Rp1p, 
where F,,(J and G,,{J are given by Eq. (5.9). In the parity 
case, this expression simplifies considerably to give 

where 

DJl; • A = ~-l sinh ~ d,,; • A, 

D,.1p = Op,1p + K{J(;' dp,;)R{J1p, 

KP(;, dJl;)Vp = ~-l(cosh ~ - 1)(d,,;' A). 

There is a striking similarity between the expressions 
obtained in this and the gaii constant case. Thus 
substitution from Eqs. (5.6), (5.11), (5.12), and (8.1) 
gives after a little manipulation 

dp,~p = (f..p - g"iiCii(JyqDp,~", 

Dp,1p = d,,1p + g"ii(Dp,~(.)Rii1p, 
an expression very similar to Eq. (8.9). This is 
apparently coincidental. 

Having obtained the covariant derivatives, a 
Lagrange function invariant under G and space
time may be readily constructed. To do this,we merely 
combine covariant and contravariant components, the 
latter being obtained by replacing the representation 
Rii by its adjoint representation and dJl and dP,. As we 
noted previously, the meson mass term cannot appear 
in such a Lagrangian, though it may be included as a 
symmetry-breaking term.9•l8 

Lagrangians constructed in the manner described 
above are essentially bilinear in the co- and contra
variant derivatives. In addition, it is possible to write 
down multilinear invariants by making use of the 
following construction. 

Suppose that, under the subgroup H, the vectors 
yV') transform according to 

[Vii' y~k)] = CiiflYY~)' 
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Then the Cip;y1k ); i, j = 1, 2, ... , na, transform like 
tensors under H; and I(n), given by 

J(n) - c y(l) C y(2) • • • (n) 
- ilPliz PI i2P2ia P CinPni,YPn' 

are invariant under H, for all n ~ 2. For n = 2, we 
obtain the familiar invariant y1°y12) , whilst for n > 2, 
either new invariants or functions of 1(2) appear, 
depending on the particular choice of G. When we 
replace YP by the covariant derivatives (DIl~fJ)' it 
follows from this that the resulting quantities are 
invariant under the whole group. 

9. NONLINEARITY AND ZERO MASS 

In the following we consider the transformation 
properties with respect to G of the underlying state 
space on which the field operators act. Particular 
emphasis is placed on the noninvariance of the vacuum 
which leads through the Goldstone boson theorem19 

to zero-mass particles. 
We suppose that the action of G on the states is 

induced by a one-one onto map Ug chosen such that 
expectation values remain fixed. This leads in the 
usual way to the set Ug:g E G defining a unitary 
representation of G. Assumed invariance of the vac
uum under G then gives 

(01 (exp a • x - l)xi 10) = 0, (9.1) 

for all i. This is an identity in the group parameters a 
and hence Eq. (9.1) implies possibly infinitely many 
relationships between the vacuum expectation values 
of products of the field operators (n-point functions). 
In special cases, a direct contradiction20 can be 
demonstrated, though this is less easy to show in 
general. However, for linear transformations no 
contradiction results as long as the vacuum expecta
tion values of the fields vanish. Hence the vacuum may 
have the symmetry of the linear subgroup H and this 
leads as a consequence of the Goldstone boson theo
rem to the appearance of (na - nH) massless bosons, 
one for each degree of symmetry lost.21 The precise 
relationship of this result to the fact, noted in Sec. 8, 
that the meson mass term must cause a symmetry 
breaking of the Lagrangian is of some interest and 
merits further study. 

Further insight into the consequences of nonlinear 
transformations can be made with the aid of the 
following hypothesis. Suppose that, corresponding to 
the field operators Xi' there exist particle creation and 
annihilation operators at(k) and aik) which satisfy 
the canonical commutation relation 

[a;(k) , a;(k')] = ~ij~(k - k'), (9.2) 

and that the normalized sums (2)-1[ai(k) + ai(k)] 

transform like the fields Xi under G. (fn the free
field case, we should interpret these operators as 
Fourier transforms of the fields.) Then we may give 
the following explicit expression for the unitary 
operators Ug • This is 

Vg == Va = exp a" f H/"i{(2)-1[a(k) + i*(k))), 

(2)-i[a;(k) - ai(k)]}+ dk, 

where the a define the group parameters of g E G. Ug 

acts linearly on the states developed from the vacuum 
by the action of the creation operators ai(k). Non
linearity of the field transformation manifests itself as 
an action on the states which changes particle number. 
Moreover, given I"i in canonical form, it is easily 
shown that the vacuum is not invariant under the G/H 
cosets. Invariant states may be constructed by applica
tion of the averaging operator fa Ug dg (where dg 
is the Haar measure) to an arbitrary state. Such states 
are in general linear combinations of states associated 
with differing particle number. 

10. LINEARIZATION BY EMBEDDING 

In Sec. 2 we considered the problem of linearizing 
the representation by transforming from one set of 
coordinates to another with the same number of com
ponents. Suppose we now permit the second set to have 
an arbitrary number of components. Then, in an 
essentially trivial fashion, we can always carry out 
a formal linearization. Thus, given a group repre
sentation specified by the analytic function h(x, a) of 
the coordinates Xi and the group parameters all' we 
expand it as power series in the Xi identifying each 
monomial as a distinct coordinate of the new space. 
That is, we write 

Y. . = xi1xi2 ••• Xin 
'1' .. 3ft ' 

for all n = 1,2,'" ,j; = 1,2,···. 

Clearly hey) is a linear function and hence the 
group representation is linear in these coordinates. 
The y space is, in general, infinite dimensional with 
an infinite number of nonlinear relations between the 
individual coordinates which define a surface corre
sponding to the embedded manifold on which the 
group acts. 

In certain special cases, a more judicious choice of 
coordinates may be made which permits the y space 
to be finite dimensional. This may be exemplified by 
a study of the nonlinear representations discussed by 
Chang and Giirsey. a In this, the transformation of the 
pion field (1Tl' 7T2, 7Ta) under the chiral group K2 is 
determined by the 8 x 8 matrix function V with argu
ment iys'f: • n. Under isospin, the transformation of the 
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pion field is linear and this holds, irrespective of the 
functional form of U. On the other hand, the remain
ing part of the chiral transformation defined by 

U - U' = exp (-tiY5T· a)Uexp (-tiY5T. a) 

(10.1) 

is, in general, nonlinear. However, it is easy to see 
from Eq. (10.1) that if, in terms of some new fields, U 
is a linear function, then these new fields transform 
linearly. To find such fields, we first remark that the 
different functional forms for U given by Chang and 
Giirsey aU lead to transformations on the pion fields 
which as representations of K2 are equivalent. Hence 
it is sufficient to consider Model B described by these 
authors. Tn this, U takes the form 

U _ (1 - j27/'2) + 2it. T • 7t 
- 1 + j27/'2 JY5 (1 + j27/'2) , 

where f is an arbitrary real constant. Let us make the 
change of variable defined by 

_ 2j7/'i . 1 _ (1 - j27/'2) 
7/'i = 1 + j27/'2 , I = ,2,3; 7/'4 = 1 + j27/'2 . 

(10.2) 

It is easy to see that in terms of these new variables 
U is a linear function, and hence the new coordinates 
transform linearly. Moreover, Eq. (10.2) is just the 
stereo graphic projection of R3 onto the surface of a 
sphere embedded in R4, this surface being the repre
sentation manifold. Correspondingly, the functions 
[see, for example, Ref. 2, Eq. (2.21)] which define the 
infinitesimal generators of the transformation of the 
pion fields are linear in these new coordinates. 

The physical significance of this result is that, by 
introduction of additional fields, it is always possible 
to replace nonlinear transformations by linear ones. 
We shall not dwell on the conceptual advantages or 
disadvantages inherent in such a procedure. It suffices 
to remark that a similar situation occurs in gravitation 
theory22 and, as Fock8 has shown in his study of the 
hydrogen atom, in ordinary quantum mechanics. 
Finally, in the example described above, the addi
tional coordinate can be identified with the (J field of 
Gell-Mann and Levy2 introduced in their (J model for 
(J decay. 
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APPENDIX A 

Let G be the additive group of the circle (the real 
line modulo 27/'), and M the complex plane.23 Then 
T(a), defined by 

z' == T(a)z = f- 1(e i1(z», a E [0, 27/'], (AI) 

where f and j-l are analytic at z = 0, is a nonlinear 
representation of G. Suppose further that 

j(z) = z + 0(Z2), j-l(Z) = Z + 0(Z2) 

(for example, choose j to be the sine function). Then 
D(a) as defined by Eq. (2.7) is multiplication by exp ia. 
Thus, applying Eq. (2.8), we obtain 

(2lT 
w = Jo e-i'1-1(e iQf(z» daJ27/' (A2) 

for the coordinates w in which the representation is 
linear. To verify this, we set b = (f(z)eia) and 
substitute in (A2). This gives the contour integral 

w = [f(Z)J27/'i]icb-2f-1(b) db, 

where C is a circle of radius fez) about b = 0. The 
integrand has a simple pole at b = 0; hence 

OJ = j(z). 

Substituting this result back into (AI), we obtain 

w' = D(a)w = eiaw, 

which is a linear representation as required. 
For noncompact groups the linearization procedure 

given in Sec. 2 may fail, even though it is possible to 
linearize the representation by a change of coordinates. 
This is shown in the following example. 

Let G be the additive group of the real line and M 
the complex plane with the origin excluded. Then 
T(a), defined by 

T(a)z = z(l - iaz)-t, a E (- 00, (0), 

is a nonlinear representation of G. D(a) as defined by 
Eq. (2.7) does not depend on a, being simply the 
identity representation. Hence it cannot be equivalent 
to T(a) as equivalent representations must be in one
to-one correspondence. Correspondingly, the group 
integration (2.8) fails. A linearization can be effected 
through the transformation OJ = exp (_=-1). This 
gives the representation 

T(a)w = (exp ia)w, 
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with M' an infinitely sheeted Riemann surface. How
ever, it should also be noted that the origin is excluded 
from M, and were it to be included, it would not then 
be possible to make the transformation analytic at this 
point. 

APPENDIX B 

In the following, we verify that 

T(a)x == (exp a· X)x 

with X;. defined by (4.8) is a representation of the Lie 
group generated by the X;., and obtain the functions 
E;'I'(a) defined by (4.3). We start with two lemmas. In 
these K denotes as before the Lie algebra. 

Lemma Bl: Given a, b vectors of suitable dimension 
and X;. E K, then 

(exp a • X)(exp b • X) = exp {<I>(a, b) . X}, 

where <I> is a vector-valued function of a, b analytic at 
a = b = 0 (that is, at the identity e E G). 

Proof" This is an elementary consequence of the fact 
that given X, Yarbitrary in K, then 

(exp tX)(exp t Y) = exp Z(t), 

where Z(t) E K and Z(t) is analytic in t at t = 0 [Ref. 
lI(c), Chap. Y, p. 172]. 

Lemma B2: Given hex) a vector-valued infinitely 
differentiable function on M, then 

(exp a • X)h(x) = h{(exp a • X)x}. 

Proof" We first note that if !(t) is infinitely differ
entiable, then 

= J(t + 1) = J{ (exp :Jt}. (B1) 

Now solve the set of differential equations (for 
which the integrability conditions are trivial) 

a v. [x(t)] = dx;(t) (B2) 
I' 'I' dt 

and substitute in Eq. (4.8). This gives 

a. X = f{. (B3) 
dt 

Now from Eq. (B2) by differentiation, it follows, 
since the v;,,(x) are analytic, that the Xi are infinitely 
differentiable for all i. Hence h(x(t» is infinitely 
differentiable in t. Then use of Eqs. (B1) and (B3) 

gives 
(exp a • X)h(x(t» = h{x(exp a • Xt)} 

= h{(exp a • X)x(t)}, 

which proves the lemma. 

The main result now follows easily. Define 

(exp a· X)x = hex, a). (B4) 

To show that this is a group representation we must 
verify Eq. (4.2). According to Lemma (B1), we have 
that 

(exp a· X exp b· X)x = {exp <I>(a, b). X}x 

= h[x, <I>(a, b)]. (B5) 

On the other hand, from Lemma (B2), 

(exp a· X exp b· X)x = exp a· X{h(x, b)} 

= h{(exp a • X)x, b} 

= h[h(x, a), b], 

which combined with Eq. (B5) proves the required 
result. 

The functions E;'I'(a) defined by Eq. (4.3) can be 
obtained by differentiation of Eq. (B4). Thus, setting 
h = x', we have 

from (5.5). 

we have 

aX; _ () ( 
- = ~;'I' a exp a· X)X;,Xi 
aal' 

= E;.ia) (exp a· X)Vo.(x) from Eq. (4.8) 

= E;.ia)v;;.(x') from Lemma B2. 

The E;:; form a nonlinear representation of K linear 
only on the identity. It is the same as that obtained 
from the global procedure. Indeed it is just the 
infinitesimal form of the representation g: a --+ a' of G 
defined by right translation 

(exp a· X)g = exp a'· X. 

This may be identified with Eq. (2.18). 
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The radiation from a point source with proper time-dependent coupling strength to a real classical 
scalar field is worked out. The adiabatic switching limit reproduces the results of the physical case of 
constant coupling for the radiation. The problem of defining a "radiated" field is discussed. 

1. INTRODUCTION 

The radiation of a massive real Lorentz scalar field 
has recently been treated in detail for the case of a 
finite number of point sources having nonvanishing 
accelerations over a finite region of space-time.1.2 The 
present paper extends this effort by working out the 
case where the source coupling to the field is time 
dependent. We apply the results to two problems, the 
first being the adiabatic switching of the source 
strength, and the second, whose purpose is to study 
the problem of localization of the source of the radia
tion field, is the sudden switching limit. We find that 
the adiabatic limit of the radiation from the source 
with time-dependent coupling reproduces the constant 
coupling results. The sudden limit is a representation 
of sources with "truncated world lines" and gives 
significant extra radiation from the time variation of 
the coupling, regardless of when the switching is 
performed. 

It is also possible to apply our results to the problem 
of the classical theory of the massive Lorentz vector 
field, though we do not do this here. 

Section 2 obtains the field of a single prescribed 
point source with or-dependent coupling (superposition 
gives the many-particle result), Sec. 3 works out the 
radiation obtained for the example of a specific 
switching function (with compact support) and 
determines the adiabatic limit, Sec. 4 discusses the 
problem of localizing the source of the radiation, and 
Sec. 5 is a brief summary of results. 

2. RADIATION FROM A POINT SOURCE OF 
TIME-VARYING STRENGTH 

The Klein-Gordan equation for a real scalar field 
in the presence of an external source is3 

(0 + m2)cp(x) = p(x) , 

and for p(x) we consider the following: 

(2.1) 

(2.2) 

which represents a particle with world line prescribed 
by 

(2.3) 
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1. INTRODUCTION 

The radiation of a massive real Lorentz scalar field 
has recently been treated in detail for the case of a 
finite number of point sources having nonvanishing 
accelerations over a finite region of space-time.1.2 The 
present paper extends this effort by working out the 
case where the source coupling to the field is time 
dependent. We apply the results to two problems, the 
first being the adiabatic switching of the source 
strength, and the second, whose purpose is to study 
the problem of localization of the source of the radia
tion field, is the sudden switching limit. We find that 
the adiabatic limit of the radiation from the source 
with time-dependent coupling reproduces the constant 
coupling results. The sudden limit is a representation 
of sources with "truncated world lines" and gives 
significant extra radiation from the time variation of 
the coupling, regardless of when the switching is 
performed. 

It is also possible to apply our results to the problem 
of the classical theory of the massive Lorentz vector 
field, though we do not do this here. 

Section 2 obtains the field of a single prescribed 
point source with or-dependent coupling (superposition 
gives the many-particle result), Sec. 3 works out the 
radiation obtained for the example of a specific 
switching function (with compact support) and 
determines the adiabatic limit, Sec. 4 discusses the 
problem of localizing the source of the radiation, and 
Sec. 5 is a brief summary of results. 

2. RADIATION FROM A POINT SOURCE OF 
TIME-VARYING STRENGTH 

The Klein-Gordan equation for a real scalar field 
in the presence of an external source is3 

(0 + m2)cp(x) = p(x) , 

and for p(x) we consider the following: 

(2.1) 

(2.2) 

which represents a particle with world line prescribed 
by 

(2.3) 
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The world-line parameter T we choose to be the 
future-favoring particle proper time, 

2 dMT) 
uiT) = 1, UO(T) = -- > 0. (2.4) 

dT 

We allow in Eq. (2.2) for the coupling strength of the 
particle G to the field rp(x) to vary in a smooth way 
with the particle proper time. The case G(T) = g = 
const was treated in Ref. 1 (hereafter called I). 

To obtain the solution to Eq. (2.1) we use the 
retarded Green's function 

~R(X) = [O(t)j21THb(A) - tmA-!O(A)J1(mAt)], (2.5) 

where () (t = xo) is the unit step function and A = x 2
• 

The solution is 

rp(x) = !pin(x) + f P(X')~R(X - x') d4x', (2.6) 

where rpin(x) is a solution to the homogeneous variant 
of Eq. (2.1) satisfying appropriate initial conditions 
given for rp(x) in the remote past. 

We take rpin(x) = ° and proceed to simplify Eq. 
(2.6) as in I. Substitute Eqs. (2.2) and (2.5) to get 

G m ITR("') J (mAt) 
rp(x) = R _ - dTG(T) 1 t T , 

41T(X - ~R)' UR 41T -00 AT 

(2.7) 

with AT = [x - ~(T)]2, GR = G(TR)' and TR(x) the 
smaller of the two solutions to AT = 0; change vari
ables to ~ = mAt with the help of 

aT~i ~) = -t[m2(x - ~). urI, 

to find 

GR rp(x) = --~--
41T(X - ~R) . UR 

__ 1 rood~G(T) J1a) ; (2.8) 
41T Jo (x - ~(T»' U(T) 

and integrate by parts to get 

<p(x) = ~ roodaJoW(G[-1 + (x - ~). w] 
41Tm2 Jo [(x - ~) . U]3 

_ dG/dT ) (2.9) 
[(x_~)'U]2 

= - dTJ (mAY) 
-IJTR("') 1 (G[-1 + (x - ~). w] 
41T -00 0 T [(x_~)'U]2 

_ dG/dT ), (2.10) 
(x - ~). U 

where wJl = wiT) = d2~Jl(T)/dT2 is the 4-acce1eration 
of the particle. We assume that wJl vanishes unless 

T1 < T < T2' Expressions for rp.Jl(x) are also needed; 
we have 

rp,It(X) = --=--; d"JoW(G{[(x - ~). U]2WJl 1 100 

41Tm 0 

- [3(-1 + (x -~). w)(x -~). U]U Jl 
+ [(x - ~) . w(x - ~) . U 

- 3(-1 + (x - ~). W)2](X - ~)Jl} 

X [(x - ~) . U]-5 

+ G{[3(-1 + (x - ~). w)](x - ~)Jl 

+ [2(x - ~). U]UJl}[(X - ~). U]-4 

- G(X - ~)It[(X - ~) . U]-3), (2.11) 

where the dot denotes differentiation with respect to T. 

Useful in the derivation of this expression is the 
relation 

Equation (2.11) can be converted to a T integral 
after the manner in which (2.10) is obtained from 
(2.9). Finally, it will be noted that all these results 
reproduce the corresponding constant G( T) results of I. 

We were concerned in I with the asymptotic behav
ior of the solutions (2.9), (2.10), and (2.11) for the 
case where G(T) is constant, and where the source 
world line satisfied WJl(T) ;i: ° only for T1 < T < T2' 
We have retained the latter restriction in this paper,' 
while for G(T) we are interested in the following case: 

G(T) = 0, T:::;;T., 

= geT), T. < T < Tl , (2.13) 

= 0, T Z :::;; T, 

where T. < T1 and TZ > T2' We also request of G(T) 
that its derivative vanish at Te and T l • 

Radiation from this source is defined essentially as 
in I. Enclose the portion of the particle's world line 
between ~Jl(T.) and ~lth) by a Minkowski cylinder ~ 
(Fig. 1) with axis along the time axis of an arbitrary 
observer frame and denote the radius of ~ by R. The 
cylinder extends into the infinite past and the infinite 
future. A Minkowski surface defines a Lorentz 
equivalent class of measurement procedures2

: one of 
those defined by L is the following: measurement over 
all times of flux densities through a sphere of radius R. 
Thus, we define the radiated energy momentum 
into the rp field by 

Prad - l' 1 d3 T It - 1m (1. Jl" 
R-+oo I: 

(2.14) 

where TJlv is the canonical stress-energy tensor of the 



                                                                                                                                    

ON CLASSICAL SCALAR RADIATION FROM POINT SOURCES 763 

FlO.!. World line of a particle accelerated over a finite interval 
(~O(7'l)' (~O(T2) and coupled to a classical scalar field over a finite 
interval (;;o(T.), ~O(TI) ~ (;0(T1)' ;0(T2))' The surface ~ represents 
the history of the observation sphere used in defining the radiation. 

free rp field, 

Tllv = rp,lLrp,V - glLvl:, 

I: = t( rp,lXrp,1X - m2rp2). 

The surface element d3(]v is given by 

where 
nv = (0, fl) = (0, -R) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

toward the time axis because ~ is a timelike surface. 
It can be seen that Eq. (2.18) singles out the ,u-space 
indices of Tllv , and so Eq. (2.14) involves integration 
of flux densities in the observer frame of Fig. 1. 

In order to determine the value of the limit in 
Eq. (2.14) we consider contributions to the integral 
from different regions; to accomplish this, we break 
up ~ into three parts as follows. Let the intersection 
of ~ and the forward light cone from ~1l(T,,) be 
denoted by C", where oc may be either of e or I (see 
Fig. 1). The portion below C. we denote by ~e' that 
above Cl we call the "wake" and denote by ~l' while 
the region between Ce and C l we call4 the "surf" and 
denote by ()~. Finally, choose origin of coordinates 
so that ~iT2) = O. 

It can be seen from Eqs. (2.10) and (2.11) that 
rp(x) = 0 on ~e so this portion makes no contribution 
to the radiation. For the problem studied in I it was 

found that the net contribution to the radiation from 
the surf region of the ~ integration vanished because 
rp(x) and rp.Il(X) were each O(R-~) for large R and the 
surf has finite temporal extent. Scrutiny of Eqs. (3.9) 
and (3.10) of! shows that rp(x), as given by Eqs. (2.9) 
and (2.10) of the present paper, is also O(R-~); the 
same is true for rp.IL(X), Hence, no net contribution to 
the radiation is provided in the present case by ()~. 
The radiation is all received on ~l and signals from 
portions of the world line between Te and Tl all 
contribute. Again the analysis of I goes through. One 
has only to replace Eq. (3.15) ofI by 

(2.19) 

where '" == mAt, and then observe that Eq. (3.19) 
" of I gives the same result as found for the case of 

constant G; a slight improvement of this result2 is 

(2.20) 

rp.iX) has the same behavior. In this way we find the 
leading terms of rp(x) and rp.IL(X), over regions of ~ 
from which nonvanishing contributions to the 
radiation arise, to be 

rp(x) ""' m-lA-f Re [gi(U)e-i'l'] (2.21a) 

rp,ix),......, m-lA-f Re [- imUlLgi(U)e-i'l'], (2.21b) 

where A = X2, Ull = ;,.-txll , and 

tjJ(U) =fT'dTeimU'~(rl(g(T) U' WeT) 
Te [U . u( T)]2 

- geT) U .1U(T»); (2.22) 

also V'(x) = mAl + !7T. Reference 2 shows how these 
polar forms are to be used for the evaluation of 
integrals of the type given in Eq. (2.14) and how a 
particle interpretation to the asymptotic field can be 
introduced. Indeed the only differences arising any
where in the present problem come from the geT) 
term of Eq. (2.22) so that aU the results of I and II 
can be used without further modification. In particular 
the case of more than one source is handled by 
replacing gi(U) in expressions for the radiation 
(energy, momentum, particle number) by a linear 
combination 

gi(U) -+ 2 gi<il(U) (2.23) 
i 

of terms of the form of that on the right side of Eq. 
(2.22). Passage to the case of radiation from a distri
bution of point sources should be possible. 5 
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3. DEFINITION OF RADIATED FIELD FROM 
AN ADIABATICALLY SWITCHED POINT 

SOURCE 

We specialize the results of the preceding section to 
the choice of geT), 

geT) = gh.(T), Te < T ~ Tl, 

= g, Tl ~ T ~ T2, 

= ghz(T), T2 ~ T < T Z' 

(3.1) 

where for definiteness we take as switching functions 

hiT) = exp [-(Tl - T)/(T - T.)J, (3.2a) 

hZ(T) = exp [-(T - T2)/(TZ - T)]. (3.2b) 

Remembering that w = 0 unless Tl < T < T2, we 
find that insertion into Eq. (2.25) results in 

(3.3) 
where 

~(O)(U) = (21T)-lgfT2dTeimU'i U· w , (3.4) 
T1 (U . U)2 

which is the result for the case of a proper-time
independent, i.e., physical, source strength, and 
where 

r5~(U) = b.~(U) + bz~(U), (3.5) 
with 

and 

Using the fact that ~(T) is linear in T over the regions of 
integration in Eqs. (3.6), we find that a little algebra 
gives 

_ eimU'~'Jl . (e1- X -') b.~(U) = -(21T)-lg -- dxe';"x -- , 
U' U 1 0 x 2 

(3.7a) 

imU'~/Jl l_x-
1 

01~(U) = +(21T)-tg _e__ dxe-O.IX(_e _), 
U' U 2 0 x 2 

(3.7b) 

where ~at = ~(Ta), Ua = U(T",), with ex = e, 1,2, or I, 
and where Ae = mU' a1 - ~.) and Al = mU . (~! -
~2)' It can be seen that Ae ~ m(Tl - T Z) and Az ~ 
meT! - T2) for arbitrary U(TI) , U(T2) , and U, since 
these are all timelike unit vectors. 

We can show that Eqs. (3.7) imply that the ba~(U) 
are of order A;1 when Aat is large. Thus immediately 
we have 

where 

The integrated term is (iA,,)-lei}.,. and the integral in 
the reflected term is bounded in absolute value by 6e, 
so we have that Ilal < (l + 6e)A;1, and therefore by 
Eq. (3.8), 

lo",~(U)1 = O(A;l), J.,,» 1, (3.11) 

uniformly. If we take meT} - Te) = meT! - T2) == 
J. ~ J.a , we find, from Eqs. (3.3), (3.5), and (3.11), 
that 

~(U) = ~(O)(U) + 0(A-1) (3.12) 

when ), is large. All of the radiated quantities in the 
present example differ from those of the physical case 
of constant g by amounts of order O(J.-l). 

In a similar fashion one may show that the right 
sides of Eqs. (2.21) are of the form 

q.!(x) '" tp(O)(x) + (X2)-t(X . V)-lO(J.-1), (3.13a) 

tp.!'(x) '" tp~Z)(x) + (x2)-!(x· V)-IU!'O(J.-1), (3.13b) 

where v is a future-pointing unit timelike vector, and 
where O(J.-I) represents a bound uniform in x. 

Finally, it is interesting to note that the switching 
parameter, ,which must ·be dimensionless, is the 
product of source switching time, TZ - T2 or T1 - Te == 
Lh, and mass (range) parameter m for the radiated 
field, viz., J. = milT .. 

4. RADIATION SOURCE 

The form of Eq. (2.22) suggests that for G(T) = 
const the portion of the source world line between 
~iTl) and ~iT2) is the source of the radiation. In the 
case of a mass-zero field it is possible to identify the 
portion of the source world history responsible for 
the radiation in just this fashion by means of the 
retardation condition, but when m =;6. 0 this heuristic 
notion fails. The radiation from the source Eq. (2.2) 
with 

G(T) = g = const 

is not given correctly by the asymptotic form of the 
field from the truncated source, 

(4.1) 
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The source (4.1) may be regarded as one for which 
geT) is a square step, so two endpoint ~ functions 
would show up in Eq. (2.22) from the geT) term. That 
such terms are present may be seen more clearly from 
Eq. (2.8). The integration by parts leading to Eq. (2.9) 
involves two surface terms; when T1 < TR < T2 the 
light-cone term is cancelled by the integrated term 
evaluated at TR' and the other integrated term does 
not contribute to the radiation, so again no contribu
tions arise from the surf. In the wake,however, while 
GR = 0 so that the light-cone term is absent from 
(2.8), both integrated terms are present and each 
contributes to the radiation. Finally, further verifica
tion is found by evaluating the right sides of Eqs. (3.6) 
in the sudden limit. In particular it should be noted 
that the extra terms do not "get smaller" if the 
truncation times ~o(Te.!) tend to (plus/minus) infinity. 

We conclude that the truncation of the source 
world line does not provide a localization of the source 
of the radiation. It cannot be in this sense, therefore, 
that the accelerated portion of the source world line 
may be regarded as the source of the radiation. 

5. SUMMARY 

We have found the fields, their asymptotic behavior, 
and the radiation for the case of a point source with 
proper time-dependent coupling strength when the 
source is accelerated over a finite time interval. The 
sudden switching limit reproduces the field and the 
radiation arising from a truncated source given as a 
proper time integral over just the accelerated portion 
of the world line; in addition to the physical part, 

endpoint contributions to the radiation also arise 
owing to the sudden switching, and thereby ruling ~:)Ut 
use of the truncated world line as a source for defining 
a "radiated field." On the other hand, the adiabatic 
switching limit gives back the physical result. It is 
interesting to note in the latter case that the switching 
parameter A = milT, where AT is the switching time, 
indicating that the radiation due to the switching is 
larger for smaller m values, though for any specified 
m this has no effect on the adiabatic limit. 

1 R. G. Cawley and Egon Marx, Intern. J. Theoret. Phys. 1, 153 
(1968). 

2 R. G. Cawley, Ann. Phys. (N.Y.) 54, 122 (1969). This is referred 
to in the text as II. 

3 Greek indices take all values (mod 4) and we use the modified 
summation convention with time-favoring metric. A comma is 
sometimes used to denote differentiation with respect to xil = 
~v gllVxv ; thus 

rp.1l = allrp = (arp , _ arp). 
axo aXk 

4 Note that this terminology differs slightly from that used in I. 
5 It is interesting to note some of the features of an extended 

(dispersing) source. We imagine a collection of sources confined to a 
finite region of space at Xo = 0 and whose accelerations have all 
ceased by this time, with outgoing 4-velocities u(l), world lines 
XII = ~~'(T), and coupling strengths g(u(l), r). We build an extended 
source p(x) formally by 

p(x) ~ "lim" ~ S=~ drg(uU), r)O(4)(x - ~(I)(r» 

; = f d
2

3

u f+ 00 drG(u, r)O(4,(x - ~(u, r»). 
Uo -00 

This integral can be evaluated directly, and in particular, examined 
in the asymptotic region; the result is 

p(x) = [G(U, ),!)/2),i][1 + 0(A-1)], ), large, Xo > o. 
The case of a point source takes this form formally with G( u, At) = 
g(),t) . 2Uot5(3,(U - u(r.». The form above should be compared 
with the ),-1 asymptotic behavior of the fields. 
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Two-Group Neutron Transport Theory in Spherical Geometry 

T. W. SCHNATZ AND C. E. SIEWERT 

Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 

(Received 23 May 1969) 

A set of normal modes for the two-group steady-state neutron transport equation in spherical geom
etry i.s construc~ed. T~e singula! ~igenfunc~ion-expansion technique .is then used to develop a rigorous 
solutIOn to the Isotroplcally emlttmg sphencal shell-source problem m an infinite medium. 

I. INTRODUCTION 

The singular eigenfunction-expansion technique 
introduced by Case has been used extensively in the 
areas of neutron transport theory and radiative trans
fer to construct rigorous solutions to a certain class 
of model problems. I - 5 This method has enjoyed 
particular success for energy-dependent problems,5 
for time-dependent theory, 6 for anisotropic scattering 
models,3 for reactor-cell calculations,7 and for several 
astrophysical applications.4.8 Although Case's normal
mode expansion technique has been found suitable 
for a large number of applications, one of the major 
restrictions of the method is the difficulty with which 
the extension to nonplanar geometries is made. 

Mitsis, by introducing a transform technique, 
solved the critical-sphere problem and he made an 
exhaustive study of the normal modes of the one-speed 
equation with spherical symmetry.9 Leonard and 
MullikinlO and Erdmann and Siewertll also solved 
several problems in spherical one-speed theory. In 
the latter paper, two distinct approaches to spherical 
problems were employed: The first relied upon 
the spherical-to-plane geometry transformation for 
the density, and the second utilized more directly the 
normal modes of the equation for the angular density. 

The N-group formulation discussed by Davison has 
been employed for investigating energy-dependent 
problems in neutron-transport theory.12 This model 
also has been examined in light ofthe Case techniquel3 ; 

Leonard and Ferziger, 14 Siewert and Shieh,15 and 
Yoshimura and Katsuragi16 have made contributions 
to the theory of multi group neutron transport, and 
Metcalf and ZweifeP7 have used this work to make 
numerical calculations for the Milne problem in two
group theory. 

The purpose of the present paper is to blend the 
methods of Erdmann and Siewertll for spherical 
problems with the two-group analysis of Siewert and 
Shieh15 in order to solve the isotropically emitting 
spherical-shell source problem for the two-group 
model in an infinite medium. In Sec. II the basic 
equations for this problem are given, and the normal 
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modes of the two-group equation in spherical geom
etry are constructed, while Sec. III is devoted to the 
solution of the considered problem. 

II. GENERAL ANALYSIS 

We consider the Green's function associated with 
an isotropically emitting spherical-shell source in an 
infinite medium. Thus we seek a solution to the time
independent transport equation 

subject to the constraint that 'I'(ro; r, f-l) must be 
bounded for all r, since the considered medium must 
be nonmultiplying. Here 'I'(ro: r, f-l) is a vector whose 
two components represent the angular neutron fluxes 
in each of the energy groups, f-l is the direction cosine 
of the propagating radiation, and r is the optical 
variable defined in terms of the smaller of the two 
total cross sections. Thus, the E matrix takes the form 

E = I ~ ~ I, a> 1, (2) 

where a is the ratio of the total cross section in the 
first group to the total cross section in the second 
group, and C is the transfer matrix with elements cij • 

In addition the components of Q, q1 and q2,are used 
to indicate the intensities of the two group sources. 

In the usual manner,2 we need consider only the 
homogeneous version of Eq. (1); we thus replace the 
source term by the equivalent boundary condition 

f-l['I'(ro: rt, f-l) - 'I'(ro: ro, f-l)] = (1/87Tr~)Q. (3) 

We should like to construct the solution to this 
problem in a manner analogous to that used so 
successfully in plane geometry, i.e., Case's method 
of singular eigenfunction expansions.1 First, a general 
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set of solutions, denoted as normal modes, to the 
homogeneous transport equation is determined. The 
desired solution is then written as a linear sum of these 
normal modes, and the arbitrary expansion coefficients 
in this sum are selected such that the boundary con
ditions of the problem are satisfied. This procedure is, 
of course, a classical technique; however, in contrast 
to problems in plane geometry where the necessary 
completeness theorems are usually available,2 the 
solution here cannot be effected quite so readily. 

We begin by constructing a set of normal modes for 
the equation 

[
p! + (1 - p2) ~ + E]'l'(r, p) 

or r op 

= c fl'l'(r,p') dp'. (4) 

Careful inspection of the similarities between the 
normal modes in one-speed transport theory for 
plane2 and sphericaln geometries suggests a form for 
the solutions here. In addition, the relationships 
between the normal modes for one-speed2 and two
groupl5 theory in plane geometry may also be used to 
advantage. It is therefore proposed that Eq. (4) has 
solutions of the form 

00 

'l'~(r, p) = L [t(2m + 1)]P m(P)U mer, 1])Gm(1]). (5) 
m=O 

Here the Legendre polynomials are represented by 
Pm(p), and 

Um(r, 1]) = A(1])km(rl1]) + B(r})( -1)mim(rl1]), (6) 

with A(1]), B(1]), and, at this point, 1] being arbitrary. 
In addition, 

and 
im(x) = (7T12x)!Im+!(x) 

km(x) = (7T12x)!Km+t (x). 

(7a) 

(7b) 

Following Watson's notation, we have used Im+!(x) 
and Km+t(x) to denote the modified Bessel functions. ls 

If the proposed solution is substituted into Eq. (4), 
we observe that the G-vectors must be solutions of the 
recursion relation 

(2m + 1)'/'}EGm(1]) = 21]CGo(1])bo,m + (m + l)Gm+1(1]) 

+ mGm- l(1]), m = 0, 1, 2, .. '. (8) 

In order to establish Eq. (8) the following expressions 
have been utilizedl9 : 

(2m + l)pP m(P) = (m + 1)P m+1(P) + mP m-l(P), 
(9a) 

(1 - p2) ~ P m(P) = (m + l)[PP m(P) - P m+1(P)]' 
dp 

(9b) 

and 

d 1 
d
- U mer, 1]) = - - U m-l(r, 1]) 

r 1] 

1 
- - (m + 1)U mer, 1]), (9c) 

r 

1](2m + l)U mer, 1]) = r[U m+1(r, 1]) - U m-l(r, 1])]. 

(9d) 

Previous work by Siewert and Shiehl5 can now be used 
to find a set of G-vectors and thus to complete the 
justification of the solutions given by Eq. (5). In Ref. 
15 an eigenvalue equation 

(1]E - pI)F(1],p) = 1]C f1F'(1],P') dp' (10) 

was encountered, and the eigenvalue spectrum and 
corresponding eigenvectors were established. If we 
multiply Eq. (10) by P m(P), integrate over p from -I 
to I, and make the identification 

(11) 

we note that Gm ('/'}) will be a solution to Eq. (8). 
Since F(,/,}, p) is known for all acceptable values of 1] 

in the complex plane,15 the G-vectors as given by Eq. 
(11) are determined; more explicitly, the discrete 
spectrum yields 

Gm( 1]i) = , (12) 
1 

2C121]iQm(a'/'}i) 1 

2'/'}i[C22 - 2C1]iT(lfa'/'}i)]Qm('/'}i) 

where the 1]i are the "positive" zeros of the dispersion 
function 

Q(z) = 1 - 2cnzT(Ifaz) - 2c22zT(lfz) 

+ 4Cz2T(lfz)T(lfaz), (13) 

the degenerate spectrum 1] E (0, Ifa) yields 

G1 m(1]) = 1 -C12
P 

m(a1]) I, '/'} E (0, l/a), 
, 2CZm('/'}) + cnPm('/'}) 

(14a) 

'/'} E (0, Ila), (14b) 

and the spectrum'/'} E (Ifa, 1) leads to 

2C121]Qm( a'/'}) 

G3,m(1]) = 2[C22 - 2'/'}CT(1/a1])]Zm('/'}) 

+ P m('/'})[l - cu1]T(l/a'/'})] 

'/'} E (1/a, 1). (15) 
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Here we have used the notation T(x) = tanh-1 x and 
C = det C; the Legendre functions of the second kind 
are denoted by Qm(x), and the mth~order poly
nomials Zm(x), 

Zm(x) ~ ixP (1 P m(P) dft - xT(x)P m(X), (16) 
J-1 x - ft 

satisfy the same recursion formula, viz., Eq. (9a), as 
the Legendre polynomials; they begin differently, 
however, 

Zo(x) = 0, Zl(X) = -x, and Zz(x) = -j-x2• 

Now that a set of normal modes for Eq. (4) has been 
established, and before continuing to the final section 
where the considered problem is solved, several addi~ 
tional comments can be made: (a) Although the 
construction here of the normal modes has not been a 
formal derivation, these results should follow from an 
analysis similar to that used by Mitsis9 for one-speed 
theory. (b) By no means have we proved that all 
solutions to Eq. (4) are given by these results; on the 
other hand, we do have solutions sufficiently general 
for the construction of the solution to the shel1~source 
problem. (c) We have used the results for F('f/, ft) 
given by Siewert and Shieh15 for the two~group model; 
however, the method employed here may also be used 
to extend the N-group theory of Yoshimura and 
Katsuragi16 to spherical geometry. 

m. SPHERICAL SHELL-SOURCE PROBLEM 

We seek a bounded solution to Eq. (1) or, alterna~ 
tively, a bounded solution to Eq. (4) subject to the 
"jump" boundary condition, Eq. (3). Since the Bessel 
functions im(x) diverge as x increases without bound, 
and since the km(x) behave similarly in the vicinity of 
the origin, we separate the desired solution in the 
usual manner2: 

00 

'I'(ro: r, p) = I [t(2m + l)]P m(,u)R;;;(r), r> ro• 

and 

R;;;('f/,) ~ ! B('f/i)Gm('f/.)( -l)mim(r!'tJi) 
i 

+ i l

/<1[B1(tl)G1,m('f/) 

+ B2('f/)G2,m('f/)]( -1)mim(r/'f/) d'f/ 

+ (1 Ba('f/)Gs.m('f/)( -l)mim(r/1}) d'f/. 
)1/a 

(18b) 

The solution given by Eqs. (17) clearly satisfies the 
homogeneous transport equation; there remains then 
only the necessity to constrain this solution to meet 
the condition given by Eq. (3) and thus to determine 
all of the unknown expansion coefficients, A( 'f/t), B( 'f/i)' 
Ai 'f/), and Ba,( 'f/), oc = 1, 2, 3, appearing in the ex
pression for'l'(r, ft), We therefore substitute Eqs. (17) 
into Eq. (3) to find 

00 

I P m(p)[(m + l)Sm+1(ro) + mSm_l(rO)] = Q (19) 
m~O 

or, alternatively, 

(m + l)Sm+1(ro) + mSm-l(rO) = Q!5o,m' 

m = 0, 1,2, .. " (20) 

where we have defined 

Ll 
Sm(ro) = 41Tr~[R~(ro) - R;;,(ro)]' (21) 

Noting that the neutron flux 

(22) 

is to be continuous across the surface r = ro, we 
observe that So(ro) = 0, and thus Eq. (20) yields the 
following sufficiency conditions on the unknown 
vectors Sm(ro): 

Sm(ro) = 0, for m even, 

SI(rO) = Q, 

(23a) 

(23b) 

(17a) and 

and 
00 

'l'(ro: r, p) = ! HOm + l)]P m(ft)R;;;(r), r < ro, 
m=O 

(17b) 

where 
Ll fllO" 

R;:;(r) == f A('f/i)G,,.('f/i)km(r/'f/i) + Jo [A1('f/)G1",.('f/) 

+ A2('f/)G2•1t.('f/)]km(r/'f/) d'f/ 

+ (1 Ai'f/)G3 •m('f/)km(r/'f/) d'f/ (lSa) 
)1/<1 

Sm(ro) = _ 2·4·6·8· .. (m - 1) (_l)t(m+llQ, 
3 . 5 . 7 . 9 ... (m) 

m = 3,5, 7, .. '. (23c) 

Equations (23) now represent the conditions from 
which we must extract the necessary results for all 
unknown expansion coefficients. Following the pro
cedure used by Erdmann and Siewert,11 we shall first 
show how to satisfy these conditions for the cases 
m = 0 and 1; further analysis will then reveal that 
these conditions are met for all m. 
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Referring to Eqs. (18), we note that 8 0('0) can be 
made identically zero simply by insisting that 

(24a) 

and 

(24b) 

We now utilize Eqs. (18), (21), and (23) to write the 
condition on 81(ro) in the form 

(2?T2r1Q = L D(1j;)G1(1ji)1j; 
i 

+ f /
<1[D1(1j)G1.&I}) + Dz('I})GZ•I('I}»)'I}2 d'l} 

(25) 

where we have made use of the property 

io(x)km(x) - (-l)mim(x)ko(x) 

with19 

= ~ i _1_ W:'[l - (_l)m+,,], (26a) 
4x2 

«=0 (2x)" 

w~n = (m + IX)!/IX! (m - IX)!. . (26b) 

The form of Eq. (25) is suggestive of a full-range 
expansion in terms of the eigenvectors F('I'}, ft) of Eq. 
(10). We therefore use the results of Siewert and 
ShiehI5 and write 

[If 0' 

+ Jo D2('I})[F~I)(1j,ft) - F~l)( _'I},ft)]'I'}2 d1j 

+ [1 Da(1j)[F(Zl(1j,ft) _ F(2\ _1j,ft)]'I'}2 d'l}}. 
JlffT 

(27) 

The various F-vectors appearing in Eq. (27) are given 
explicitly in Ref. 15 [see Eqs. (6), (7), and (10)] and, 
for the sake of brevity, will not be repeated here. We 
note, however, that F('I'}. -fl') = F(-'I'}, ft), and thus 
the full-range completeness theoremlfj ensures that 
Eq. (27) has a solution. In addition the full-range 
orthogonality theorem15 may be employed to obtain 

explicit results for the unknown coefficients in Eq. 
(27): 

D('I};) = [2?T2'1'}~N(1ji)rlG~('I}i)Q, 

DI('I}) = [2?T21j2N 1(1j)r1 

(2Sa) 

-t -t 
X [NZ2('I})G1•O(1j) - N I2(1j)G2•0(1j»)Q, (28b) 

and 

Da(1j) = [2?T21j2N z(r))r1G!,oC'I})Q. (28d) 

Here the superscript tilde denotes the transpose 
operation, the superscript dagger indicates an inter
change of Cij and c;; , 

N l1(1j) = 1j{C1ZC21 + [cll - 2'1}CT('I}»)2 + ?T2C2'1}2}, 

(29a) 

NZ2('I}) = 'I}{C1ZC21 + [C 22 - 21jCT{O"fj)]2 + ?T2CV}, 

(29b) 
and 

Nil'l}) = -Cji1){cll + CZ2 - 21)C[T(1) + T(O''I})]} , 

for i ¢ j. (29c) 
In addition, 

N(1);) = 1j~[C22 - 2C'I}iT(J.. )Ji!. O(Z)\'=lli ' (30a) 
O''I'}i dz 

N1(1) = 'l'}2C2({1 - 2'1'}cuT (0''I'}) - 2'1}cZ2T('I}) 

and 

+ 'l'}2C[4T('I})T(0'1) - ?T2W 
+ ?T2'1}2{2C1j[T(1j) + T(0'1j)1- Cn - C2Z}2), 

(30b) 

N 2(1j) = 'I'} ( {I - 21jcll T(l/O'1j) - 21jc2ZT(1) 

+ 41)2CT(1j)T(1/O"fj)}2 

+ ?T2'1}2{C22 - 2'1}CT(1/0''I}W). (30c) 

If Eq. (27) is integrated over ft from -1 to 1, the 
resulting equation is identical with Eq. (25), and thus 
the expressions given by Eqs. (28) for the expansion 
coefficients D(1)i) and Di'l'}) , IX = 1,2,3, coupled 
with Eqs. (24), ensure that the conditions on 8 m(ro) 
are satisfied for m = 0 and 1. It remains to be shown 
that these coefficients are correct for all m. 

We begin the proof by considering the explicit 
expression 

m 

Sm(ro) = t l [W;;'/(2rol'][1 - ( _l)m+k]J;', 
k=O 

m = 0, 1,2, .. " (31a) 
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where we have used Eqs. (24) and (26) and defined 

J;:' ~ 27r2{t D(rJi)Gm(rJi)rJ~+2 
+ il/"[Dl(rJ)Gl.m(rJ) + D2(rJ)G2,m(rJ)}rJk+2 drJ 

+ f1 Da(rJ)Ga,m(rJ)rJk+
2 drJ} . (31b) JIlT 

In light of this expression the constraints on Sm(ro) 
given by Eqs. (23) can be imposed by requiring 

J;:' = 0, 

J~= Q, 

0< k < m, m + k = 3,5,7,' . " (32a) 

(32b) 

and 
m 2·4·6· .. (m - 1)( _1)!(m+1) 

J o = - Q, 
3·5·7· .. (m) 

to write 

f/ m(,u),ukF($,,u) d,u 

_Jl P . /_,uk-l - (a$),uk-2 - ... - (a$t-1
/ 

- m(,u) k-l /: k-2 /:k-l d,u 
-1 -It - ",u -' .. - " 

+ $k;tk f~/ m(,u)F($,,u) d,u, 

for $ = rJi or rJ E (0, 1), (36) 

with;tk denoting the kth power of;t. For the values of 
k considered, Eq. (36) reduces to 

L:p m(,u),ukF($,,u) d,u = $k;tkGm($), 

for $ = rJi or rJ E (0, 1), 

0< k < m, m + k = 3,5,7, .. " (37) 

m = 3,5,7," .. (32c) where Gm ($) is defined by Eq. (11). We note that Eq. 

If we multiply Eq. (27) by ,uk-IP m(,u) and integrate 
over ,u from -1 to 1, we find 

(47T2r 1 fl,uk-lP m(,u) d,uQ 

= t D(rJi)rJ~f/ m(,u),u"Fi+(,u) d,l 

+ fIT D1(rJ) fl p m(,u),ukFi
1
)(rJ,,u) d,u 

+ D2(rJ) f~/ m(,u),ukF~1)(rJ, ft)}2 drJ 

+ (1 DaCrJ)Jl P m(,u),uk F(2)(rJ,,u) d,urJ2 drJ, 
J1/" -1 
m > 0, m + k = 1, 3, 5, .. '. (33) 

For k = 0 we observe that the right-hand side of Eq. 
(33) is J~/27T2 and thus for all odd m we obtain 

1 Jl d,u J~ = - Pm(,u) -Q, m = 1,3,5,···. (34) 
2 -1 ,u 

The integral in the above result is nonsingular for m 
odd, and, in fact, Eq. (34) establishes Eqs. (32b) and 
(32c). 

If we now consider 0 < k < m, the left-hand side of 
Eq. (33) is clearly zero. Furthermore, inspection of the 
eigenvectors in Ref. 15 reveals that we may use the 
expression 

,uk k-1 k-2 --- = -,u - a$p 
a~ -,u 

_ (a~)2,uk-3 _ ... + (a~)k , 
(a~ - ,u) 

for a = a or 1, (35) 

(33) now may be written as 

;tkJ;:' = 0, 0 < k < m, m + k = 3,5,7,' ... 

(38) 

Since ;t is a nonsingular matrix, Eq. (32a) follows 
directly, and the proof is complete. 

Having successfully determined all the unknown 
expansion coefficients, we thus have a complete solu
tion for the angular flux '¥(ro: r, ,u), and explicit ex
pressions for the fluxcp(ro: r) and the current, 

j(ro: r) ~ fl'¥(ro: r, ,u),u d,u, (39) 

are immediately available: 

cp(ro: r) = (7T/2rro){t D(rJi)GO(rJi)rJ~ sinh (rO/rJi)e-r/~i 

+ EI
" [D1(rJ)G1,o(rJ) 

+ D2(rJ)G2,o(rJ)] sinh (ro/rJ)e-rl"rJ2 drJ 

+ (1 Da(rJ)Ga,o(rJ) sinh (ro/rJ)e-r/~rJ2 drJ}' 
J1/" 

r> ro, (40) 

+ f /
"[D1(rJ)G1,O(rJ) 

+ DlrJ)G2,O(rJ)]H (~ : ~)rJa drJ 

+ f1 Da(rJ)G3,o(rJ)H(~ : !:)rJ3 
drJ}' 

Jl/" rJ rJ 
(41a) 
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where 

(4tb) 

H(xo: x) § sinh xe-XO[(l/x) - coth xl, x < xu· 

(41c) 

We note that the result for <I>(ro: r) r < ro is obtained 
by interchanging ro and r in Eq. (40); in addition, we 
have used the relation 

G1a) = ~(I: - 2C)Go(.;), ~ = 'YJi or r; E (0, 1), 

(42) 

to obtain Eq. (41a). Higher moments of 'I'(ro; r, p,) 
may be obtained in a similar manner by integrating 
Eqs. (17), and finally, results for the two-group point
source problem are obtained by observing the limit 
as ro--O in Eqs. (17a), (40), (41a), and (41b). 
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Technique for Finding the Moment Equations of a 
Nonlinear Stochastic System* 
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A technique is described for deriving the moment equations of a nonlinear stochastic system with a 
random forcing term. The nonlinear term is then linearized by means of minimizing the mean-square 
error between nonlinear and linear terms. The traditional derivation of the Fokker-Planck equation 
for the conditional probability density, and hence the moment equations, is bypassed. 

L INTRODUCTION 
The Fokker-Planck equation has been used ex

tensively in the theoretical study of both linear and 
nonlinear systems driven by random excitation. In 
a recent paper by Morton and Corrsin,l the assump
tions needed to derive the Fokker-Planck equation 
for a random forcing function which is not Gaussian 
white noise is given; and the experimental confirma
tion of the equation is shown for the moment equations 
in the steady state. 

The purpose of this paper is to use a technique first 
described by Cumming2 for deriving the differential 
equation governing the moment equations of a non
linear stochastic system. A linearized form of the 

nonlinear term is derived by minimizing the mean~ 
square error between the nonlinear and linear term 
as described by Bellman and Richardson.3 A simpler 
form of equating the higher-order moments to zero, 
for certain initial conditions, is also given. This is a 
restatement of the Poincare-Lyapunov stability 
theorem.4 

The theory given in this paper could be generalized 
to an nth-order system with random coefficients. 

In the derivation of these moment equations no 
guarantee is given for the preservation of moment 
inequalities. A closure and preservation technique 
derived by Bellman and Richardson5 can then be 
applied. 
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II. APPROXIMATE CONDITIONS FOR 
A SYSTEM 

We consider again the system given by Morton 
and Corrsin l of the form 

x(t) + ClX(t) + 1jJ(x(t» = J(t), (1) 

where Cl is a constant, 1jJ(x(t» is an arbitrary "smooth" 
function of x(t), and J is a random forcing function 
which is not Gaussian white noise. 

Let 

(9) 

Let 
x == s, 

and introduce the autocorrelation function 
(2) 

so that (1) can be written as 

S + ClS + 1jJ(x(t» = f(t). (3) 

In using the Fokker-Planck equation, the derivation 
of (~x 1 x, s), (~s 1 x, s), «~s)21 x, s), etc., are 
needed; where ~ is a finite forward-increment operator 
over the time increment ~t, and (-I x, s) is the con
ditional expectation given x and s. Morton and Corrsin l 

have summarized the conditions of f(t) which permit 
the conditional expectation as given above to be re
placed by their Fokker-Planck approximation. Since 
these conditional expectations are needed in deriving 
the moment equations of the given system (1), we 
summarize the results again: 

(1) The forcing functionf(t) is a stationary, normal 
random variable with zero average value and non
infinite integral scale. 

(2) J(t) is uncorrelated with some specific functions 
of x(t). 

(3) The largest statistically characteristic time of 
f(t), T max , say, must be so much smaller than the 
smallest characteristic time of x(t) and x(t), b", and b., 
say, that there can exist a time () which is very much 
larger than the former and very much smaller than 
both of the latter; i.e., 

b"" b.» ()>> Tmax. 

Let us now calculate the conditional expectation 
of the increments of the state variables. We have 

RtCT) == (f(t)J(t + T»/(f2). (10) 

Equation (9) can be written as 

(11) A(~t) = (p) LAt LAtR,(tl - t 2) dtl dt 2 , 

provided that f(t) satisfies the three conditions given 
earlier. 

We can now note that as ~t (or () --+ 0, then 

A --+ (f2)(~t)2, (12) 

so that Eq. (8) can be written as 

«~s)21 x, s) = DM + O(~t), (13) 

where D == A«()()-l ~ lim [A(~t)/~t] as ~t --+ 00. 

Furthermore, we can write for the ensemble average 

I (t+At \ (HAt 
\J f dtll = Jt <f) dtl = 0. 

III. MOMENT EQUATIONS OF THE 
STOCHASTIC SYSTEM 

(14) 

Consider now B(x, s; t), an arbitrary function of 
x(t) and set), whose partial derivatives B"" B., B", .. 
etc., are continuous and bounded on any interval of 
x(t) and s(t). We derive a differential equation for 
the expected value of B, (B). Using ~ again as a 
finite forward-increment operator over the time 
increment ~t, we have, using Taylor's series, 

~B = B",~x + Bs~s + tB"",,(~X)2 + tB8sC~S)2 
+ B",s(l1xl1s) + O(l1x, I1s). (15) 

<~x 1 x, s) = s6.t + O(~t)2, 
/ (HAt \ 

(~s I x, s) = - [ClS + 1jJ ]~t + \Jt f dtll + O(~t)2, 

(4) Taking the conditional expectation of (15) given x 
and s, we have 

(~x~s I x, s) = -S[ClS + 1jJ](~t)2 

(5) 
(~B I x, s) = B",sM - B.(ClS + 1jJ)M 

+ tB •• D~t + O(~t)2. (16) 

(6) Now, taking the expected value of (16), we have as 
«~B I x, s» ,; (~B), 

I tHt \ + \Jt f dtl/~t + O(M)2, (7) 
(~B) = (B",s)M - (B.(ClS + 1jJ»l1t 

+ HB88D)~t + O(~t)2. (17) 
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Dividing through by fl.t and taking the limit as fl.t -- 0, 
and interchanging () and d operators on the left
hand side, we obtain the ordinary differential equation 

d(B) = (B.,s) - (Bias + Vl) + i(B •• D). (18) 
dt 

The moment equations of the system can be found by 
substituting B = x, S, X2, XS, S2, etc., respectively. 

Example,' Let B = X2, S2, xs; then the moment 
equations can be written as: 

and 

d(x
2

) = 2(xs), 
dt 

d(S2) 
- = -2(s(as + Vl) + D, 

dt 

d(xs) 2 - = (s ) - a(xs) - (xVl). 
dt 

(19) 

(20) 

(21) 

d(s2) 2 2 ) - = -2a(s) - 2(xs) + D, (s (0) = C4 , (26 
dt 

d(xs) 2 2 - = (s ) - a(xs) - (x), (x(O)s(O) = cs, (27) 
dt 

d(x3
) 2 3 - = 3(x s), (x (0) = c6 , 

dt 
(28) 

d(x2s) 2 2 3 2 -- = 2(xs ) - a(x s) - (x), (x (O)s(O) = c" 
dt 

(29) 

d(xs2
) 3 2 2 

-- = (s ) - 2a(s x) - 2(sx ) + D(x), 
dt 

(X(0)S2(0) = cs, (30) 
and 

d(S3) 2 - = -3a(s3) - 3(xs ) + 3D(s), (S3(0) = Co, 
dt 

(31) 

--- where we have ignored moments of order four or 
It is easy to see that if Vl is linear then moments of higher on the right-hand side, i.e., if the initial values 
order two or less are obtained on the right-hand side 

f (20) d (21) b t
'f' l' + fJ 3 of the various moments given are sufficiently small. 

o an ,u 1 Vl IS non mear, say x x , 
th t f d 

so bt' d th The equations as given above are nonlinear and in a 
en momen s 0 or er lour are 0 ame on e form which can be solved. 

right-hand side. The solution of the moment equations 
could therefore not be solved when Vl is nonlinear. 

IV. LINEARIZATION 

A simple form of linearization as given by Bellman 
and Richardson3 is to use the Poincare-Lyapunov 
stability theorem4 ; i.e., given a vector differential 
equation of the form 

dz 
- = Az + fez), z(O) = c, 
dt 

(22) 

then for Ilcll sufficiently small and A negative definite, 
the system is stable for fez) nonlinear and t -- 00. 

The coefficients of z; ZO, Zl' etc., may be thought of 
as the order of moments of system. 

Hence if we wish to find, say, first-order moments 
of the system we use (18) to find the higher-moment 
equations of the system and ignore the higher-order 
terms on the right-hand side. For example, the first
order moments of the system are written, using Eq. 
(18) and Vl = x + fJx3

, as 

d(x) 
- = (s), (x(O) = C1 , 
dt 

(23) 

d(s) 3 --;It = -a(s) - (x) - fJ(x), (s(O) = C2 , (24) 

d(x
2

) = 2(xs), (X2(O) = C
3

, 

dt 
(25) 

A better form of linearization as given by Bellman 
and Richardson3 is to linearize the nonlinear term, 
and minimize the mean-square error between the 
nonlinear and linear term. If Vl(x(t)) = x + fJx3, 

where fJ is a constant, then put 

(32) 

where a is time independent, or taking the expected 
value 

(33) 

Using a mean-square norm as a measure of approxi
mation, we choose to minimize the quantity 

f"«X3) - a(x»)2 dt. (34) 

The a is readily determined by the condition 

!""(X3)(X) dt = a f"(X)2 dt. (35) 

The (x3 ) and (x) term are again derived from Eq. (18) 
after the system is linearized. A more detailed calcula
tion of the a term for a first-order nonlinear stochastic 
equation is given by Sancho.6 

V. CLOSURE AND PRESERVATION OF 
MOMENT PROPERTIES 

In deriving the approximate moment equations for 
a nonlinear stochastic system we have not shown that 
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moment properties are preserved over an interval of 
time. Certain moment inequalities must be fulfilled; 
for example, we must have 

(x2) ~ (X)2. (36) 

A simple closure technique given by Bellman5 is 
applied. We summarize the results as follows: 

Let Y be the solution of the linear-matrix differ
ential equation 

Y' = BY + YBT
, YeO) = c, (37) 

where B is an arbitrary real matrix and BT denotes 
the transpose. If c is positive definite, then yet) is 
positive definite for t > O. The proof follows from the 
representation 

yet) = eBtceBTt. (38) 

Consider the first two moments (x) and (x2 ) as 
derived from (18) and the associated matrix system 

(
X

O
) (X»)' ( 0 (s) ) 

(x) (x2 ) = (s) -rJ.(s) - (x) _ fJ(x3 ) , (39) 

where (XO) = 1 and (x3 ) given by the solution of 
moment equation after it has been linearized one way 
or another. Let 

(40) 

where bI , b2 , b3 , b4 are real parameters to be deter
mined, and the associated matrix system 

(~: ~:) = B(~: ~:) + e: ~:) BT. (41) 

We wish to determine the elements bI , bz, bs , b4 so 
that 

is a minimum, where we have 

(43) 

If (XO) = 1, then in (41) we can take bi = b2 = O. 
The resulting equations of (41) are 

(44) 

The results of (37) ensures that the matrix 

(45) 

obtained bye 41) is positive definite. 
The minimizing procedure in (42) leads to the value 

b4 , after the solution of (x), (s), (x2 ), and (x3 ) has been 
substituted in. The solution of (44) gives 

Since (Ui/U2) = (ki/k2), the moment inequality is 
clearly preserved. 

* This research was completed when the author was attending 
the Summer Research Institute of the Canadian Mathematical 
Congress, Queen's University, Kingston, Ontario. 
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This paper deals with the generalized Wiener-Hopf equation 

G(or.)X+(or.) + H(or.)X+(-or.) - Y_{or.) + 'F'(O(or.) = 0, Tl < T < T2, 

where or. (= (J + iT) is a complete variable, G(or.), H(or.), and 'f·(O(or.) are known functions, and X+(or.) and 
L(or.) are unknowns, analytic in upper and lower half-planes, respectively, as indicated by their respec
tive subscripts. This type of equation arises in a class of boundary-value problems in electromagnetic 
theory, the geometries of which may be described as modified Wiener-Hopf type. The method of 
approach, which is fundamentally different than those currently available in the literature, is based on a 
pairing of singularities in the complex or. plane. This leads to a functional equation which is exactly solv
able in its asymptotic form. The knowledge of this solution permits one to employ one of several rapidly 
converging numerical procedures available in the literature for a more accurate solution. Two examples 
illustrating the application of the procedure are included in the paper. 

1. INTRODUCTION 

In electromagnetic theory, the Wiener-Hopf equa
tion 

G(IX.)X+(IX.) - Y_(rx) + '¥(i)(IX.) = 0, 71 < 7 < 72 

(1.1) 

arises in a class of boundary value problems in
volving junctions of semi-infinite geometries. A num
ber of problems belonging to this category are 
illustrated in Fig. 1 (for a more complete list of 
problems, see Noble, Ref. 1). The various functions 
appearing in (1.1) typically play the following roles: 
G(IX.) is associated with the Fourier transform of the 
Green's function, with IX. = (J + i7 as the transform 
(complex) variable; '¥(i)( IX.) corresponds to the trans
form of the incident field; X+(IX.) and Y_(IX.) represent 
transforms of unknown electric and magnetic fields in 
semi-infinite ranges. The subscripts "+" and "-" 
indicate the regions of regularity of the corresponding 
functions in the complex IX. plane. For instance, X+(rx) 
is regular in the upper half-plane defined by 7 > 71' 

and Y_(IX.) in the lower half-plane 7 < 72' The prob
lem is to simultaneously solve for the two unknowns 
X+(IX.) and Y-CIX.) by an application of the Wiener
Hopf procedure.1 The central step in this procedure 
involves the transformation of (1.1) into the form 

F+(IX.) = F_(IX.), 71 < 7 < 72' (1.2) 

This is done by factorizing G(IX.) into a product 
G+(IX.)G_(IX.), followed by some rearrangements. Note 
that the function on the Ihs of (1.2) is regular in the 
upper half IX. plane, while the function on the rhs is 
regular in the lower half IX. plane. Since these two half
planes overlap in 71 < 7 < 72, both sides of (1.2) 
must be equal to an entire function P(IX.) by analytic 

continuation, and then (1.2) is valid for all IX. in the 
complex plane. The function P(IX.) cannot be uniquely 
determined without imposing an additional constraint 
on the asymptotic behaviors of X+(rx) and Y-CIX.) for 
large loci. The asymptotic behavior is based on an 
application of the edge condition, which requires 

X+(IX.)'-"" IX.-v, Y_(IX.)'-"" IX.-[i (1.3) 

as locl--+ 00 in their respective half-planes. Here ii and 
il are determinable from the known behavior of the 
fields in the neighborhood of the edge. Once P(IX.) is 
known, X+(IX.), and Y_(IX.) are derived from F+(IX.), and 
F_( rx), respectively, thus completing the solution. 

The present paper is concerned with an extended 
form of (1.1), viz., 

G(IX.)X+(IX.) + H(IX.)X+( -IX.) - L(IX.) + '¥(i)(IX.) = 0, 

71<7<72' (1.4) 

where H(IX.) is a known function. As might be con
jectured, the range of applicability of (1.4) is consider
ably wider than the conventional Wiener-Hopf 
equation (Ll). In general, (1.4) arises in the formula
tion of boundary value problems belonging to a class 
of modified Wiener-Hopf geometries, in which one of 
the semi-infinite subregions is modified. A number of 
modified geometries, which correspond to the prob
lems in Fig. 1 and which may be formulated in terms 
of (1.4), are sketched in Fig. 2. These and similar 
problems in this category are of wide practical 
interest, as evidenced by a large number of publications 
that have dealt with them in recent years. (A partial 
list is given in Refs. 2-6.) 

To date, the most important method for attacking 
(1.4) has been provided by Jones2 for the special case 
when H(IX.) is a meromorphic function with infinitely 

775 
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many simple poles at oc = {- iy .. } with Re y .. > ° in 
the lower half oc plane. He transforms (1.4) into an 
infinite set of linear simultaneous equations, which 
take the form 

co 
G (')A ~ e.. ..I.(i)(' ) 

+ ly 1> 1> + k.( + )G (. ) = - '1'+ IY .. , 
.. =1 I Y1> Y.. + IY .. 

for p = 1, 2, 3, .. " (1.5) 

where A .. = X+(iy .. ) = unknowns, en = residue of 
H(oc) at oc = -iYn' 

G(oc) = G+(oc)G_(oc) = G+(oc)G+( -oc), 

['¥(;)(oc)/G_(oc)] = 4>~)(oc) + 4>~)(oc). 
The unknown function X+(oc) is obtained by sub
stituting An from the solution of (1.5). This gives 

X+(oc) = 2 (4)W(OC) + i en. ~). (1.6) 
G+(oc) n=1OC + lYn GilYn) 

The original problem is thus reduced to that of solving 
the matrix equation (1.5), which is numerically in
verted after truncation to a finite size. Unfortunately, 
it is difficult to establish the convergence of the above 
procedure1 and, in addition, it is not possible to 
establish the satisfaction of the edge condition. 

The method to be presented in this paper for 
attacking (1.5) is different from that of Jones. It is 
based on an examination of the singularities of the 
functions appearing in (1.5) in the complex oc plane. 
By invoking the fact that (1.5) is valid for all oc, the 
singularities of various functions are paired such that 
they are canceled exactly. This procedure leads to a 
functional equation, which is exactly solvable in its 
asymptotic form. This provides a built-in check for the 
convergence of the procedure, guarantees the satis-

___ L, 

(~ (~ 

___ L 

(el 
FIG. 1. Typical Wiener-Hopf problems. 

(b) 

~L 
(C) 

FIG. 2. Modified Wiener-Hopf problems. 

faction of the edge condition, and permits the extrac
tion of a rapidly converging and accurate numerical 
solution to the problem. 

2. DERIVATION OF FUNCTIONAL EQUATION 

Before proceeding with the discussion of the solution 
of the modified equation 

F(oc) = G(oc)X+(oc) + H(oc)X+(-:-oc) - L(oc) 

'+ '¥(i)(OC) = 0, 71 < 7 < 72, (2.1) 

it is desirable to categorize the various situations that 
arise in the investigation of modified Wiener-Hopf 
problems. Table I presents a list of typical situations, 
together with the characteristics of pole-zero and 
branch singularities of G(oc) and H(oc) in (3.1). It is 
useful to point out that: 

(i) The singularities of G(oc) are those which corre
spond to the spectral eigenvalues in the unmodified 
geometries; 

(ii) the singularities of H(oc) are also present in 
G(oc); however, the spectrum of singularities of G(oc) 
may be broader than that of H(oc); 

(iii) H(oct contains only pole singularities if the 
modified region is a closed one (periodic structures 
may be considered as closed regions with periodic 
boundary conditions), while H(oc) contains a branch 
singularity if the modified region is an open one. 

The known function '¥(i)(OC) in (2.1)is related to the 
incident field. Since, in principle, an arbitrary source 
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Table I. Classification of Modified Wiener-Hopf Geometries. 

Modified Wiener-Hopf 

Geometry 

~~ 
~~ 

::-B 
::-~ , 
-~ ~r 

~ 
a--

I 

Zeros in 
loh.p. 

ex = {-iy } na 

ex = {-iy } na 

None 

None 

GEed 

Poles in 
loh.p. 

{-iYnb} 

ex = 

{-iy } nc 

ex = {-i6 } na 

a. = {-iy } na 

I a. = {-iy } na I 

Branch in 
loh.p. 

None 

None 

Ia.-k 

la-k 

Ynd = [(nn/d)2 - k2]1/2 , Ynd = [(nn/d)2 - Er k2]1/2, and = [( 2nnd+ u) 
2 

Poles in 
loh.p. 

H(ex) 

ex = {-iYnb} 

ex = {-ia } na 

a. = {-iy } na 

None 

_ k2]1/2 

Branch in 
loh.p. 

None 

None 

None 

I ra-k 
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is expressible in terms of a superposition of spectral 
waves, the incident field in Wiener-Hopf problems is 
generally taken to be a spectral wave, resulting in the 
following form: 

'¥(i)(OC) = '¥o/(oc + k(i», (2.2) 

where, for definiteness, we assume, without loss of 
generality, that 1m k(i) > ° and oc = k(i) is not a 
singularity of G( oc). 

The unknown X+(oc) and L(oc) in (2.1) are the 
transforms of the electric or magnetic fields over a 
semi-infinite aperture. Their asymptotic behaviors are 
determined by the edge conditions, which require 

X+(oc) r-..J oc-v, L(oc) r-..J oc- fl , as locl-4- 00, (2.3) 

where v and p, are two numbers known a priori. 
In attacking (2.l), we observe first of all that F(oc) is 

regular and identically zero in the strip 7"1 < 7" < 7"2. 

Let F(oc) = F+(oc) + F_(oc) where F+(oc) is regular for 
7" > 7"1 and F_(oc) is regular for 7" < T2 • Then, by 
using the well-known methods! for relating F+(oc) 
and F_(oc) to F(oc), it is readily shown that F+(oc) = 
-F_(oc) for all oc, i.e., F(oc) is identically zero every
where in the complex oc plane. Thus, it is no longer 
necessary to restrict (2.1) in the strip 7"2 < 7" < 7"1. 

The above fact allows one to derive a functional 
equation for X+(oc) as we will now show. 

The derivation of the functional equation is based on 
the observation that, if F(oc) is identically zero for all oc, 
then the singularities of the individual functions in 
(2.1) must pair up in a manner so as to cancel each 
other, thereby assuring that the total contribution is 
indeed zero everywhere. First consider Group I.C in 
Table I where the common singularities of G( 1)'.) and 
H( oc) in the lower half-plane of oc are at simple poles 
oc = -iYna = -i[(mr/a)2 - k2]!-, for n = 1,2, .... 

Multiplying (2.1) by (oc + iy pa) and letting oc---+ 
(-iYpa), we derive the desired functional equation 

X+( -iYpa) Res G( -iYpa) + X+( +iYpa) Res H( -iypa) 

= 0, for p = 1,2, 3, ... , (2.4) 

where the symbol Res G( - iy pa) implies the residue of 
G(oc) at oc = -iypa. The last two terms Y-<oc) and 
'¥(i)( oc) in (2.1) do not contribute to (2.4) since they are 
regular at 0:. = - iy pa. For the special case H( oc) ---+ 0, 
(2.4) reduces to 

X+( -iYpa) Res G( -iY1Ja) = 0, P = 1,2,3, .... 

(2.5) 

Thus, in this event, X+(o:.) has simple (in electro
magnetic-wave problems, the zeros are simple if there 
are no degenerate modes) zeros at 0:. = -iypa' a fact 

that can be verified by applying the conventional 
Wiener-Hopf technique. The functional equations for 
problems in Group LA and I.B take the same form as 
(2.4), except with Yna replaced by Ynb or f3na. 

For problems in Group II, we note that G(oc) and 
H(oc) have a common branch singularity at oc = -k in 
the lower half oc plane. Let this branch cut be desig
nated by~, shown in Fig. 3. Then, evaluating F(oc) in 
(2.l) at points oc+ and oc- located on two sides of ~, 
respectively, and taking the difference between the 
two expressions, we arrive at the functional equation 

G( oc+)X+( oc+) - G( oc-)X+( 0:.-) 

+ [H(oc+) - H(cc)]X+( -0:) = 0. (2.6) 

Once again, if H(oc) ---+ ° or ifit is regular along~, the 
above equation reduces to 

G(oc+)X+(oc+) - G(oc-)X+(oc-) = 0, with oc E~. 

(2.7) 

Equation (2.7), as well as (2.6), indicates that, if G(o:) 
has a branch singularity at oc = -k, so must X+(oc), 
and at an identical location. 

The solutions of the functional equation in (2.6) 
is more involved than the case where H(oc) is mero
morphic. In the present paper, we consider the solu
tion of (2.4), and we will present the solution of (2.6) 
in a future communication. 

3. SOLUTION FOR GROUPS I 

We now discuss a method of solution of (2.4) which 
requires, as a first step, an examination of the sin
gularities of X+(oc) in the lower half oc plane. The 
mathematical considerations for the three cases in 
Group I are very similar. For definiteness, let us 
concentrate on Group I.C. For this case, G(oc) has 
poles at 0:. = -iYna and, in addition, a branch point 
at oc = - k in the lower half oc plane. Denote 

G(oc) = [G_(oc)][ G!:)(oc)( ex(a) ft 

where 

x [1 + i;nJ eiaalnlTfl (3.1) 

x(oc) = i(oca/1T)[1 - c - In (oca/i1T)], 

c = Euler const = 0.57721. 

Here G_(oc) is regular in the lower oc plane and G!:)(oc) 
is regular everywhere except for the branch cut ~ in the 
lower oc plane. Furthermore, both G_(oc) and G~)(oc) 
have algebraic behavior as locl---+ 00. Observe that, if 
F(oc) in (2.1) is to be identically zero for all oc, then the 
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FIG. 3. Branch cuts in complex IX 

plane. 

~)-k 

T 

k~ 

0< = ex-

\ 

following must be true: 

(i) X+(oc) must contain a factor [l/G(b)(oc)]; 
(ii) X+(oc) must have a simple pole at oc = -k(i) so 

that 

G( -k(i» Res X+( -k(i) + 'Yo = 0; (3.2) 

(iii) X+(oc) can have no singularities other than those 
specified by (i) and (ii). 

We may, therefore, write 

X (oc) = Q(oc) 
+ (oc + k(i)G~)(oc) , (3.3) 

where Q(oc) is an entire function, yet to be determined. 
To this end, consider first of all the special case 
H(oc) -- 0, whence the modified equation in (2.1) 
reduces to the standard Wiener-Hopf Eq. (1.1). Let 
the solution corresponding to this limiting case be 
denoted by X+(oc). Then, in view of (2.5), X+(oc) will 
have simple zeros at oc = -iypa' Hence, X+(oc) may 
be represented as 

X+(oc) = {Uoc)[eX(~) IT (1 + ;-)ei~alP1rJ 
p~l IYpa 

X [(oc + kW)G~)(oc)rl. (3.4) 

At this point, we recall that the edge conditions stated 
in (1.3) required X+(oc) to behave algebraically at 
infinity. This, in turn, requires that Qo(oc) in (3.4) be, 
at most, a finite polynomial. Specifically, when the 
source term is given [in general, Qo(oc) is a polynomial 
of degree n, where n is the number of incident spectral 
waves] by (2.2), Qo(oc) turns out to be a constant, say, 
Qo. This constant is determined from (3.8), which 
yields, with the help of (3.1), 

Qo(oc) = Qo = -'¥o/G_( -k(i». (3.5) 

Insertion of (3.5) into (3.4) completes the solution of 
the standard Wiener-Hopf equation in (1.1). This 
result, of course, checks after slight rearrangement 
with that obtainable through the conventional 
Wiener-Hopf method.1 Let us now return to (2.1) and 
the expression of X+(oc) in (3.3). The set of equations 
in (2.4) can be satisfied by properly specifying the 
infinite zeros of X+(oc), denoted by oc = -irna . Even 
though the rna must be regarded as unknowns at this 
stage, we will show that the asymptotic behavior of 
rna is given by 

rna""" (mr/a) +~, as n -- 00, (3.6) 
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where ~ is a constant and ~ < (7T/a). To this end, we 
rewrite (3.3) as 

X+(IX) = QO(IX)Qo[el(a) IT (1 + ~)ei«a/'PrrJ 
p=1 zr'Pa 

X [(IX + k(;)G~)(IX)rl 

= (QO(IX) IT 1 + lX/ir'Pa) X+(IX), (3.7) 
p=1 1 + lX/iY'Pa 

where QoCIX) is a polynomial of degree q, an integer. 
Using (1.3), we can derive the asymptotic behavior as 

X+(IX) "" IXq-[(Aa/rr)+,'l, as IIXI- 00, T> O. (3.8) 

Invoking the edge condition given in (2.3), we derive 

y = [(ila/7T) + v] - q. (3.9) 

The edge condition imposes the bound (v - v) < 1. 
Hence, we have, from (3.9), 

il = (7T/a)(v - v), 
q = O. 

(3. lOa) 

(3.10b) 

Thus, the entire function Qo(lX) in (3.7) again turns out 
to be a constant Qo. This constant is determinable 
from the condition in (3.2), and the result is 

00 1 - k(;)/Ypa 
QO(IX) = QolJ 1 _ kw/r (3.11) 1>_1 pa 

Inserting (3.11) into (3.7), we have the solution of 
X+(IX) provided that the r 'Pa are known. Thus, the 
original problem has been reduced to that of deter
mining the set of zeros of X+CIX). 

To this end, substitute (3.1), (3.7), and (3.11) into 
(2.4). This gives, after some manipulations, 

'r R H( .) kW . il = ~ es -IY'Pa - 'Y'Pa el(iYpa) 
'Pa G ( . )G(b)(+ . ) kW + . Y'Pa - -zYpa + zY'Pa 'Y'Pa 

X IT (1 + Ypajr na)e-yp·a/nu IT(P) 1 - Y'Pa/Yna , 
n=1 n=1 1 - Y 'Pa/r na 

for p = 1, 2, 3, .. " (3.12) 

where ilva = r pa - Y va' Recall that, from the edge 
condition, we have shown in (3.l0a) that 

~ ... a "" il = (7T/a)(v - v), as p - 00. (3.13) 

In a large number of practical problems, the values of 
ilva approach the asymptotic value in an extremely 
rapid fashion.7 Therefore, one needs only to solve for 
the first few ilva from (3.12), while the rest is replaced 
by the asymptotic value il. The first few ~va can be 
solved numerically by iterations or direct matrix 
inversions without difficulty. Detailed discussions and 
examples for these procedures have appeared recently 
in connection with the "modified residue calculus 
method" 7-12 and will not be repeated here. 

It is important also to point out that, in a given 
physical problem, the result in (3.13) can also be 
obtained by asymptotically expanding (3.12) for large 
p.7 Thus, (3.13) is indeed consistent with (3.12), as one 
should expect. 

We next discuss two examples which will illustrate 
the application of the procedure described above. 

4. DIFFRACTION BY A THICK HALF-PLANE 

The problem of diffraction of a plane wave by a 
conducting thick half-plane [Fig. 2(d)] is a very im
portant problem in the theory of diffraction; yet a 
satisfactory solution to this problem is yet to be 
derived. The derivation of the Wiener-Hopf equation 
can be found in Jones,2 and Noble (Ref. 1, pp. 187-
189). Writing this equation in the notations of (2.1), 
we may obtain 

G(IX) = (ye- ya cosh ya)-I, 
H(IX) = (tanh ya)/y, 

'¥(i)(IX) = "Po/(IX - k cos (0)' 

Tl = k2 cos °0 , T2 = k2' k = kl + ik2' 
Y = (1X2 - k2)f, and Y _ +Re IX 

as IX - 00 along real axis. 

(4.1a) 
(4.1 b) 

(4.1c) 

(4.Id) 

(4. Ie) 

Note that the common singularities of G(IX) and H(IX) 
are simple poles at IX = IX = ±iYna; hence, the 
Wiener-Hopf equation is of type I.e. 

Following the procedure outlined in Sec. 3, it is not 
difficult to show that, corresponding to (3.7), 

X+(IX) = (Qo IT 1 + lX/i.r2m
_
l) X+(IX), (4.2) 

m=ll + 1X!IY2m-1 

where 

X+(IX) = "PO[(IX - k cos 0o)G_(k cos Oo)G+(IX)]-I, 

G+(IX)G_(IX) = G+(IX)G_( -IX) = (ye- ya cosh yarl. 

Thus, the problem reduces to that of.determining the 
set of zeros r ma in (5.2). 

Recall that the edge condition in the case of a thick 
half-plane requires X+(Ot) "" Ot-I- as lOti - 00, whereas 
for a thin half-plane, X+(IX) "" IX-t as IIXI - 00 in the 
upper half-plane. From (3.13), we have 

~na = r rna - Yma"'" ~ = 7T/6a, as m - 00. (4.3) 

The values of r ma approach the asymptotic value very 
rapidly, provided that ka is not too large. Therefore, 
it is necessary to dermine only the first few zeros of 
X+(IX). 

To this end, we need to solve for the first few 
equations in the functional equations, which in the 
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present problem are 

A = I'pa 1 
pa Ypa (-ypaa)[G+(iYpa)]2 

k (i) • co 1 + II' - Iypa n Ypa ma 
XCi) • 

k - IYpam=d + Ypa/Yma 

x nCP ) 1 - Ypa!Yna 

m=1 1 - Y pa/I'na ' 
odd 

for p = 1,3,5, .... 

(4.4) 

The explicit form of G+(oc) can be found in Noble 
(Ref. 1, p. 103). The first few I'm can readily be com
puted by using one of the methods discussed in Refs. 
10 and 11. 

A very similar problem to the diffraction by a thick 
half-plane is that of diffraction by a solid semi
infinite cylinder. The latter problem was recently 
attacked by the authors9 using the method developed 
in here. 

5. SCATTERING BY DIELECTRIC-LOADED 
BIFURCATED WAVEGUIDE 

The Wiener-Hopfproblems are typically formulated 
in terms of Jones' method (by "Jones' method," we 
mean the method described in Ref. 1, Chap. 2 and 
Ref. 1, p. 181, for the thick half-plane problem). 
However, the method is not readily extensible to 
problems involving two different homogeneous media. 
In this section, we illustrate an extension of Green's 
function method of formulation for a structure in 
which the medium has a discontinuity in the longi
tudinal direction (the direction where the Fourier 
transform is taken). The formulations of problems 
involving two transverse semi-infinite media are much 
easier (see, for example, Ref. 13). It is believed that 
such a formulation of the modified Wiener-Hopf 
equation has not appeared elsewhere. 

For the sake of illustration, we will choose the 
problem of a dielectric-loaded parallel-plate bi
furcated waveguide, the geometry of which is shown 
in Fig. 4. The incident wave is given by 

E~i) = cpCi) = sin (7T/a)xe-Y1a', for all z, (5.1) 

FIG. 4. Dielectric-loaded bifurcated waveguide. 

where Yla = [{7T/a)2 - k2]! = -i[k2 - (7T/a)2]!, and 
k = OJ Luo€o]!. First, let us consider the region I 
defined by b < x < a, where the total field cp is 
expressed as the sum of the incident field cpCi) and the 
scattered field cpCX). r ntroduce the Green's function 
via the equation 

(V2 + k2)gCI)(X, xo; z - zo) 

= -b(x - xo)b(z - zo), (5.2) 
where 

V2=~+~ 
dX 2 dZ2 

with the boundary conditions 

gCl) = 0, at x = b+ and x = a, (5.3a) 

gCl) satisfies radiation condition as Izl ~ 00. (5.3b) 

By conventional procedures, it can be shown that 

fo ( d (1) cpCS)(x, z) = - cpcs) L) dzo 
-00 dXo xo=H 

for a > x > b, all z, (5.4) 
where 

g(1)(x, Xo ; z - zo) 

1 n'" 1 . m7T( b) . m7T( I I = - - sm - Xo - sm - x - b )e-Y'" '-00 , 

Cm=IYmc C C 

Ymc = [(m7T/c)2 - k2]!. 

The situation in region II defined by b > x > ° is 
more complicated because of the presence of the 
dielectric medium. Note that the total field cp = 
cp(i) + cpCS) satisfies 

(V2 + K(z)k2)cp = 0, for b > x > 0, (5.5) 

where K(z) = 1, for z < 0, and K(z) = €r' for z > 0, 
and is discontinuous at z = 0. The boundary con
ditions for cp are: 

(i) cp = ° at x = 0, all z, and x = b-, z > 0; 

(5.6a) 

(ii) cpc.) satisfies the radiation conditions as 

Izl ~ 00; (5.6b) 

(iii) 1> and d1>ldz are continuous at ° < x < b, 

z = O. (5.6c) 

We introduce a Green's function g(2)(X, xo, z - zo), 
satisfying 

[V2 + K(z)k2]g(2) = -d(x - xo)d(z - zo), 

for ° < x < b, (5.7) 
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where the <5 source is located in region II.A, i.e., 
Zo < O. The boundary conditions for g(2) are: 

(i) g(2) = 0, at x = 0, and x = b-; 

(ii) g(2) satisfies radiation condition as Izl -+ 00; 

(S.7b) 

(iii) g(2) and ag(2)jaz is continuous at 0 < x < b, 

z = O. (S.7c) 

It is not difficult to show such a Green's function in 
the following explicit form: 

g(2)(X, Xo; z - zo) = g(8)(X, Xo; z - zo), for z < 0, 

= g(4)(X, xo; z - zo), for z > 0, 

(S.8a) 

where 

(Ol( ) 1 nO? 1 . m7T . m7T g" x, Xo; Z - Zo = - - sm - Xo sm -
bm=lYm~ b b 

x (e-Ymblz-zo! + Rme-Ymblz+<ol), (S.8b) 

Rm = (Ymb - Y;"b)!(Ymb + Y;"b) , 
Ymb = [(m7Tjb)2 - k2]1, Y;"b = [(m7Tjb)2 - €rk2Jl. 

lS.8d) 

The form of g(4) is of no direct interest and is omitted 
here. 

Applying the Green's identity to functions 4>(x, z) 
and g(2)(X, z) and g(2)(X - Xo; z - zo) in region II, 
one has after some manipulations 

-4>(s)(x, z) =Jo (4)(S) ag(3l) dzo + q(x, z), 
-00 axo ",o=b-

for 0 < x < b, z < 0, (S.9a) 

where 

Jo a (3») 
q(x, z) = 4>(i)(x, z) + (4)W ~ dzo 

-00 axe "'o=b-

+ ( (4)W ag(S) _ g(3) 04> (i») dxo. (S.9b) 
Jpa azo azo 

The next step is to express q(x, z) in terms of the field 
over the aperture x = b, z < O. This is detailed below. 

Realize first that 4>(i) satisfies the homogeneous 
wave equation 

(5.10) 

In order to derive an alternate form of the integral 

4>(;) -- - g(S) -- dxo L (
ag(3) a4>(i») 

Pa azo azo 
appearing in (5.9b), it is desired to have the equation 
obtained by applying the operator (V2 + k 2) to g(3). 

From (5.8b), it can be shown that, for all z, 

x (~IT Rm sin m7T Xo sin mm7T x). (5.11) 
b m=l b b 

An application of Green's identity to 4>(i) and g(S) in 
region II gives 

q(x, z) = -lex, z) _ (00(4>(;) ag(S») dzo, 
Jo axe "'o=b-

for z < 0, (5.12a) 
where 

lex, -z) = (b(~ IT Rm sin m7T Xo sin m7T x) Jo b m=l b b 

x 4>(i)(x, -z) dxo. (S.12b) 

Substituting (5.l2a) into (5.9a), one has 

- 4>(s)(x, z) = JO (4)(8) ag(3)\ dzo 
-00 axe }"'o=b-

_ ('" (4)(;) ag(S») dzo - lex, -z), 
Jo axo "'o=b-

for 0 < x < b, z < 0, (5.13) 

which is the desired expression for the scattered 
in region II.A. 

field 

Now, apply the boundary conditions 

4>(8) (x = b+, z) = 4>(8) (x = b-, z), for 

a4>(s) j = o4>(s) I ' for 

ax ",=0+ ox ",=b-
z <0, 

to (S.4) and (5.13). There results 

z < 0, 
(S.l4a) 

(S.14b) 

foo 4>(s)(b, zo)[g(lz - zol) + h(lz + zol)J dzo, 

l'" 4>(i)(b, zo)[g(lz - zoD 

+ h(lz + zol)] dzo - 1'( -z), for z < 0, (S.15) 

where 

g(lz - zol) = [+(g(1)(X, Xo; z - zo) 
(hC/xo 

1 ~ 1 . m7T . m7T -" -Iz-. I)J + - k - sm - Xo sm - e ,m. 0 , 

b m=l Yma b b ",=b ",o=b 

h(lz + zol) = [L (! i: Rm sin m7T Xo 
axoxo b m=l Ymo b 

x sin m7T xe+Ymblz+zol)J ' 
b ",=0 

",o=b 

1'( -z) = [i. lex, -Z)J . 
ox .,=Q 
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Equation (5.15) is an integral equation of semi
infinite range for the aperture r/>(S)(b, z), z < O. 

The transformation of (5.15) into a Wiener-Hopf 
equation in a Fourier transformation is quite routine. 
Omitting the details, the final form of the transformed 
equation is 

G(IX)Z_(IX) + H(IX)Z_( -IX)Y+(IX) 

= G(IX)cI>~i(lX) - H(IX)cI>~)(-IX) - L(IX), ITI < ReYIa' 

(5.16) 
where 

G(IX) = (sinh ya)j(sinh yc sinh yb), 

H(IX) = 1 i _.1 (m7T)2Rm( 1. _ 1. ), 
b m=IIYmb b a + 'Ymb a - 'Ymb 

cI>~)(IX) = i sin (7Tja)bj(rJ. + iYla), 

Z_(a) = f}(Si(b, z)eio;Z dz, 

Y+(a) = an unknown function, 

( )_1- -2i sin 7Tb!a ~ (m7Tjb)2 
L_ a - . ~ Pm 2 2 

27T b(iX - 'Yla) m=I YIa - Ymb 

Note that (5.16) is in a slightly different form from 
(2.1). However, the method for solution given in Sec. 
3 is readily adapted to this case as we now show. 
Recognize as a first step that 

[Z_(rJ.) - cI>~)(rJ.)] 

in (5.16) plays the same role as X+(a) in (2.1). Then, it 
is not difficult to show that 

X(a) = Z_(iX) - cI>~i(lX) 

= _ 1P~)(a)G_(-YIIl)rr 1 + iX!i ynb , (5.17) 

G_(rJ.) n=I 1 + rJ.!iI'nb 

where r nb ,...., Ynb as n --+ 00. The first few r nb are 
determined from the functional equation 

X(iYmb) Res G(iYmb) - X( -iYmb) Res H(iYmb) = 0, 

for m = 1,2,3, .. '. (5.18) 

It is interesting to mention that, for this particular 
closed-region problem, the solution to the scattered 

field can also be formulated by the conventional mode 
matching procedure through the normal mode repre
sentations. This procedure leads to an infinite set of 
linear equations. By applying the modified residue 
calculus method, 7 the set of equations is then reduced 
exactly to the functional equation in (5.18). Thus, 
although the initial forms of the equations in the above 
two methods are radically different, the functional 
equation takes an identical form in both of these 
cases. Extensive numerical computations related to 
(5.l8) can be found in Ref. 7. 

6. CONCLUSION 

This paper has presented a method for attacking the 
modified Wiener-Hopf equation (1.1) when H(a) is 
meromorphic. The solution is reduced to the finding 
of an infinite zeros r ma from a set of linear equations. 
The asymptotic value of I'ma can be determined 
explicitly from the edge condition and, in many 
practical examples, r ma approaches the asymptotic 
value in an extremely rapid fashion. Therefore, we 
need to determine only the first few r ma for an 
accurate solution to (1.1). 

The method for attacking (1.1) when H(a) has 
branch singularities will be appearing in a future 
communication. 
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The number of ways WL of coloring the bonds of a hexagonal lattice of L sites (L large) with three 
colors so that no adjacent bonds are colored alike is calculated exactly, giving W = 1.20872 .... This 
is equivalent to counting the number of 4-colorings of the faces of the lattice and can also be regarded as 
a multiple-dimer problem. If one introduces activities corresponding to certain vertex configurations, then 
the system is found to have an infinite-order phase transition between two ordered states. 

1. INTRODUCTION 

Amongst the few exactly soluble 2-dimensional 
lattice models in statistical mechanics are the ice,l 
F mode1,2.3 and KDP mode1s.4 Together with the 
dimer problems,5 they have the property that each 
bond of the lattice can be in one of two states, and that 
(with suitable definitions) the number of bonds in each 
state is the same in every row of the lattice. The 
partition function is found to be given by equations 
similar to those encountered with the I-dimensional 
Heisenberg chain6 and I-dimensional system of bosons 
with 6-function interaction.? 

This paper is concerned with a model which has 
properties similar to those described above, except 
that a bond can be in one of three states, namely, 
counting the number of ways the bonds of a plane 
hexagonal lattice can be colored with three colors 
A, B, and C so that no two bonds at a vertex have the 
same color. The three types of colored bonds can be 
regarded as different species of dimers, with the rule 
that no two dimers of the same type can overlap. 
Alternatively, it is shown in the Appendix that the 
problem is also equivalent to counting the number of 
ways of coloring the faces of the hexagonal lattice with 
four colors so that no two adjacent faces are colored 
alike. 

One can obtain a rough approximation, which can 
be shown to be a lower bound,8 for the number of 
colorings by simple combinatorial arguments. Suppose 
the lattice has L sites, and hence 3L/2 bonds (L large). 
Then each bond can have one of three possible colors, 
but of the 35 colorings of the five bonds at two 
neighboring vertices, only 12 are allowed. Neglecting 
any further correlations, this suggests that the number 
of colorings Z L is given approximately by 

ZL == 33LI2(12/35)LI2 = (t)LI2. (1.1) 

Since Z L is expected to be proportional to WL, 
where W is some constant, when L is large, it follows 
that 

W2,....,,~ 
- 3' (1.2) 

Regarding colors Band Cas dimers, and a bond 
colored A as empty, an upper bound on Z L is obtained 
by counting the number of ways of independently 
placing two sets of close-packed dimers on the lattice. 
This is just the product of the number of ways of 
placing each of the sets separately, each of which is 
proportional to exp (LG/2n), where9 

G = h/3 {1-2 + 2-2 - 4-2 - 5-2 + 7-2 + 8-2 

- 10-2 - 11-2 + ... } (1.3) 
= 1.014938' ... 

Thus ZL < exp (LGln), and hence 

W2 < exp (2G/n) = 1.90814· . . . (1.4) 

In this paper, W is obtained exactly and is found 
to be given by a coupled pair of integral equations 
similar to those that arise in the double Heisenberg 
chain10 and a I-dimensional system of spino! fermions 
with b-function interaction,u It is found that 

2 22 52 82 

W =---'" 
1.34.67.9 

= 1.46099' ... (1.5) 

In addition, one can generalize the problem by 
associating weights, or activities, with the various 
configurations of colors at a vertex. In particular, 
suppose the colors A, B, and C to be ordered cyclically, 
so that B follows A, C follows B, and A follows C, 
and divide the vertices into two types a and b as 
shown in Fig. I. Then one can associate an activity 
Zl with a-vertices (b-vertices) at which the colors of 
the surrounding bonds go anticlockwise (clockwise) 
round the vertex, and an activity Z2 when they go in 
the opposite direction. The partition function Z L is 
then 

ZL = WL = L zr'z~g(m, n), (1.6) 

where the summation is over all nonnegative integral 
values of m and n, such that m + n = L, and gem, n) 
is the number of allowed ways of coloring the lattice so 
that m vertices have weight Zl and n have weight Z2' 

784 
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i-I i 

a I a I a 
FIG. 1. The labeling of I b I b I the vertical bonds in succes-

sive rows of the lattice and I-I I i+ I 

the division of vertices into I I I types a and b. a 
b b I b 

1+1 

Clearly ZL must be of the form Zrf(Z2/Z1), so one 
can without loss of generality set 

(1.7) 

When Z » I, this system assumes an ordered con
figuration in which the vertical bonds are colored 
cyclically from left to right, and conversely when 
Z « 1. When z = I, the model reduces to the original 
coloring problem and it is found that, at this point, 
W, regarded as a function of z, has an essential 
singularity similar to that occurring at the infinite
order phase transition of the F model. 

2. THE TRANSFER MATRIX 

Suppose the hexagonal lattice to be drawn as in 
Fig. I, with M rows, each containing N vertical bonds, 
and suppose that the lattice is wound on a cylinder so 
that the Nth bond of a row precedes the first. 

As each row interacts only with the rows immedi
ately above and below, when M is large, the partition 
function Z is given by 

(2.1) 

where A is the largest eigenvalue of the transfer 
matrix V. If <I> and <1>' are the colorings of two suc
cessive rows of vertical bonds, then V has elements 
V(<I>, <1>') which are zero if <I> cannot follow <1>', or else 
equal to the product of the activities of the inter
mediate vertices. Denoting the elements of the eigen
vector of V as x(<I», we see that A is given by the 
equation 

AX(<I» = I V(<I>, <I>')x(<1». (2.2) 
<1>' 

To determine the elements V(<I>, <1>'), first draw 
lines through all B- and C-colored vertical bonds and 
all A-colored horizontal bonds. Then these lines can
not begin or end at an interior vertex and must prop
agate from one row to the next. Thus the number of 
vertical bonds not covered by a line, namely A-bonds, 
is the same in each row. Similarly, so are the numbers 
of B- and C-bonds. 

The transfer matrix is therefore made up of a series 
of diagonal blocks relating colorings <1> and <1>' con
taining the same number of bonds of each color. One 

can therefore look at a particular diagonal block and 
suppose that in each row of vertical bonds there are n 
lines, of which r are colored C, i.e., there are N-n, 
n-r, r bonds colored A, B, and C, respectively. A 
row-coloring <I> can then be prescribed by giving the 
positions i1 ,' •• , in of the lines, and by specifying 
that lines PI' ... , Pr' at positions i1)I" •• , i1)" are 
colored C. Thus the elements x(<I» of the eigenvector 
can be written explicitly as X(Pl, ... , Pr I ii, ... , in)· 

Given such a prescription for the coloring <I> of a 
row, one has to determine the allowed colorings <1>' of 
the row below. First note that the lines cannot travel 
along more than one horizontal bond between the 
rows, so, using the labeling of Fig. 1, a vertical line 
at i must correspond to a line at i or i + I in the row 
below. Such possible shifts of position can conveni
ently be expressed by operators SI,' .. , Sn, defined 
by 

SmX(Pl"", Pr I i l ,"', in) 

= X(Pl"'" Pr I ill' .. , im- l , im + 1, im+1"", in)· 

(2.3) 

X(Pl' ... 'Pr I iI' ... , in) can then be regarded as the 
element ii, ... , in of a vector x(Pl, ... , Pr)' 

Consider now two C-colored lines P and P' (at i1) 
and i1)') in the upper row, with a number of B-colored 
lines in between. By considering the two possible 
sequences of alternate B, C colorings of the inter
mediate horizontal bonds, one finds the following 
rules for going from the upper to the lower row: 

(i) At most one intermediate line q (p < q < p') 
can change to color C. When this happens, a line 
between P and q must move from position i to i + I, 
while the positions of lines between q and P' are 
unchanged. 

(ii) If no intermediate lines change color, then 
either they all remain at the same position, or else they 
all move from i to i + 1. In the former case line P 
moves to i1) + 1 without changing color, while in the 
latter, line P' stays at i1)' without changing color. 

Thus in any event there must be a line q, where 
P ::;; q ::;; p', which is colored C in the lower row. 
Figure 2 shows the case (i), where in general lines P 
and p', as well as q, change color. These lines can each 
either stay at their original position i, or move to 
i + 1. 

All vertices between and on lines occur in pairs of 
activities z and Z-1, except when a line changes color. 
The contribution of such a line to the activity product 
can be determined as the product of the activities of 
the vertices between the two surrounding lines. These 



                                                                                                                                    

786 R. J. BAXTER 

p 

rL 
I 

, 
I 

I I 
I I 
I I 
'--, '--, 
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I 

FIG. 2. Typical 
propagation of lines 
from upper row to 
lower. Solid vertical 
lines represent C-col-

pored bonds, the 
I broken one B·colored 
I 1 bonds. Lines p, q, and 
I p' change color and 

r' r- -1 may move either to 
I I : the right (from bond i 
: I : to bond i + 1) or to 

Z·3 Z3 Z3 Z-3 I I '3 the left (bond j to 
Z-3 Z bond i). The contri

bution to the activity 
product of each possi
bility is shown under 
the corresponding 
move. 

contributions are shown in Fig. 2 under the allowed 
moves of the line. 

The possible moves of the lines p, p + 1, ... , p' - 1 
shown in Fig. 2 can therefore be obtained, with correct 
vertex weights, by applying the operators 

L(p, q, p') = (Z-3 + z3S p)SP+1 ... Sq_1(Z3 + z-3Sq) 

(2.4a) 

for p < q < p'. Similarly, the special cases mentioned 
in rule (ii), corresponding to q = p and q = p', corre
spond to operators 

L(p, p, p') = Sp, (2.4b) 
L(p, p', p') 

= (Z-3 + z3Sp)Sp+1 ... Sp'_1(Z-3 + z3Sp ')-l, (2.4c) 

where the inverse operator in (2.4c) serves to cancel 
the corresponding term arising from the lines to the 
right of p'. 

Ordering the lines so that 

i1 < i2 < ... < in' 

PI <P2 < ... <p" 

(2.5) 

(2.6) 

and considering successive pairs of C-colored lines, 
it follows that the transfer matrix equation (2.2) can be 
written explicitly as 

X(P1, ... , Pr) 
:Pl Pa Pr+l 

= ~ 2'" ~ L 1 • .. L rX(q1"", qr), (2.7) 
Q'l=jJl Q'2=P2 Q'r='Pr 

where the summand is to be replaced by zero if any 
two q's are equal, 

L j = L(pj' qj, PHI)' (2.8) 

and the cyclic conventions Pr+1 = PI + n, 

X(P1 , ... , Pr) = x(Pr - n, PI' ... ,Pr-1)' (2.9) 

X(Pl' ... , Pr I iI' ... , in) 

= X(PI + 1, ... , Pr + 1 I in - N, iI, ... , in-I) 

(2.10) 
have been adopted. 

One exceptional case must be considered, namely, 
when two lines m and m + 1 are originally next to one 
another. The right-hand side of (2.7) then contains 
two types of terms where they coincide, arising from 
one of the q's being m or m + 1. Such terms should be 
set equal to zero, which is equivalent to requiring that 
the analytic form of the eigenvector be such that 

Z-3X(q1"", qr) 

+ Z3X(q1"", qj-1, q; + 1, qH1,"', qr) = 0 

(2.11) 

3. THE FORM OF THE EIGENVECTOR 

A. Dependence on PI' ... , Pr 

The problem now is to solve the eigenvalue equation 
(2.7), with boundary conditions (2.9)-(2.11). As a 
first step, ignore conditions (2.10) and (2.11), and 
look for general solutions of (2.7) and (2.9). Then it is 
natural to consider solutions which are eigenvectors 
of Sl' ... , Sn, namely, 

X(P1, ... , Pr I iI' ... , in) 

= si1si2 ••• S~nX(p1' ... , Pr)' (3.1) 

Substituting this expression into (2.7), each Sm can 
be replaced by Sm, and the equation becomes formally 
similar to that arising in the FmodeI.2 In fact, it can be 
solved by a similar ansatz, namely, 

X(Pl> ..• , Pr) = ~ PI ... rU1(P1)U2(P2) ... u'(Pr), (3.2) 

where PI ''' r and um(P) are short-hand notations such 
that 

Pl' . 'r == P(ft1, ft2' ... 'ftr)' (3.3) 

um(p) == u(ftm, p), (3.4) 

I/. ••• I/. is some permutation of the numbers ,1' 'rr 
1, ... , r, and the summation in (3.2) is over all such 
permutations. 

Substituting the forms (3.1) and (3.2) of the eigen
vector into (2.7), it is found convenient to define the 
quantities 

K = Z6 + Z-6, (3.5) 

v(ft, p) = SlS2 ... spu(ft, p)/(Z-3 + Z3Sp), (3.6) 
p-1 

f(p., p) = S;lV(ft, p) + ! [Sq + S;l + K]V(ft, q), (3.7) 
Q=1 

g(ft, p) = f(ft, p) + KV(ft, pl· (3.8) 

Dividing both sides by various common factors, 
Eq. (2.7) then becomes 

A! PI" 'rV1(PI) ... Vr(Pr) 
r 

= ! PI''' r TI {j;(p;+1) - g;(p;)} (3.9) 
;=1 
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[using short-hand notations analogous to (3.4)], ex
cept that the right-hand side of this equation includes 
spurious contributions arising from qk-I = h = qk in 
(2.7) for k = 1, ... ,r. Such contributions must be 
subtracted, giving correction terms to the right-hand 
side of (3.9) of type 

-I Pl' , ,.Vk-1(Pk)Vk(Pk) II {f;(Pi+!) -g;(Pi)}' (3.10) 
i 

for k = 1,'" ,r, where the product in the summand 
is over all values of j from 1 to r, other than k - 1 
and k. 

Equation (3.9) can be solved by requiring that 
g(ft, p) and v(ft, p) satisfy a relation of the form 

g(ft, p) = tlLv(ft, p) - cl" (3.11) 

where tIL and clL are adjustable parameters. Taking the 
difference of (3.7) for two successive values of p and 
using (3.8), it follows that 

v(ft, p) = CI'SI ••• SpWI'.IWIL •2 • •• WI'.p/(Sp + tIL)' (3.12) 

where 

WI'.P = (Sp + tl')/(Sptl' - KSp + 1). (3.13) 

From (3.1) and (3.2), the cyclic convention (2.9) 
implies that the coefficients P 1." '.' satisfy the relation 

UI(P + n)P2.3 ... · ••• 1 = UI(P)PI•2 .. ".r (3.14) 

for all positive p. Substituting the form for u(/l, p) 
given by (3.6) and (3.12), and interpreting sp+n as sP' 
the terms dependent on pin (3.14) cancel, leaving 

{ii WIIl.Q}P2.3 .. ..... 1 = P1•2 ..... r • (3.15) 
q~l 

Expanding the product on the rhs of (3.9) and 
using (3.8) and (3.11), it is found that the first and last 
terms are proportional to that on the Ihs [after re
labeling flI' ... , fl. in the first term and using (3.15)]. 
Thus these terms can be made to cancel by requiring 
that A be given by 

• 
A = SI ••• Sn II (tl' - K) + (-Yti ... t.. (3.16) 

IL~I 

All other terms in the expansion of the product are 
of the same type as those occurring in the correction 
terms such as (3.10). On examination, it is found that 
these can be made to cancel one another by requiring 
that 

I [1 - Ktl'k + tlLkjl'k]PI ..... r = 0, (3.17) 

where, for a given permutation flI"", flr' the 
summation in (3.17) is over two terms, one given by 
this permutation and the other by interchanging flk-I 
and flk' 

Equations (3.15) and (3.17) define the coefficients 

PI ..... They have a nontrivial solution if and only if 

W W ... W - (318) II
r 

{ 1 - Ktl' + tlLtV} 
IL.I 1L.2 I'.n - - v~l - 1 - Ktv + tlLtv . 

for fl = 1, ... , r. 

B. Dependence on iI' ... , in 

As yet no attention has been paid to conditions 
(2.10) and (2.11). To do so, note that for given 
SI, ... , Sn Eqs. (3.13) and (3.18) define the param
eters tI , •.• , t., and that the eigenvalue A can then 
be obtained from (3.16). Further, f I ,'" ,tr and A 
are then symmetric functions of SI' ..• , Sn' 

It follows that there are n! expressions of the type 
(3.1) which satisfy Eqs. (2.7) and (2.9), corresponding 
to the various permutations of SI"" , Sn' This 
suggests that the complete solution may be of the 
form 

X(PI' ... , Pr I iI' ... , in) 

= 2: Qa1 .. ".a"X{a)(PI, ... , P. I iI, ... ,in)' (3.19) 
(a) 

where IX1' ••• , IXn is some permutation of the numbers 
1, ... ,n, the summation is over all such permuta
tions, and x{a) is obtained from the above Eqs. (3.1)
(3.13) for x by replacing S1' ... , sn by sal' ... , IXn' 

By using this form for the eigenvector, (2.10) is 
found to imply that 

s:;'Qa .... '.an.a1 = {iI WIL •• 1}Qa lo " '.an ' (3.20) 
IL~I 

while after some cancellations (2.11) gives 

2: [1 + KS"p+1 + Sa.S •• +1]Q.1 • .... " = 0, (3.21) 

the summation being over the two interchanges of IXp 

and IXp+!' Equations (3.20) and (3.21) thus playa 
similar role for the permutations lXI' ••• , IXn to that 
of (3.15) and (3.17) for flI"" ,flr' They have a 
solution if and only if 

S-NW W •• , W = -II - ---'------'-n { 1 + KSp + s.sp} 
IX 1,a: 2,« r,a 1 

P~l + KS. + sasp 
(3.22) 

for IX = 1, ... , n. 
All the conditions on the eigenvector have now been 

satisfied. It follows that (3.13), (3.18), and (3.22) 
define S1' ••• 'Sn and t1 ,' •• , tr . The eigenvalue A 
can then be calculated from (3.16) and the partition 
function from (2.1). 

4. SOLUTION IN THE THERMODYNAMIC 
LIMIT 

Equations (3.18) and (3.22) form a coupled set of 
equations similar to those arising in certain I-dimen
sional problems,lO.n and can be solved in a similar 
manner. 
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First make the transformations 

s~ = [1 - z-6exp(iO~)]/[exp(iO~) - Z-6], (4.1) 

tit = [Z6 - Z-6 exp (ic;b/t)]/[1 - exp (ic;b/t)] (4.2) 

(where now i 2 = -1). Taking the logarithms of both 
sides of (3.18) and (3.22), and using the definitions 
(3.5) and (3.13), the equations become 

~ F1(OfJ - c;b/t) 
fJ 

= i7T(r + 1 - 2f-l) - ~ F2(c;b/t - c;b.), (4.3) 
• 

NFl(O~) + ~ Fl(O~ - c;b.) 
• 

= -t7T(n + 1 - 2oc) + ~ F2(0~ - 0fJ)' (4.4) 
fJ 

for f-l = 1,'" ,r and oc = 1,' .. ,n, respectively, the 
summations over v and (J also being over these 
ranges. The functions F m(O) are defined by 

{
z6m + 1 } 

F m(O) = tan-
1 

z6m _ 1 tan to , (4.5) 

(4.6) 

The first terms on the right-hand sides of (4.3) and 
(4.4) arise from particular choices of the branch of the 
logarithm function. When z > 1, these choices ensure 
that the O's and c;b's are real and satisfy the relations 

01 < O2 < ... < On' On+l-~ = -O~, 

c;bl < 4>2 < ... < c;br' c;br+1-/t = - 4>/t . (4.7) 

When r, n, and N become large, their ratios re
maining constant, the spacing between successive 
O's and c;b's becomes small, while 01 = -On and 4>1 = 
-4>r tend to certain limiting values U and V. In the 
limit the O's and c;b's are continuously distributed over 
the ranges (- U, U) and (- V, V), respectively. 

If Np(O)dO is the number of O~'s between 0 and 
o + dO, and Na(c;b) d4> is the number of c;b/t's between 
c;b and c;b + dc;b, then Eqs. (4.3) and (4.4) become 

i:dO' p(O')FeCO' - c;b) 

= -7T l:dc;b'a(c;b') 

- f~dc;b'a(c;b')F2(c;b - 4>'), (4.8a) 

F1(0) + J~d4>'a(c;b')Fl(8 - c;b') 

= 7T fu dO' p(O') 

+ 1: dO' p(O')F2(0 - 8'), (4.8b) 

and U and V can be regarded as determined by the 
relations 

n/N = l:dOp(O), 

r/N = f~dc;ba(c;b). 

(4.9a) 

(4.9b) 

Applying the same transformations and limiting 
procedures to the eigenvalue equation (3.16), it is 
found that 

llog ~ = ! IV dc;ba(c;b) log {T + T-1 - 2 cos c;b}, 
N 2 2 -v 2 - 2 cos c;b 

where 
(4.10) 

(4.11) 

When U = V = 7T, the Eqs. (4.8) can be solved by 
differentiating and Fourier-analyzing. This gives 

1 00 ( m/2 + -m/2) 

p(O) = - ~ eim9
: T m' (4.12a) 

27Tm=-co (T + 1 +T- ) 

1 00 eimq, 

a(c;b) = - ~ 
27T m=-oo (Tm + 1 + T-m ) 

(4.12b) 

and hence from (4.9), 

n = iN, r = tN. (4.13) 

Thus in this case there are equal numbers of A-, B-, 
and C-colored bonds in each row of the lattice. 
Intuitively, we expect that this corresponds to the 
maximum eigenvalue A. Substituting the form (4.12b) 
of a( 4» into (4.1 0) and performing the c;b integration, 
it is found that 

1 A 1 00 1 T-m(1 _ T-m)2 
-log- = -logT + ~ - (4.14) 
N 2 6 m=1 m 1 - T-3m 

Taylor-expanding the summand in this equation and 
summing each term with respect to m, it follows that 

W2 = ZI/MN = Al/N 

2 00 (1 _ TI-3~2 
- z II (4.15) 
- 1>=1 (1 - T 2- 311)( 1 - T -311) 

when z > 1. 
5. CONCLUSIONS 

Equation (4.l5), together with the definition (4.11), 
expresses the partition function Z in terms of the 
activity z when z > 1. When z < 1, it should be 
replaced by Z-1 in these equations, since it is apparent 
from the symmetry of the problem that the partition 
function is unchanged by such a transformation. 

When z » 1, the system assumes an ordered state in 
which the colors go anticlockwise round each a 
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vertex, and clockwise around each b vertex. Thus 
W,....., z, as is indeed given by (4.15). 

When Z ---+ 1, the problem reduces to the original 
unweighted coloring problem, and the expression 
(4.15) tends to the appropriate limit, namely, 

W2 = IT (3p - 1)2 . 
p=1 (3p - 2)3p 

(5.1) 

Further, W is found to have a Taylor expansion about 
z = 1 which is formally invariant with respect to the 
transformation of replacing z by Z-I. However, it is 
not analytic at this point. Rather, it has an essential 
singularity. Indeed, it appears from (4.15) that W(z) is 
a lacunary function, having a solid wall of singu
larities on the unit circle. Thus at z = 1 the system 
undergoes an infinite-order phase transition similar to 
that of the F model,2.3 except that in this case the 
transition is between two ordered states, rather than 
from a disordered to an ordered state. 
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APPENDIX 

Lenard (Ref. 1) has pointed out that the square
lattice ice model is equivalent to a coloring problem 
of the faces of the lattice. Similarly, the three-color 
bond problem discussed in this paper (z = 1) is equiv
alent to counting the number of ways of coloring the 
faces of the hexagonal lattice with four colors a, b, c, 
and d so that no adjacent faces are colored alike. 

To see this, suppose that some allowed coloring of 
the faces has been made and regard the colors as 
ordered cyclically so that b follows a, c follows b, d 
follows c, and a follows d. Now imagine an observer 
standing on a face I of the lattice, looking across a 
bond to an adjacent face. If the adjacent color cycli
cally follows or precedes that of I, place an arrow on 
the intermediate bond pointing to the right or left, re
spectively, or else leave the bond empty. Do this to all 
bonds. Then the configuration of arrows is specified 
uniquely and can be seen to be such that at any vertex 

there are two and only two arrows, either both 
pointing in or both pointing out. 

Further, once one face of the lattice has been 
colored, to any configuration of arrows on bonds 
satisfying this condition at each vertex there corre
sponds an allowed coloring of the faces. Allowing for 
the four possible colorings of the initial face, it follows 
that if 

the number of allowed arrow configurations = Z, 

then 

the number of allowed 4-colorings of the faces = 4Z. 

Now consider the arrow configurations. Following 
successive arrows round the lattice, one traces out a 
series of nonintersecting closed polygons such that 
each vertex lies on a polygon. Further, each polygon 
can be in one of two states, one being obtained from 
the other by reversing the arrows along it. Thus, 

where g(m) is the number of ways of covering the 
lattice with m polygons. However, this expression for 
Z is precisely the number of ways of coloring the 
bonds of the lattice with three colors A, B, and C, 
since successive B, C bonds also form closed polygons 
which cover the lattice and can be in two states, 
corresponding to interchanging Band C. Thus 

Z = number of allowed three colorings of the bonds, 

and the required equivalence is established. 
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An inequality for correlation funtions in an Ising model with purely ferromagnetic interactions 
between pairs of spins is established and used to show that the magnetization in such a model is a concave 
function of external field H for H > O. The concavity of magnetization, which holds not only for spin-! 
but also for arbitrary-spin Ising ferromagnets, provides a basis for certain thermodynamic inequalities 
near the ferromagnetic critical point, including one involving the "high temperature" indices IX and y. 

I. INTRODUCTION 

That the magnetization M should be a concave 
function of magnetic field H for H ~ ° (and a convex 
function for H ::;; 0, since M is an odd function of H) 
is one of a series of plausible conjectures useful in 
analyzing the behavior of ferro magnets near their 
critical points. In particular, it is important for 
certain thermodynamic inequalities for critical point 
exponents, including an inequality involving the "high 
temperature" exponents oc and y.! We wish to present 
a proof of this conjecture in the case of an Ising model 

proof is completed with the help of a theorem on 
graphs in Sec. IV. The application of concavity in 
magnetization to inequalities for critical point ex
ponents is discussed briefly in Sec. V, with particular 
reference to 2- and 3-dimensional Ising ferromagnets. 

with purely ferromagnetic interactions (of arbitrary 
range) between pairs of spins. The proof is obtained, 
as in earlier work of an analogous nature,2.3 by estab
lishing a particular type of inequality for correlation 
functions. Whereas the desire to prove the concavity 
of M motivated a consideration of the inequality in 
question [see (2.8) and (2.10)], the latter is of interest 

II. NOTATION AND PRINCIPAL THEOREM 

Consider an Ising model with spins (Ji' i = I, 
2 ... n, which take the values ± I, and a Hamiltonian 

(2.1) 

where H is the external magnetic field and we assume 
that 

(2.2) 

that is, all exchange interactions are ferromagnetic. 
Let 

(2.3) 
in its own right and may possibly have other applica- and let 
tions. Our proof employs the methods of Ref. 3 M = (s)/n (2.4) 
(hereafter referred to as KS), Sec. 9. However, the 
reader should note that the Hamiltonian (2.9) for 
which the present results are obtained is much less 
general than that employed in KS. While the proof is 
carried out for a spin-t Ising model (each Ising "spin" 
can have two possible values), the inequality (2.8), 
and consequently the result on concavity of magneti-
zation, is easily extended to Ising models with arbitrary 
magnitude of spin. 

A statement of the problem and some notation is 
found in Sec. II together with a generalization to 
Ising models with spin greater than t. In Sec. III, the 
correlation function inequality is transformed into an 

be the average magnetization per spin. Here angular 
brackets denote a thermal average. It follows from 
general convexity considerations4 [for which (2.2) is 
not necessary] that 

oM> ° oH -
for all H. We wish to establish the following: 

Theorem 1: 

o2M < ° for all H >_ 0, OH2 - , 

(2.5) 

(2.6) 

equivalent problem in the theory of graphs, and the that is, the magnetization is a concave function of 

790 
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positive external field. This amounts to showing [KS, 
relation (7.8)] that 

(S3) -- 3(S)(S2) ~ 2(S)3 ~ 0, (2.7) 

which is in turn implied by 

«(fi(f/Ik) - «(f;)«(fj(fk) -- «(fj)«(fi(fk) -- «(fk)«(fi(fj) 

+ 2«(fi)«(fj)«(fk) ~ 0, (2.8) 

for arbitrary choice of i, j, k (not necessarily distinct). 
A completely equivalent method for treating the prob
lem (see Ref. 2) is to introduce a "ghost" spin (fo, with 
the magnetic field acting on a spin (f i replaced with a 
corresponding exchange interaction JOi = H, and 
correlation functions involving an odd number of spin 
operators modified by inserting (fo, e.g., «(fi) becomes 
«(f;(fo). The new Hamiltonian is simply 

Je = -- I I Jij(fi(f j' (2.9) 
OSi<jSn 

and Theorem 1 is an immediate consequence of 

Theorem 2: Provided all Ji} ~ ° in (2.9), 

«(fi(fj(fk(fl) -- «(fi(fl)«(fj(fk) - «(fj(fl)«(fi(fk) 

-- «(fk(fl)«(fi(fj) + 2«(fi(fI)«(fj(fI)«(fk(fl) ~ 0. (2.10) 

Note that, if 1= ° so that (fl is the "ghost spin," 
(2.10) is equivalent to (2.8). But, in fact, (2.10) is more 
general, and we could interpret (fi as the ghost spin 
so that 

«(fj(fk(fl) - «(fl)«(fj(fk) -- «(fk)«(fj(fl) - «(fj)«(f,PI) 

+ 2«(fI)«(fj(fI)«(fk(fl) ~ ° (2.11) 

is valid for any spinsj, k, I in the presence of a positive 
magnetic field H ~ O. 

Before starting the proof of Theorem 2, let us con
sider the generalization of Theorem I and the in
equality (2.8) in the case of Ising models with spin 
ip, p an integer ~ I, in which (f in (2.1), (2.3), etc., is 
replaced by S, a variable which takes on the values 
--p, --p + 2, --p ~ 4, ... ,p. It is easily shown that, 
with (f replaced by S, 

(SiSjSk) -- (Si)(SjSk) -- (Sj)(SiSk) -- (Sk)(SiSj) 

+ 2(Si)(Sj)(Sk) ~ ° (2.12) 

is a consequence of (2.8) itself. For this we write 

P 

Si = I (fii' (2.13) 
i'=l 

(and similar expressions for Sj and Sk)' where (fii' = 
± 1. The system described with spins Si and ferro
magnetic bonds is for many purposes identical to an 

"analog" systemS in which only the (fii', (fjj', and (fkk' 
occur with suitable ferromagnetic interactions. In 
particular, the correlations appearing in (2.12) may 
be evaluated by replacing each S with the correspond
ing (f'S according to (2.13). The sum of all the resulting 
terms corresponding to a particular choice for i', j', 
and k' is nonpositive by (2.8), and consequently 
(2.12) is itself nonpositive. The same argument cannot 
be used to generalize (2.10) to the case ofIsing models 
with arbitrary spin because (fl plays a special role and 
cannot simply be replaced by SI' 

III. GRAPHICAL FORMULATION OF THEOREM 

Since the temperature (always assumed positive) 
enters in an inconsequential way in our arguments, we 
shall henceforth suppose fJ = (kT)-l = 1. Using the 
result (f: = 1 for any i, we can write (see KS, Secs. 
9, 11) 

exp (IJij(fi(fj) = I 71'A(fA, (3.1) 
i<j ACN 

where N is the set {a, 1,2, ... , n} and 

(fA = II (fi' (3.2) 
iEA 

In particular, when A is the null set 4>, (f.p = I, and the 
corresponding 71'.p is a multiple of the partition func
tion, 

2n+
1

71'.p = Z = I exp (I Jij(fi(f j) , (3.3) 
0"·~±1 i<j 

while, in general, • 

2n+l71'A = Z(aA). (3.4) 

Consequently, (2.10) amounts to showing that, for 
any four spins 0, 1, 2, 3 [corresponding to I, i, j, k in 
(2.1 0), respectively]' 

71'J71'0123 -- 71'.p( 71'01 71'23 ~ 71'0271'13 ~ 71'0371'12) 

+ 271'0171'0271'03 ~ O. (3.5) 

In the case we are considering, in which only pair 
interactions occur in the Hamiltonian, a graphical 
interpretation of the 71' A is very convenient. With 
vertices i and j from the set N, a graph v is completely 
specified by giving the number of edges v(ij) con
necting i and P We shall denote by bv the set of odd 
vertices in V, vertices which are end points for an odd 
number of edges in v. 

For each graph v, define the weight 

W(v) = II [(Jijy(w/v(ij)!]. (3.6) 
i<j 

We can then write [KS, Sec. 9] 

71'A = I W(v). (3.7) 
v:6v~A 
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Note that, in the case A = cP, the sum includes the 
null graph (no edges) with weight 1. 

Consider next a typical term appearing in (3.5): 

7T017T027T03 = L L L W(v01 )W(V02)W(voa), (3.8) 

where 

(3.9) 

and we shall in general use the convention that, if a 
graph v has subscripts, these are the elements of the 
set by. It is rather natural to associate with each 
summand in (3.8) a single graph fl, with 

fl(ij) = V01(ij) + V02( ij) + voa(ij), 

which permits us to rewrite (3.8) as 

(3.10) 

7TOl7Toz7Toa = L D'/7TOl 7Toz7Toa)W(fl)· (3.11) 

Here, with fl! an abbreviation for the product over all 
pairs i <j of fl(ij)!, and VOl!, V02 !' voa! similarly 
defined, 

fl! 
Di7Tol 7T027Toa) = L L I ' (3.12) 

VOl Vos vos VOl! V02! V03! 

and this last sum is over ordered triples (VOl' 1'02' VOa) 
satisfying (3.9) and (3.10). Iffor a particular fl no such 
triple exists, D,. = O. 

Of course, an analogous procedure may be used for 
the other terms in (3.5). Thus, in order to establish 
(3.5)-note that all W(fl) are positive-it suffices to 
show that for every fl 

2D,.(7T017T02 1Toa) S D,/1T", 1T017T2a) + D,/7T",1To21Tla) 

+ D,.(1T",1Toa1T12) - D,.(7T;1T0123)' 

(3.13) 

Hitherto, we have treated the graphs as having 
indistinguishable edges in the sense that two graphs 
v and v' are the same if v(ij) = v'(ij) for every pair 
(ij). However, the combinatorial factor D,. has a 
particularly simple interpretation if we change our 
point of view and suppose that the graph fl has 
labeled edges which can be regarded as distinguishable. 
From this point on, we shall define a graph fl to be a 
set of (distinguishable) edges. Two graphs fl and v 
will be considered identical only if they contain 
precisely the same edges, and not simply the same 
number of edges connecting any pair of vertices. The 
vertices of a graph fl, V(fl), is the set of all end points 
of the edges in the set fl.6 When b is a vertex, "fl 
contains b" means bE V(fl). We shall be concerned 
with decompositions (v, v', v") of a graph fl into 
mutually disjoint (no edges in common) sub graphs 

fl = v + v' + v" (3.14) 

(we shall use + in place of U for union of disjoint 
graphs), with the convention that (v, v', v") and (w, 
w', w") are the same decomposition only if v = w, 
v' = w', and v" = w". 

With these definitions, we can interpret 

D,.(1TOl 1T02 7T03) 

as the total number of decompositions of the graph fl 
(with labeled edges) of the form (VOl' V02, v03), the 
summand in (3.12) being precisely the correct com
binatorial factor to go from a system of unlabeled to 
one with labeled edges. Similarly, D,.(7T~ 7Tom) is the 
number of decompositions of fl in the form (v"" 
v~, VOI23), where note that v'" or v~ (or both) may be the 
null graph with no edges at all. 

Another concept we shall need is that of the sym
metric difference of two graphs. The symmetric 
difference of two sets A and B, written AIlB, is the set 
of all elements which appear in A or in B, but not in 
both. Similarly, the graph p = vllv' is the set of 
(labeled) edges which occur in either v or v', but not 
in both. The relation 

b(vllv') = (bv)ll(bv') (3.15) 

states, in words, that the odd vertices of vllv' are 
those which are either even in v and odd in v', or 
odd in v and even in v'. We use this result in estab
lishing the following: 

Lemma 1: Let w be a graph, and a and b two of its 
vertices. Define 

F(w) = {v:v C:: w, bv = cp}, (3.16) 

E(w; a, b) = {v:v c w, bv = {ab}}. (3.17) 

Provided E(w; a, b) is not empty, the following 
equality holds: 

#[E(w; a, b)] = #[F(w»), (3.18) 

where #[ ] stands for the number of elements in the 
set [ ]. The proof is obtained by .choosing some 
element 1T E E(w; a, b) and noting that, for fixed 1T, 

v -+ v' = 7Tllv (3.19) 

is a one-to-one mapping of E(w; a, b) into F(w) and 
vice versa. The result may also be stated as follows: 
The subsets of fl are an Abelian group under symmetric 
difference, with the null graph as the identity. Clearly, 
F(w) is a subgroup and E(w; a, b) a coset. 

Note that E(w; a, b) is empty if and only if the 
vertices a and b lie in different connected components 
of the graph w, a simple consequence of the fact that 
any connected component of a graph must have an 
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even number of odd vertices.? We shall use w (a = b) 
as an abbreviation for saying that a and b are in the 
same connected component of w, and OJ (a :;!: b) for 
the contrary. 

Lemma 1 may be used to simplify (3.13). All 
decompositions below refer to the graph f-l with 
(}f-l = {0123}. First let us establish the result 

#{(v"" v~, VOI 23):(f-l - v",) (0 = 3)} 

= #{(V""V03,VI2 )}. (3.20) 

We shall in fact show that this holds for each choice of 
v"'. Consider the case (f-l - v",) (0 :;!: 3). The left side of 
(3.20) is zero, but the right side also vanishes because 
f-l - v'" contains no subgraph V03 whose only odd 
vertices are 0 and 3. When, on the other hand, 
(f-l - v",) (0 = 3), we apply Lemma 1 with w replaced 
by f-l - v", and a = 0, b = 3. For a fixed v"" the 
number of decompositions (v"" v~, V0123) is simply the 
number of ways of choosing a subgraph v~ of f-l - v"" 
since this choice uniquely determines V0123' Conse
quently, the left side of (3.20) is #[F(f-l - v",)]' while, 
by an analogous argument, the right side is 
#[E(f-l - v",; 0, 3)]. On the basis of (3.20) and the 
definition of Din we have 

DJl(7TJ7TOI23) = #{(v"" v~, VOI23)} 

= #{(v"" v~, VOI23):(f-l - v",)(O = 3)} 

+ #{(v", , v~, V0123):(f-l - v",) (O:;!: 3)} 

= Di7T", 7T037TI2) 

+ #{(v"" v~, V0!23) :(f-l - v",) (0 :;!: 3)}. 

(3.21) 

Note that f-l - v", has, like f-l, four odd vertices, and 
in the case (f-l - v",) (0 :;!: 3) they must occur in pairs 
in different connected components. The two mutually 
exclusive possibilities are (f-l - v",) (0 = 1) and 
(f-l - v",) (0 = 2). Applying Lemma 1 to the graph 
f-l - "", for these two cases, with a = 0 and b = I and 
2, respectively, we obtain 

#{(V""V~,VOI23):(f-l- v",) (0 :;!: 3)} 

= #{(v", , VOl' V23):(f-l- v",)(O:;!: 3)} 
+ #{(v", , V02 ' VI3):(f-l - v",) (O:;!: 3)}. (3.22) 

In addition, we have 

DJl( 7T ", 7TOI 7T23) 

= #{(v", , VOl' V23):(f-l- v",)(O:;!: 3)} 

+ #{(v", , VOl> V23):(f-l- v",) (0 = 3)} (3.23) 

and the analogous equation where 1 and 2 are 
everywhere interchanged; combining these results with 

(3.13), (3.21), and (3.22), we have 

2 D i 7T017T027T03) 

~ #{(V", , VOl' V23):(f-l - v",) (0 = 3)} 

+ #{(v", , V02 ' VI3):(f-l - v",) (0 = 3)}. (3.24) 

The application of Lemma 1 twice to the graph 
f-l - v'" shows that the two terms on the right side of 
(3.24) are equal, and its application to the graph 
f-l - V02 shows that 

Di7To17T027T03) = #{(V", , V02' v13):(f-l - V02) (0 = 3)}. 

(3.25) 

Hence, we have (noting that f-l - V02 = vI/> + VIS' etc.) 

#{(V", , V02 ' v1S):(v", + V13) (0 = 3)} 

~ #{(v", , V02 ' VI 3):(V02 + VI3) (0 = 3)} (3.26) 

as an inequality completely equivalent to (3.13). 

IV. A THEOREM ON GRAPHS 

We shall show that the inequality (3.26) is satisfied 
separately for every choice of V13 C f-l. The result 
follows, in fact, from the following theorem: 

Theorem 3: Let the graph f-l (with labeled edges) be 
the sum of two disjoint (no edges in common) sub
graphs wand p. Suppose that a :;!: b are among the 
vertices of w, and w (which could be a or b) is one of 
the vertices of p. Define 

C = {v:v C w, (v + p) (a = w) 

or (v + p) (b = w) or both} (4.1) 

and let E and F be defined by (3.16) and (3.17). Then, 
if E(w; a, b) is not empty, the following inequality is 
valid: 

#[F(w) (l C] ~ #[E«(1); a, b) (l C]. (4.2) 

Before carrying out the proof of this theorem, let us 
see how it can be used to establish (3.26). The p in the 
theorem corresponds to V13 and the w to f-l - VI3 ' 

while a = 0, b = 2, and 14' = 3. We then interpret the 
right side of (3.26) as the number of ways of choosing 
a subgraph V02 in f-l - V13 such that 0 and 3 are con
nected in (V02 + VI3); the graph v'" = f-l - VI3 - V02 is 
determined uniquely when V02 is known. Similarly, the 
left side of (3.26) is the number of ways of choosing 
v'" in f-l - V13 with a similar connectivity condition. 
The correspondence between (3.26) and (4.2) should 
now be plain except for one minor point. In (4.2) we 
allow the possibility (v + p) (2 = 3) in place of 
(v + p) (0 = 3). However, since 0 and 2 are connected 
in V 02, (voz + VIS) (0 = 3) implies (voz + VIS) (2 = 3). 



                                                                                                                                    

794 GRIFFITHS, HURST, AND SHERMAN 

Therefore, the right-hand member in (4.2), with the 
above interpretation, is the same as the right-hand 
member in (3.26), while the left-hand member in (4.2) 
is in general larger than the corresponding term in 
(3.26). This still permits us, of course, to infer (3.26) 
from (4.2). 

The foregoing remarks show that Theorem 3 has 
(3.26) as one of its consequences when the right side of 
(3.26) is not zero [this corresponds to the stipulation 
preceding (4.2)]. If we restrict ourselves to ft for which 
()ft = {0123} and to V13 c: ft [otherwise both sides of 
(3.26) vanish] and note that a possible choice for 
v c/> is the null subgraph, it is clear that the right side of 
(3.26) will vanish only if 0 and 3 are in separate con
nected components of ft, a situation in which the left 
side of (3.26) must also, obviously, vanish. 

Proof of Theorem 3: Define 

G = {v:v c: w, (v + p) (a -:F w), (v + p) (b -:F w)} 

= {v:v c: w} - C (4.3a) 

and note that 

#[E(w; a, b) n G] + #[E(w; a, b) n C] 

= #[E(w; a, b)] = # [F(w)] 

= #[F(w) n G] + #[F(w) n C], (4.3b) 

where the second equality is a consequence of Lemma 
I, together with the hypothesis that E(w; a, b) is not 
empty. Consequently, (4.2) is equivalent to 

#[E(w; a, b) n G] ~ #[F(w) n G]. (4.4) 

Given any v E G, let T be the connected component 
of v + p which contains w; of course, neither a nor b 
belong to V( T). Let p be the set of edges of ft for which 
neither end point belongs to VeT), and let (0 be w n p. 
Evidently, we can write 

v = A + K, (4.5) 
where 

A = v nT, K = V n p; (4.6) 

note that K is a subgraph of w. Let G(A) denote the 
subset of graphs in G which give rise to a specific A. 
We shall prove (4.4) by showing that for every A 

#[E(w; a, b) n G(A)] ~ # [F(w) n G(A)] (4.7) 

and then summing over A. Consider a A for which the 
left side of (4.7) is nonzero, that is, there is some 
v E E(w; a, b) n G(A). Since ov = {ab}, neither a nor 
b can be elements in VeT), and since VeT) and V(M 
have no elements in common, we conclude that 
OA = c/> and OK = {ab}. Hence, K is a member of 
E(w; a, b). Indeed, for any K E E(w; a, b), A + K 

belongs to E(w; a, b) n G(A). Consequently the left 

side of (4.7) is equal to #[E(w; a, b)]. Since 

A E F(w) n G(A), 

the right side of (4.7) is nonzero and an analogous 
argument shows that it must equal #[F(w»). Lemma 
I then implies that the left and right sides of (4.7) are 
equal. On the other hand, if A is such that the left side 
of (4.7) vanishes, it is still possible for the right side to 
be positive, leading to an inequality. This observation 
completes the proof of Theorem 3. 

V. THERMODYNAMIC INEQUALITIES FOR 
CRITICAL POINT INDICES 

Certain inequalities based on thermodynamic argu
ments have been used to check the consistency of 
critical point indices derived from experimental data 
for fluids and magnetic systems or estimated on the 
basis of power series expansions. One assumes that 
thermodynamic variables of interest vary as some 
power law near the critical point; for example, on the 
critical isentrope S = So (the subscript c denotes the 
value of a quantity at the critical point), 

H 1"01 IMI~' sgn (M), (S.la) 

(S.lb) 

whereas on the critical isotherm T = Tc ' the varia
tion of entropy is given by 

Sc - S 1"01 IMI'+!. (S.lc) 

The other indices we shall employ, (x, (X', p, y, y', and 
0, are defined in the usual way.809 

Thermodynamic inequalities must be based on some 
hypotheses regarding the behavior of thermodynamic 
functions; the following three are of interest for the 
present discussion: 

1. The thermodynamic free energy F(H, T) is a 
concave function of the variables Hand T together. 

II. At constant H > 0, M(H, T) is a nonincreasing 
function of T. 

III. At constant T and for H > 0, M(H, T) is a 
concave function of H. 

Of these hypotheses, the first is of considerable 
generality, and can be shown to hold for most model 
magnetic systems (Ising, Heisenberg, ferro- or anti
ferromagnetic) because the Hamiltonian depends 
linearly on the field. 4 Among its consequences is the 
result that M must be monotone nondecreasing in H 
at fixed T. On the other hand, II and III would not be 
expected to hold except in ferro magnets and have 
been definitely established (in this and a preceding 
paper) only for Ising ferro magnets (of arbitrary spinS). 
It is also plausible that they should hold, for example, 
in Heisenberg ferromagnets, and the same series 
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expansion techniques used to estimate critical indices 
can also be employed to check the hypotheses. (We 
remark that additional inequalitieslO for Ising ferro
magnets may be derived using the well-known result 
that zeros of the partition function lie on the unit 
circle in the complex z = exp (- fJH) plane; we shall 
not discuss these here.) 

Table pI lists thermodynamic inequalities for the 
indices mentioned above which have been established 
on the basis of Hypotheses I-III. (For details, see Ref. 
I.) Note in particular that Hypothesis III appears to be 
necessary in order to obtain an inequality involving 
the "high temperature" (T> Tc) exponents IX and y. 
The inequalities in the table are independent of one 
another except that 1 may be obtained by combining 
2 and 3. However, 1 can be established on the basis 
of considerably weaker assumptions than are needed 
for 3. 

Of these inequalities 6 is exceptional in that it allows 
for two possibilities: 

(i) 

Oi) 

(5.2a) 

(5.2b) 

In case (ij) one obtains, with the help of 4 and 7, the 
result 

(1 - IX)(2 - IX')~s ~ (2 - IX)(1 - IX')O + (IX - IX'), 

(5.3) 

which for IX ~ IX' (both quantities are assumed non
negative and cannot exceed 1) implies ~s ~ ~,contrary 
to (5.2b). We conclude that case (ii) is only compatible 
with IX < IX', and IX ~ IX' implies that ~ and Os are 
identical. 

TABLE I. Inequalities for critical exponents. s 

Inequality 

1. 2fJ + y' ~ 2 - rx' 
2. fJ(fl + 1) ~ 2 - rx' 
3. y' ~ P(fl - 1) 
4. (2 - rx'){ + 1 ~ (1 - 0(')0 
5. 0 ~ 0, 
6. O. ~ min {fl, , + a} 
7. (2 - rt)a ~ 6, + I 
8. y(fl, + 1) ~ (2 - rx)(o, - 1) 

a Tsken from Table II of Ref. 1. 

Hypothesesh 

II, III 
II 

II 
II 
II,III 

b Hypothesis I (convexity) is understood in a1l cases. 

To illustrate the inequalities, consider first the 2-
dimensional Ising ferromagnet with nearest-neighbor 
interactions for which IX = IX' = 0 and fJ = tare 
exact results. s We have, therefore, ~s = ~ ~ 15 by 2 
and y' ~ t, y ~ t by 3 and 8, respectively. In addi
tion, there is independent evidence (see Ref. 8), which 
cannot as yet be regarded as entirely rigorous, that 
y and y' are both exactly t. If this is the case, then, 
from either 3 or 8, it follows that ~ must be exactly 15. 

For 3-dimensional Ising ferromagnets, no results 
are known exactly, but it is believed at present that8 

IX = land y = t. Inserting these values in 8 yields 
Os ;:; 5 and, if we admit the possibility that IX may be 
as large as 0.14 and y as large as 1.253 (error estimates 
from Ref. 8), the maximum value of ~s is still only 5.13. 
Therefore, if IX' ~ IX (in accord with the estimate of 
iT for IX), we can conclude that ~ = o. is unlikely to be 
as large as 5.2 estimated from series expansions, and 
a value of 5, which accords better with scaling ideas, 
would seem preferable. It is, however, not impossible 
that IX' exceeds IX, especially since the former seems 
rather difficult to estimate accurately. In any case, it is 
evident that the thermodynamic inequalities pose 
nontrivial constraints on the choice of acceptable 
indices. 
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The generalized anharmonic oscillator is defined by the Hamiltonian HN , which in the coordinate 
space representation. is given by HN = -~'fdx2 + tx~ + g(tx2)N. The analytic properties of the energy 
levels of f! N as functIOns o~ complex c?uplmgg are denved and described. Zeroth-order WKB techniques 
are .used m the mat.hema!lcal a~alysls: For all N, the results are qualitatively similar to those for the 
ordmary anharmonic oscillator m which N = 2 and, thus, the results are model independent for this 
wide class ?f models. T?e limiting case N:-+ 00 is solved exactly without using WKB techniques. The 
exact solutIOn agrees with the WKB solutIOn to zeroth order. This agreement is most impressive and 
testifies to the accuracy and utility of WKB methods. 

I. INTRODUCTION 

In a recent paperl (hereafter referred to as BW), 
Bender and Wu used WKB techniques to elucidate the 
analytic structure of the energy levels of the anhar
monic oscillator as a function of complex coupling 
constant A. The anharmonic oscillator is described by 
the Hamiltonian 

(1) 

where 

where gJ obeys the commutation relation in Eq. (2). 
HN in Eq. (3) reduces to the Hamiltonian analyzed 
in BW [Eq. (1)] when N = 2. 

We transform to the coordinate space representation 
. by substituting 

(4) 
and 

. '2 1 d gJ = -t .. -
dx 

(5) 

We also let m = 1 without loss of generality. 
[g;, ifJJ = i. (2) The energy eigenvalue equation in coordinate space 

In BW it was shown that the energy levels for real A, 
EoCA), E1CA), ... , are branches of a complex function 
E(A). E(A) has an infinite sequence of square-root-type 
branch point singularities where level crossing occurs. 
This sequence of branch points is located in the 
complex A plane near arg A = ±270° and has a limit 
point at the origin. These results explain the divergence 
of the Feynman perturbation series which is a power 
series in A.. 2 

In this paper we raise the following question: Do the 
unexpected and exciting results of BW depend on the 
Ag;4 interaction or are they model independent? 
Specifically, if we generalize the interaction to gg;2N, 
does E(g) in this model still exhibit the same general 
analytic structure as E(A)? The answer to this question 
is yes, indicating that the phenomena brought to light 
in BW are more fundamental and far reaching than 
one might have originally expected. 

To analyze the g<p2N interaction, we have greatly 
extended the WKB techniques described in BW. 
Although we will rely somewhat on those results of 
BW which are easily extendible to the gf{J2N case, we 
will strongly emphasize the powerful new techniques 
we have developed. 

The generalized anharmonic oscillator Hamiltonian 
IS 

is 

where 
{
_d2 X2 X2N } - + - + g - - E(g) ~(x) = 0 
dx2 4 2N ' 

lim ~(x) = O. 

(6a) 

(6b) 

Equations (6) and (7) define the analytic properties 
of E(g), and it is the purpose of this paper to study 
these equations. In Sec. II we set up the mathematical 
framework for doing the WKB analysis. Next, we 
present zeroth-order WKB calculations of the wave
function in coordinate space for N small (Sec. III) and 
for N large (Sec. IV). In Sec. V we use the WKB wave
function ~(x) to determine the qualitative analytic 
properties of E(g). In Sec. VI we consider the limit as 
N- 00. 

II. MATHEMATICAL FRAMEWORK FOR WKB 
ANALYSIS 

A. The Analytic Continuation of E(g) 

The coordinate representation [Eq. (6)] implies 
that, for large reallxl and real g, 

<I>(x) ~ exp [ _IXIN+l~! J. (7) 
(N + 1)2 N 

Hence, the boundary condition in Eq. (6b) holds for 
complex Ixl- 00 in the sector larg xl < 7T/2(N + 1), 
as well as on the real x axis. 

796 
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FIG. 1. The shaded regions are the sectors in the complex x plane 
in which the boundary condition in Eq. (6c) is satisfied. Turning 
points are indicated by small circles. The clockwise rotation of the 
turning points and sectors as arg ). increases is shown by a curved 
arrow. 

Equation (6) allows us to continue E(g) into the each having an angular opening of 
complex g plane. For complex g, we define E(g) by 
Eq. (6a) and by the general boundary condition () = rr/(N + 1). (8b) 

larg (±x) + [2(N + 1)]-1 arggl < rr[2(N + 1)]-1. 

(6c) 

Given Nand arg g, Eq. (6c) defines two sectors in 
the x plane centered about 

arg x = - [2(N + 1)]-1 arg g 
and 

arg x = - [2(N + 1)]-1 argg + rr, (Sa) 

These sectors are labeled on Fig. 1. 
The analytic continuation E(g) is defined for x in 

these sectors. 

B. The Turning Points 

The turning points for the zeroth-order WKB solu
tion to Eq. (6a) are the solutions of 

(9) 
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It is convenient to let inBW: 

g = AN-I. (10) E = 2n + t, n = 0,1,2, ... , 

Then, as in BW, we let IAI be small: 

IAI « 1. (lla) 

Moreover, we only consider low-lying energy levels: 

lEI = 0(1). (lIb) 

Using the approximations in Eqs. (11), we solve 
Eq. (9) to zeroth order in A. There are 2N turning 
points. Two of them lie near the origin at a radial dis
tance of order 1 : 

x "-' ± (2E)1-. (12) 

The rest of the turning points lie on a circle of radius 
IAI-i centered about the origin: 

1-i 1fi/2(N-l)2N-2/2(N-l)e1fimIN-I 
X"-'A e , 

m = 0, 1, ... , 2N - 3. (13) 

The turning points in Eq. (13) are indicated by 
small circles on Fig. 1. 

C. <I>(x) Near the Origin 

As in BW, we approximate the wavefunction <I>(x) 

for x restricted to a sector in Eq. (8) by breaking up 
each sector into four regions. When x is near the 
origin (that is, when it is in region A), we approximate 
Eq. (6a) by 

(- ::2 + ix2 - E ) <I>(x) = 0. (14) 

Two independent solutions to this equation are the 
parabolic cylinder functions DE-i(±X) (see BW). For 
even- or odd-parity wavefunctions 

(15) 

To zeroth order in A, this solution is a good 
approximation to the wavefunction <I> when Ixl« 
IAI-i. But, Ixl can range as large as, say, IAI-l. Thus, 
we can disregard the turning points in Eq. (12), even 
if they lie in the sector defined by Eq. (8). 

D. Rotation of the Turning Points in Eq. (13) 

When the turning points in Eq. (13) lie in the 
sector [Eq. (8)], they may not be disregarded. When 
do they lie in the sector? 

When arg A is near 0, the turning points lie outside 
and on either side of the sector [see Fig. l(a)]. Thus, 
there are no obstructions and the parabolic cylinder 
function of Eq. (15) asymptotically connects to Eq. 
(7). This connection gives the same condition on E as 

for even-parity wavefunctions; 

E = 2n +!, n = 0, 1,2, ... , 

for odd-parity wavefunctions. (16) 

As arg A increases from 0, both the sectors and the 
turning points rotate clockwise [see Fig. 1 (a)]. The 
turning points rotate slightly faster than the sectors. 
Thus, a turning point eventually enters the sector and 
blocks the path of the above connection, making Eq. 
(16) invalid. The turning point lies in the center of the 
sector when 

arg A = TT(N + 1)/2(N - 1), arg x = -iTT, (17) 

as is shown in Fig. 1 (b). This situation is analyzed in 
Secs. III and IV. 

As arg A continues to increase, the turning point 
leaves the sector and eventually another one enters. 
This second turning point is in the center of the 
sector when 

arg A = 3TT(N + l)/2(N - 1), arg x = -iTT. (18) 

This case is symmetrical to that in Eq. (17) [see Fig. 
1 (c)] and need not be treated separately. 

When arg A reaches 2TT(N + l)/(N - 1), parity 
in variance makes this configuration of turning points 
indistinguishable from that in Fig. 1 (a). Since we re
cover Fig. l(a) when argg = 2TT(N + I), E(g) has an 
(N + I)-root branch-point singularity about the 
origin in the g plane. This is not an important feature 
of E(g) and can be removed in perturbation theory by 
expanding in powers of gN+1. This would not affect the 
divergence of perturbation theory which results from 
the singularities described in Sec. V. 

E. The Configuration in Fig. l(c) 

It is useful to introduce new notation: 

p = A exp [- iTT(N + 1)/2(N - 1)], (19a) 
r = xeh1fT(N-2)/2(N-I), (19b) 

E = iE(A)2N1(N-l), (19c) 

T = 2-1/(N-l). (19d) 

Equation (19) simplifies Eq. (6a) to 

o = [::2 + T2(r2 - E - pN-l r 2N) J<p(r). (20) 

Following BW, we express the locations of the two 
relevant turning points [see Fig. 1 (C)],3 which we n()w 
call ro and '1: 

'0"-' E! = 0(1) (21a) 
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and Irl »lrll, the boundary condition in Eq. (6c) is al
(2Ib) ready incorporated in Eq. (27). 

In terms of ro and r1 , in region A, 0 ::::;; Irl « Irll; in 
region B, Irol « Irl « IrII; in region C, Irl ,.; IrII; in 
region D, Irl ,......-lrll· 

III. WKB SOLUTION FOR "SMALL" N 

In this section we find ¢lex) to zeroth order in A, 
assuming N is "small." That is, 

Ipl N« 1. (22) 

In the next section we treat the case where N is 
"large." That is, Ipl N is not small compared to one, 
but rather" 

Asymptotic Connection of <1> Across Regions A and B 

Following BW, we asymptotically connect the even
parity case of Eg. (15) in region A to Eg. (24) in 
region B. The leading term in the asymptotic expansion 
of Eg. (15) is 

¢l (r)"""'- C r-!(exp [ti(2r2T - €T log r2T - !7T)] 
A 1 ret _ !i€T) 

+ exp [-V(2r2T - €T log r2T - !7T)]). (29) 

ret + !i€T) 

In region B, Eg. (24) behaves asymptotically as 

N-I ::::;; Ipl « 1. (23) ¢lB(r) ,......- r-t {C2 exp [tiT(2r2 - € - € log 4r2j€)] 

We approximate ¢l in regions A, B, C, and D as + C
3 

exp [-!iT(2r2 - € _ € log 4r2j€)]}. (30) 
follows: 

Region A 
Near the origin, ¢l is given by Eg. (15). 

Regions Band C 
In these regions, ¢l is given by the zeroth-order 

WKB solution (see BW) 

ffi (+ 2 N-I 2N)-1 
'l'WKB = -€ r - p r 

X {C2 exp [iT f( -€ + r2 - p"V-Ir2N)t dr J 
+ C3 exp [-iT f(-€ + r2 - pN-Ir2Nylt drJ}. 

(24) 

Region D 
Near the turning point rI , Eg. (20) reduces to the 

Airy equation 

[~ + T2(2N - 2)p-t RJ¢l nCR) = 0, (25) 
dR 2 

after we substitute 

R = rl - r. (26) 

It is essential in the derivation of Eg. (25) that N be 
"small." Otherwise, we could not have truncated the 
binomial expansion for (1 - R/rI )2N-2. When N is 
"large," the substitution in Eg. (26) is useless. 

The solution to Eg. (25) is the Airy function 

¢In(R) = D(iy)!Kt(2y~), (27) 

where 
y = - [9J p/T2(2N - 2)]-tR. (28) 

Observe that, since <1>n(R) --+ 0 asymptotically for 

Joining Egs. (29) and (30) determines the ratio of 
C2 to C3 : 

rCi - li€T) 

x exp (!iTdog ;€ + !iT€ - ii7T). (31) 

The derivation of Eq. (31) is valid for both "large" 
and "small" N. 

Asymptotic Connection of ¢l Across Regions C and D 

To find the asymptotic expansion of Eg. (24) in 
region C, we approximate the integral 

j r dr( _€ + r2 _ pN-Ir2N)! 
ro 

by decomposing it into two parts which we denote by 
A and B(r): 

A =jrl
dr( -€ + ,.2 _ pN-Ir2N)!, (32) 

ro 

B(r) = - fldr( -€ + r2 - pN-Ir2N)!. (33) 

We evaluate B(r) by substituting Eq. (26) and by 
terminating binomial expansions. In terms of the new 
variable R, 

B(R),......- -rIIR(2N - 2)tplR! = - p-1R~i(2N - 2)t. 

(34) 

The evaluation. of A in Eg. (32) is much more 
difficult. (In BW, where N = 2, A was given exactly in 
terms of elliptic functions. When N> 2, this method 
is no longer applicable.) Let f = (rOrI)!' Then, 

(35) 
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where 

and 

Al =f.' dr( -E + r2 - pN-Ir2N)1 
rll 

(36) 

A2 = (Tldr( -E + r2 _ pN-lr2N)l. 
J (37) 

We approximate Al by 

Al ""f.f dr(r2 
- r~)l = t;2 - tr~ log (2;;ro) - lr~. 

TO 

(38) 

We have terminated the square-root expansion in Eq. 
(39) because we are only interested in approximations 
to zeroth order in A. 

To do the first integral in Eq. (39), we note that 

r~ f/\ dx(1 - x2N- 2)1 ,...., t;2. 

Thus, letting t = X 2N- 2, 

r~ e x dx(1 _ x2N-2}r 
Jr!Tl 

,...., -t;2 + r~ (lt f1/ (N-l)-1](1 _ t)(l-l) dt 
2N - 2 Jo 

1 -2 r~ rC(N - 1)-lW(i) 
= -2r + 

2N - 2 rH + (N - 1)-1) 

1 -2 r~ r«N - 1)-l)W(i) = 2 r + -- ---O.;'--_-'---'-'-~ 

N + 1 ret + (N - 1)-1) . 
(40) 

The substitution t = X 2N- 2 is also needed in the 
second integral in Eq. (39), which is done as follows: 

il dx (1 - x2
) -tE - ~--""-:: 

TITl x (1 _ X2N-2)t 

= -tE i1 dt 1 - t1/(N-l) 

(T1Tl)2N-2 (2N - 2)t (1 - t)l 

,...., -tE [1 dt 
Jrlrl)IN-S (2N - 2)t(1 - t)l 

+ IE t[l/(N-IH](1 - t)r-l II dt 

o (2N - 2) 

r-.I - 2(2N
E

_ 2) log [4(~)2N-2J 
+ Er(!)r«N - 1)-1) 

2(2N - 2WCt + (N - 1)-1) 

1 I rl E r(fW«N - 1)-1) 
= -]!E og T; + (2N _ 2) rct + (N _ 1)-1) 

(41) 

Combining Eqs. (35), (39), (40), and (41) and usings 
r~""" p-l - E(N - 1)-1 and r~""" E gives 

A = -IE + IElog IT2pE 

+ [peN + l)rl rC(N - 1)-lW(i). (42) 
ret + (N - lrl) 

Observe that, as one would expect, all dependence on 
; in Eq. (42) has cancelled. 

The procedure we used to derive Eq. (42) is perfectly 
general as long as N is "small" [see Eq. (22)]. It may 
be used to evaluate A to any order in p; in each order 
the dependence on ; cancels. 

This completes the computation of the asymptotic 
expansion of Eq. (24) in region C. The result is 

<l>a""R-l{C2exp [iTA + iTB(r)] 

+ Cs exp [-iTA - iTB(r)]}, (43) 

where A and B(r) are given in.Eqs. (42) and (34). 
Finding the asymptotic expansion of<l>D in Eqs. (27) 

and (28) is straightforward and follows BW. The 
result is 

<l>D"" C4R-t{exp [iip-1T(2N - 2)lRi - liT,.] 

+ exp [-iip-1T(2N - 2)lR! + liTr]}. (44) 

Joining Eqs. (43) and (44) gives a second deter
mination of the ratio of C2 to Cs: 

C2 = exp [ti1T + tiTE - tiTE log IT2pE 
Cs 

_ 2iT rC(N - 1)-
l
W(i) J. (45) 

(N + l)p ro + (N - 1)-1) 

We re-emphasize that Eq. (45) is valid only when Nis 
"small" [see Eq. (22)]. Otherwise, the evaluation of A 
in Eq. (32) and the determination of the differential 
equation (25) are meaningless. 

Finally, we combine Eqs. (31) and (45). This gives 
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an implicit relation between E and p: 

ret + tE) = exp [t7Ti - E log T p 
ra - tE) 

i Tr«N - 1)-1)r(!)] 
+ (N + l)p r(t + (N _ 1)-1) . (46a) 

Equation (46) is the result we have sought. It is the 
even-parity generalization5 of Eq. (9a) in BW for 
"small" N ~ 2. The analogous equation for odd 
parity [corresponding to Eq. (9b) in BW] is 

r(i + tE) = exp [-1-7Ti - E log T p 
r(f - tE) 

i Tr«N - l)-l)r(i)] 
+ (N + l)p ro + (N _ 1)-1) . (46b) 

The implications ofEq. (46) are discussed in Sec. V. 

IV. WKB SOLUTION FOR "LARGE" N 

The asymptotic connection of tI> across regions A 
and B in Eq. (31) is valid for any N. However, the 
connection across regions C and Din Eq. (45) is only 
valid when N is "small." This is because the "small
N" approximation to r 2N = (r1 - R)2N, which in
volves the termination of a binomial expansion, be
comes less accurate as N increases relative to r1 and 
wrong when N> r1 • In this section, we rederive the 
"large-N" analog of Eq. (45).6 

When r is near r 1 [that is, when R in Eq. (26) is 
small], we define 

t == 2RN/r1 = [(r1 - r)/r1]2N. (47) 

This new variable is useful because it enables us to 
approximate the expression - e + r2 - pN-lr 2N as 
follows: 

Since r1 is a root of -e + ,2 - pN-1,2N, we derive 
the identity 

+ '
2 N-1r2N -e - p 

= -e + r~(1 - t/2N)2 - (r~ - e)(1 - t/2N)2N. 

(48) 

But N is large and t/2N is small. Thus, 

-e + r2 - pN-1r 2N ,...., (r~ - e)(1- e-t). (49) 

We rely heavily on Eq. (49) to derive the asymptotic 
expansions of tI> in regions C and D. 

Asymptotic Expansion of tI> in Region C 

To compute the asymptotic behavior of <Po we must 
recalculate A in Eq. (32) and B in Eq. (33). By 

substituting Eq. (49), B becomes 

B(t),...., - .!:L (r: - e)! t dx (1 - e-"')! 
2N Jo 

= - .!:L (r~ - ei{2log [1 + (1 - e-t)!] 
2N 

+ t - 2(1 - e-t)t}. (50) 

But, t » 1. Therefore, 

B(t) ""' -r1(2N)-1(r~ - e)t(t + 210g 2 - 2) (51) 

""' -(2N p)-l(1 - lpe)(t + 2 log 2 - 2). (52) 

In going from Eq. (51) to Eq. (52), we used the solu
tion in Footnote 3. 

To evaluate A when N is large, we let r = xp-! in 
Eq. (32). Then, 

(53) 

The smallness of X2N in the range of integration 
leads to an approximation of the integral in Eq. (53): 

A ("oo..J p-1 dx(x 2 - pe)! i1-PEI2N 

(pd! 

- (2p)-1 . dx . I
l-PE/2N X2N 

(pE)t (x2 - pe)i 
(54) 

The first term in Eq. (54) is a standard integral. 
The second term is evaluated by observing that pe is 
small compared to x 2 near x = I, which is the region 
of greatest contribution to the integral. Hence, the 
second term is approximately -(4pN)-1. The final 
result of computing Eq. (54) is 

2N - 1 Ne 
A,...., !elog !pe + - ---

4pN 4(N - 1) 

"" Ie log !pe + (2p)-1 - k (55) 

Observe that Eq. (55) could also be obtained by 
letting N -+ 00 in Eq. (42) (also, see Footnote 5). 

Combining Eqs. (52) and (55) gives6 

<PaCt),...., C2 exp {iT[( -t/2N p)(1 - !PE') - Ie 

+ tElog fpe]} + Ca exp {-iT[ -(t/2Np) 

X (1 - !pe) - fe + (2p)-1 + fe log fpe]). 

(56) 

Asymptotic Expansion of <P in Region D 

Using Eqs. (47) and (49) to rewrite Eq. (20) in 
region D gives 

{ d: + [2... (1 - tPe)]2(1 - e-t)}<PD(t) = O. (57) 
dt 2Np 
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Because we are considering N to be "large," Eq. (57) 
is completely different from its corresponding "small
N" equation (25). 

To transform Eq. (57) into a more familiar form, 
we substitute 

S = 2Fe-!t (58a) 

and 
F= (T/2Np)(1 - tpt:), (58b) 

which yield 

[S2 d22 + S ~ + (4F2 - S2)]<pp(S) = O. (59) 
dS dS 

Equation (59) is a modified Bessel equation (an ordi
nary Bessel equation with S replaced by is), where 
,,2 = -4F2. The solution to Eq. (59) is7 

<PD(t) = (Const)K2Fi(2Fe-!t). (60) 

The argument of the modified Bessel function in Eq. 
(60) is very small. Therefore, the asymptotic behavior 
of <Pp(t) is found by expanding Eq. (60) in a Taylor 
series about zero. To do this, we combine the following 
two formulas8 : 

Kv(z) = t1T(sin V1T)-l[Liz) - liz)], (61a) 

(~zre-Z . 
l.(z) = 2 1Fb + t; 2" + 1; 2z), (61b) rev + 1) 
1F1 (" + !; 2v + 1; 2z) = 1 + z + O(Z2) (6Ic) 

After some manipulation we obtain the asymptotic 
behavior of <P in region D: 

<PD,-.,.;(const){exp [-itT (1 - !pt:) 
2Np 

+-log-+-iT T iYT] 
Np 2Np Np 

_ exp [itT (1 _ tf'E) _ iT log.l- iYT]}. 
2Np Np 2Np Np 

(62) 

Connection of Regions C and D 

Joining Eq. (56) to Eq. (62) gives the connection 
formula 

C2 = exp [iT (2-10g.l + !t: 
Ca Np 2Np 

- p-1 _ 1t: log ipt: + ~) + i1T 1 (63) 

Equation (63) is the result of asymptotically joining <P 
across regions C and D and is the "large-N" analog of 
Eq. (45). 

Finally, we combine Eqs. (63) and (31) and get 

--:..:;-~ = exp -E log - + 1m r(t + 1E) [ p . 

r(t - 1E) T 

+ iT _ 2iT log ~ _ 2YiT]. (64a) 
p Np 2Np Np 

For odd parity, the corresponding result is 

r(i + !E) = exp [_ E log!!... - ii1T 
r(i - !E) T 

+ iT _ 2iT log.l- 2YiTJ. (64b) 
p Np 2Np Np 

Equation (64) is the "large-N" analog of Eq. (46). 
(Y is Euler's constant.) 

V. QUALITATIVE ANALYTIC PROPERTIES 
OF E(p) 

Following the analytic procedures of BW, we as
certain that, for arbitrary (but fixed) N: (a) the only 
singularities of E(p) in the p plane are square-root-type 
branch-point singularities (except at the origin); (b) a 
given value of p ± 0 is a branch point if and only if 

J <P2(x) dx = O. (65) 

Approximating <P(x) in Eq. (65) by the zeroth
order WKB wavefunction determined in Sec. III gives 

o = -1p(E + t) + !1T cot (! - !E)1T + log 2/Tp, 
(66a) 

for even-parity wavefunctions, and 

0= -1p(E + t) + t1T cot (! - tE)1T + log 2/Tp, 

(66b) 

for odd-parity wavefunctions, where 1p is the logarith
mic derivative of the r function. 

Solving Eqs. (46)9 and (66) simultaneously gives the 
approximate location in the p plane of the branch 
points of E(p). These branch points are at 

E=2m + t + Yj, 

-1 _ 10 4r(!)(M)(N + l)r(t + (N - 1)-1) 
Yj - g T 2r«(N - 1)-1) 

2m 

+ y - Ik-l, 
k=l 

-1 = 2(N + l)r(t + (N - l)-l){(M + lm _ l.)1Tt 
P Tr«N _ 1)-1) 8 

-2:t [10g (2m)! +! log l1T 

-loglogM - 1 - (2m + l) 

X 10 4r(t)(M)(N + l)r(l + (N - 1)-I)]} 
g T2r«N - 1)-1) , 

(67a) 
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for even parity, and 

E = 2m + i + 1], 

-1 _ 10 4r(t)(M + l)(N + l)r(i + (N - 1)-1) 
1] - g T2r«N _ 1)-1) 

2m+l 

+ i' - 1 k-l, 
k=l 

-1 = 2(N + 1W(i + (N - l)-I){[M + 1 + tm + i]7Tt 
P Tr«N - 1rl) 

- _i_[IOg(2m + I)! 
27Tt 

+ ilogi7T -loglogM - 1- (2m +-n 
4r(t)(M + l)(N + l)r(t + (N _1)-1)]} 

x log r2r«N _ 1)-1) , 

(67b) 

for odd parity. In Eq. (67), i' is Euler's constant, Mis 
a large positive integer, and m is a small positive 
integer. 

Equation (67) is the main result of this paper and 
shows that, for any N, there is an infinite sequence of 
branch points approaching the origin. Further analysis 
(which is not given here because it has been published 
elsewhere1) reveals 'that B(A) has an infinitely-sheeted 
Riemann surface with the mth energy level corre
sponding to the mth Riemann sheet. Level crossing 
occurs where consecutive sheets are joined, namely at 
the branch points. 

None of these qualitative analytic properties depend 
on the choice of N. (As N varies, the most that happens 
is that the locations of the branch points shift slightly.) 
Hence, these results are model independent for a large 
class of models. This fact strengthens the conjecture 
made in BW that these discoveries are characteristic of 
more complicated and realistic field theories and 
encourages us to continue these investigations. It is 
our hope that a deeper knowledge of WKB theory 
may be obtained by applying these methods to a 
sequence of models of increasing complexity and 
structure and that this, in turn, might lead to a 
greater understanding of perturbation theory, in 
particular, and field theory, in general. 

VI. THE N .... 00 LIMIT 

The N ---+ ex) case of the generalized anharmonic 
oscillator may be solved exactly. Comparing the 
solution with the "large-N" WKB result of Sec. IV is 
a stiff test of the mathematical methods we have used 
in this paper. 

A. The WKB N .... 00 Result 

Letting N ---+ 00 in Eq. (64) gives 

ra + !E) = exp [i7Ti + ~ - E log p], (68a) 
ra - tE) p 

for even parity, and 

f(! + tE) = exp [-!7Ti + ~ - E log p], (68b) 
r(! - tE) p 

for odd parity. 
Observe that the limit as N ---+ 00 of the "small-N" 

WKB result in Eq. (46) exists. However, this limiting 
equation differs slightly from Eq. (68); to wit, ±!7Ti is 
replaced by ±trri. Equation (68) is the correct equa
tion because the limit as N ---+ 00 is uniform (the choice 
of p does not depend on N). More precisely, when N 
is large, the slope of the potential near the turning 
point at '1 (in region D) becomes extremely steep. 
[In the derivation of Eq. (64), as opposed to the 
derivation of Eq. (46), we took great care to approxi
mate the steep part of the potential.] The effect of this 
steepness is illustrated when we take the limit as 
N -- 00 and allow the walls of the potential to become 
infinitely steep. The potential then becomes a square 
well with a parabolic floor. It is well known that the 
WKB connection formula across a vertical wall 
differs by a phase factor of eli" from the connection 
formula across a nonvertical wall. Hence, we would 
expect that the correct limiting equation would differ 
from the incorrect one by a total phase of eli .. (a 
factor of eli" for each wall of the potential well). This 
is what we observe. 

B. The Exact Solution 

Substituting g = AN- 1 = (ip)N-1 into Eq. (6a) gives 

- + lx2 + -:- ctipX2)N - E <I>(x) = O. (69) [-~ 1 ] 
dx2 

lp 

If we let N -- 00, keeping p ¥= 0, Eq. (69) becomes 

[ - ~ + tx 2 
- EJ<I>(X) = 0 (70a) 

dx 2 

with the associated boundary condition 

(70b) 

Equation (70a) is a parabolic-cylinder-function 
equation, and its solution is 

<I>(x) = (Const)[DE_t(x) ± DE- t ( -x)], (71) 

for even or odd parity. 
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The energy eigenvalue equation follows from com
bining Eqs. (70b) and (71): 

DE _![(2/ip)t] ± DE_![ -(2/ip)t] = 0, (72) 

for even or odd parity. 
Equation (72) is an exact implicit relation between 

E and p. 

C. Comparison of Eqs. (68) and (72) 

To rewrite Eq. (72) in a form amenable for com
parison with Eq. (68), we observe that the arguments 
of the parabolic cylinder functions in Eq. (72) are 
large and thus expand DE _! into its asymptotic series. 
We give the full asymptotic series for D.(z) below1o : 

D (z) • -u ~ (-lv)n(! - !v)n 
• ,,-,ze 4.. 2' 

n=O n! (-!z t 
(73a) 

for -!7T < arg z < f7T, and 

D (z) "-' zve- h2 :i (-lv)n(l - lV)n 
v n=O n!(-lz2t 

(27T)! v"i -(.+1) lz2 ~ (1 + lv)n(i + IV)n 
---e z e 4.. 

f( -v) n=O n! (tz 2t ' 
(73b) 

for !7T < arg z < t7T. 
Combining Eqs. (72) and (73) and doing some 

heavy manipulation gives 

ru + lE) = ef..iei/Pe-EIOgPg( ) ru - IE) p, 

for even parity, and 

ru + IE) = e-f..ii/Pe-EIOgPg( ) ru - 1E) p, 

for odd parity, where 

r(t + E):i r(2n + 1 - E) (_!ip)n 

( ) 
n=O n! 

g p = 
r(t - E):i r(2n + l + E) (tip)n 

n=O n! 

(74a) 

(74b) 

(74c) 

Recall that Eq. (68) is valid to zeroth order in p. 
We note that to zeroth order in p, g(p) = 1,11 Thus, 
Eqs. (68) and (72) agree. This agreement is most 
impressive and strongly attests to the usefulness and 
power of WKB techniques as an analytical tool in 
mathematical physics. 

ACKNOWLEDGMENT 

The author gives warm thanks to Professor T. T. 
Wu for many productive discussions. 

• Supported by a National Science Foundation Predoctoral 
Fellowship 

t Present address: Institute for Advanced Study, Princeton, 
N.J. 08540. 

1 C. M. Bender and T. T. Wu, Phys. Rev. Letters 21, 406 (1968). 
The results of this paper are greatly expanded by Bender and Wu, 
Phys. Rev. 184, 1231 (1969). 

2 The divergence of perturbation theory becomes more rapid as 
N increases. 

3 ro and'l on Fig. I(e) are those roots of the term in parentheses in 
Eq. (20) which are real when p and (are real. We can solve for these 
roots exactly: 

_ ! [I + + • 4N - I + 3 (6N - 1)(6N - 3) 
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It ha~ been shown previo~sly by Newton that his solution (and its extension by Sabatier) of the problem 
of find~ng a cent:al potentIal from a knowledge of all phase shifts at fixed energy yields a series whose 
expansl~n coefficlen~s converge slowly unless the first moment of the potential vanishes. In particular, any 
truncatIOn of the serl~s after a finite number of terms necessarily results in potentials which have vanishing 
firs.t moments. In thIS ~aper we propose a new, but formally somewhat similar, series for the potential 
WhICh, for such truncatIons, does not suffer from this physically rather severe restriction. The series also 
furnishes ~ew exact. solut~ons Of. the SchrOding~r equation at fixed energy. A closed-form expression for 
the scattermg amplItude IS obtamed for a specIfic example. The problem of constructing the "new series 
from the phase shifts is not discussed. 

1. INTRODUCTION 

The "inverse scattering problem at fixed energy" 
is the problem of finding a nonrelativistic central 
potential which will, for one energy, result in a 
prescribed set of phase shifts of all angular momenta. 
A general method of solving this problem has been 
given by Newtonl and extended by Sabatier2 and 
Newton.3•4 However, because of the complexity of the 
method, considerable work remains to be done before 
it can be effectively utilized in the actual calculation 
of potentials. For example, quite apart from the 
problems associated with the lack of uniqueness of the 
potential which is to be determined by a given set of 
phase shiftsl - 3•5 and which are present for whatever 
method one develops, one encounters the following 
practical difficulty in the employment of the method: 
In order to obtain a potential which has a nonvanish
ing first moment (which, of course, includes many 
potentials of physical interest), it is necessary to sum 
infinite series which depend on the interparticle dis
tance r and which are not uniformly convergent in r.3 
Any attempt to truncate this series and thus approxi
mate it by a finite sum results in a potential whose 
first moment vanishes. 

the infinite sums in the Newton-Sabatier formalism. 
The difficult problem of constructing the new series 
from the phase shifts is not discussed here, although 
its solution would of course be necessary before any 
complete formulation of the solution of the inverse 
problem alternative to the Newton-Sabatier formu
lation could be carried out. 

In Sec. 2 some details of the derivation of Newton's 
series for the potential are reviewed and the resulting 
convergence difficulty of potentials with nonzero first 
moments is briefly discussed. In Sec. 3 a different but 
formally similar series is investigated which leads to 
potentials which, as is later demonstrated in Sec. 5, 
have nonzero first moments. While the initial steps are 
very similar, the analysis in the final stages is seen to 
be quite different. In Sec. 4 some illustrative examples 
easily obtainable from the new series are compared 
with corresponding examples obtained via the New
ton-Sabatier series. For the cases considered, closed
form expressions for the scattering amplitudes are 
obtained by means of contour integrations in the 
complex angular momentum plane. Finally, In Sec. 
5 the convergence properties of the Newton-Sabatier 
potentials and those of Sec. 3 are contrasted; in 
addition, the representation of a specific potential from 
Sec. 3 by a Newton-Sabatier series is discussed. 

Since the energy is always fixed, we will choose the 
normalization E = k 2 = 1. 

2. BRIEF REVIEW OF NEWTON'S METHOD 

The principle aim of this paper is to show that a 
different series than the one employed by Newton and 
generalized by Sabatier can be constructed which does 
in general yield, in the case of finite sums, potentials 
with non vanishing first moments, and which thus 
lends hope that rapid convergence can be achieved in 
many instances for such potentials in the infinite-sum In his first paper! Newton begins with a given 
case. The series also generates new exact solutions to function/(r, r'), defined by the infinite series 
the SchrOdinger equation at fixed energy. In this paper f( ') ~ () (') r, r = ~ CIUI r U I r , 
we will discuss finite sums only; however, as we will I 

(2.1) 

illustrate, these sums in general correspond to some of where the sum runs over the positive integers and zero, 

80S 
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Cz are real coefficients, and uz(r) == rJz(r) are the 
regular Ricatti-Bessel functions. Introducing the oper
ator 

Do(r) == r2 (::2 + 1), (2.2) 

it is observed that fer, r') satisfies the partial differ
ential equation 

Do(r)/(r, r') = Do(r')/(r, r') (2.3a) 

and the boundary conditions 

f(O, r') = fer, 0) = 0. (2.3b) 

Next, a function K(r, r') is defined by the equation 

K(r, r') =f(r, r') - fdrffr,,-2K(r, r")f(r", r'), (2.4) 

which is an analog to the GeI'fand-Levitan equation. 6 

Newton shows that, subject to the weak assumption 
that the cl's in (2.1) increase at most by a fixed power 
of I for large I, Eq. (2.4) has a unique solution. Also, 
K(r, r') satisfies the partial differential equation 

'J)(r)K(r, r') = Do(r')K(r, r') (2.Sa) 

with the boundary condition 

K(r,O) = 0, (2.Sb) 
where 

'J)(r) == Do(r) - r2'lJ(r) , (2.6) 
and 

d 
'lJ(r) == -2r-1

- [r-1K(r, r)]. (2.7) 
dr 

By means of Eqs. (2.5)-(2.7), it is then shown that 
the regular solution of the Schrodinger equation 

'J)(r)~z(r) = l(l + l)~z(r) (2.8a) 

satisfying the boundary condition 

lim [~Z<r)juZ<r)] = 1 (2.8b) 
r-+O 

is given by 

~z(r) = uz(r) - J: dr'r,-2K(r, r')uz(r') (2.9) 

and that K(r, r') has the expansion 

K(r, r') = L czepz(r)uz(r'), (2.10) 
z 

where, just as in (2.1), the sum runs over the positive 
integers and zero. 

By expressing the asymptotic behavior for large r of 
epz(r) in the form 

epz(r) '"'-' Iftl sin (r - !7T1 + !5z), (2.11) 

where II = Ifzl e-i~, is the Jost function and 15 1 is the 
phase shift, Newton obtains from (2.9) and (2.10) the 

"angular momentum dispersion relation" 

1 . ei"U'-ll - 1 
fz = 1 + 2' fr (1' _ /)(1' + / + 1) cdz" (2.12a) 

From the real and imaginary parts of (2.12) multiplied 
by eio" he then obtains 

sin bz = L rH'>cz,/f1'1 (2.13a) 

and 
I' 

(2.13b) 

where r/w and rz(r') are functions of known form of 
bz, (jz', /, and l'. 

The manner in which the inverse problem is to be 
solved is then as follows: For a given set of phase 
shifts bl , the infinite set of equations (2.13a) yields the 
products cz,lfl,l, and these, when inserted in (2.13b), 
yield the Iftl and hence the ct's. The Cz determine the 
function I(r, r') according to Eq. (2.1) and thus, via 
equations (2.4) and (2.7), the potential 'lJ(r). 

The procedure is not unique/-8 ,s and thus the 
investigation of those classes of potentials, all of which 
give rise to the same set of phase shifts, is of consider
able interest. Sabatier2 made the important observa
tion that such classes of potentials can be greatly 
enlarged by including in the sum in (2.1) nonintegral 
values of I. Subsequently, Newton3 showed that the 
additional angular momenta that appear in such a 
generalized expansion (2.1) or, equivalently, by Eqs. 
(2.7) and (2.10), in the expansion of the potential, are 
directly related to the singularities in I of fz. Thus, if 
the sum in (2.10) is now replaced by a sum over a set 
A, so that by (2.7) we have 

-ir rrdr''lJ(r')r' = ~;C,,_!ep,\_!(r)u,\_!(r), (2.14) 
Jo .leA 

then the set A consists of the set of points ).., where 
/( -)..) == f-Fit is singular, plus the set of all positive 
integers.3 

The generalization of (2.12a) corresponding to 
(2.14) which gives the correct "dynamical interpola
tion for nonintegral I values isS 

ei"u'-,\) - 1 
f(A) = 1 + !i,\~ )..,2 _ ),2 C,\_t!(A.') , (2.12b) 

from which it incidently follows that8 

f( -n)lf(n) = 1 + (7Tj2n)cn_!, n = 1, 2, .... 

(2.15) 

Finally, Newton3 demonstrates that if the potential 
'lJ(r) in (2.14) has a nonvanishing first moment, i.e., 

1"" r'lJ(r) dr =;6 0, (2.16) 
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then the series (2.14) must, unfortunately, converge 
very slowly, especially for large r [as is, in fact, readily 
evident from (2.14)], and that the cz's cannot be 
absolutely summable. Also, any attempt to approxi
mate (2.1) or (2.14) by a finite sum always results in a 
potential with vanishing first moment. 

3. FINITE SERIES WHICH GIVE RISE TO 
POTENTIALS WITH NONV ANISHING 

FIRST MOMENTS 

Let Sand T be two disjoint finite sets of N distinct 
real numbers chosen from the interval (- t, (0). 
Instead of Eq. (2.1) we begin with the function 
g(r, r'), defined by 

g(r, r') = ~ y1ul(r <)vl(r», (3.1a) 
IES 

where Yl are real coefficients, and ul(r) and vl(r) are, 
respectively, the regular Ricatti-Bessel functions 
(t1Tr)!JI+!(r) [just as in Eq. (2.1)] and the irregular 
spherical Weber-Schliifli functions (t1Tr)! YI+!(r).7 A 
more general starting point would be a function which 
is the sum of g(r, r') of (3.la) andf(r, r') of (2.1). Since, 
however, it will turn out that, to have potentials with 
nonvanishing first moments with finite sums, it suffices 
to have (3.la), we will, in the interest of clarity of 
presentation, omit terms of type (2.1). 

The function g(r, r') satisfies the partial differential 
equation 

Do(r)g(r, r') = Do(r')g(r, r') (3.2a) 
and 

g(O, r') = g(r, 0) = 0, (3.2b) 

just asf(r, r') satisfies (2.3a) and (2.3b). Note that, in 
order to give meaning to (3.2a) at r = r', it is necessary 
to associate the appropriate distribution functions 
with the second derivative 02g(r, r')/or2. The correct
ness of (3.2a) at r = r' follows from the fact that 
(3.la) is a sum of Green's functions. Alternatively, 
(3.la) can be written in the form 

g(r, r') == A(r, r')O(r - r') + A(r', r)O(r' - r), (3.lb) 

where A(r, r') is smooth at r = r' and O(x) is the step 
function. Upon substituting this expression into (3.2a), 
it is found that the resulting distribution functions 
(j(r - r') and (j'(r - r') are multiplied by functions 
which have, respectively, first- and second-order 
zeros at r = r' and can accordingly be replaced by 
zero. 

In analogy with (2.4)we define uniquely a function 
L(r, r') by 

L(r, r') = g(r, r') - J: dr"r,,-2L(r, r")g(r", r'), r ~ r', 

(3.3a) 

and 

lim r-! IL(r', r)1 = 0(1), (3.3b) 
r-+O 

from which it follows, upon differentiating and inte
grating twice by parts and using (3.1 b) and (3.2), that 
L(r, r') satisfies the partial differential equation 

D(r)L(r, r') = Do(r')L(r, r'), (3.4) 
where 

D(r) == Do(r) - r2V(r), (3.5) 
and 

VCr) == _ ~ ~(L(r, r»). (3.6) 
r dr r 

The steps leading from (3.2) and (3.3) to (3.4)-(3.6) are 
identical to those of Newton in going from (2.3) and 
(2.4) to (2.5)-(2.7),1 except that singularities arising 
from differentiation of (3.1b) now appear. However, 
it is precisely the inclusion of these distribution 
functions in the meaning of 02g(r, r')/or2 at r = r' that 
allows one to integrate the expression 

rL(r, r") 0
2

2 
g(r", r') dr" Jo ar" 

twice by parts by the usual formula without special 
regard to the point r" = r'. This can be checked with 
the aid of (3.1 b) by breaking up the range of integra
tion into two parts. 

Next, in analogy with (2.9), we introduce the 
function 

~l(r) = ul(r) - f: dr'r,-2L(r, r')ul(r'), 1 > -t, 
(3.7) 

from which it readily follows, upon use of (3.4), that 
~!(r) satisfies the SchrOdinger equation 

D(r)~l(r) = l(l + 1)~I(r) (3.8) 

with potential VCr) given by (3.6). The boundary 
conditions satisfied by ~I(r) will be found after we have 
solved (3.3). 

In order to solve (3.3) we make the ansatz 

L(r, r') = Z AL(r)uL(r'), (3.9) 
LET 

where, in addition to the AL(r), the set T [which, we 
recall, must by definition be disjoint with S of (3.la)] 
is to be determined. Substituting (3.9) in (3.3) and 
using (3.1a), we obtain 

~ AL(r)uL(r') = ~ y1vlr)ul(r') 
LET IES 

+ ~ yIAL(r) 
LET,IES L(L + 1) - 1(1 + 1) 

X {ulr')W[uL(r), vl(r)] - uL(r')}, 

(3.10) 
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where W[cx(x), P(x)] == cx(x)P'(x) - cx'(x)P(x) is the 
Wronskian and where we have used the identity 

!!... W[u!(r), vL(r)] = [L(L + 1) -I(l + l){l(r)vL(r) . 
dr r2 

(3.11) 

where 

bL = aL1T1[2L+1r(L + -m-1
• (3.18) 

In order to find a L' we introduce the function 

u(l) == 1 + ~ bL(1 - L)-t, (3.19) 
LeT 

Since the functions uk'), / E S U T, are linearly where / is arbitrary. Since (3.17) implies that 
independent, it follows from (3.10) that 

~ [/(l + 1) - L(L + 1)]-IYI = 1, LET, (3.12) 
!e8 

and 

~ A ( ) W[uL(r), vI(r)] 
L7-r L r l(l + 1) _ L(L + 1) = vI(r), IE S. 

(3.13) 

Instead of determining the set T via (3.12) from a 
given set S and coefficients YI' we can equally well 
treat the Y! as unknowns to be determined from (3.12) 
by a choice of the set T, as well as the set S. It is 
shown in Appendix A that if this is done, then (3.12) 
determines the YI uniquely. Thus, we shall assume 
from now on that the sets Sand T are the given 
quantities; Eq. (3.13) then determines the AL(r) and 
hence, by (3.6), (3.7), and (3.9), the potential VCr) 
and the solution ;P!(r) of the SchrOdinger equation. 

In order to investigate the small-r behavior of 
AL(r) we note that, for small r, 

ul(r) = [1T1/2!+1r(l + !)]r!+1 + 0(rH3), 

vI(r) = -[2!r(l + t)/1Tt]r-! + OCr-HE), (3.14) 

where E is such that 0 < E < min (2,2/ + 1).8 Sub
stituting (3.14) into (3.13) and rearranging, we have 

~ rL AL(r)~ 1T [(L _ 1)-1 + OCr')] = 1 + OCr') 
LeT 2L+1r(L + !) , 

IE S. (3.15) 

It is shown in Appendix A that a matrix with elements 
(L - 1)-1 is nonsingular. It follows that a matrix with 
elements (L - 1)-1 + OCr') is also nonsingular in 
some neighborhood of the origin. In the immediate 
vicinity of the origin it must have an inverse which 
differs from the inverse of the matrix with elements 
(L _1)-1 by a matrix with elements of order r'. It 
then follows that, by inverting the set of equations 
(3.15), we have 

rL AL(r) = aL + OCr'), (3.16) 

where aL is a constant. We will show below that 
aL ¢ O. 

Consideration of the small-r behavior of (3.13) 
yields, upon use of (3.14) and (3.16), 

2 bL(L - 1)-1 = 1, 1 E S, (3.17) 
LeT 

p.(/) = 0, / E S, (3.20) 

and the definition (3.19) implies that 

p.(1)-I, as 1- 00, (3.21) 

it follows that (3.19) can be written in the form 

u(l) = II (I - M)/II(l- L). (3.22) 
- Me8 LeT 

According to (3.19), the residue of p.(1) at 1= LET 
is bL , so from (3.18) and (3.22) we have 

aL = 2L+1r(L + !)1T-1 II (L - M)/ II (L - K), 
Me8 Ke T 

K#<L 

LET. (3.23) 

Since Sand T are disjoint, it is apparent from (3.23) 
that, as was stated above, aL ¢ O. Incidently, it then 
follows from (3.6), (3.9), (3.14), and (3.16) that the 
potential can be no more singular than r 1 at the 
origin. 

Substituting (3.9) into (3.7) and using an identity 
similar to (3.11), we obtain 

;PI(r) = ul(r) + ~ AL(r) W[uL(r), ul(r)] 
LeT L(L + 1) - l(l + 1) 

(3.24) 

From (3.14), (3.16), and (3.23) it then follows that the 
behavior for small r of ;PI(r) is 

where 

T(l) = 1T1[2!r(l + -m-1 

X (1 - ~ (L + 1 + 1)-1 II (L - M)/ II (L - K»). 
LeT Me8 KeT 

K#<L 
(3.26) 

Thus, ;Pier) is a regular solution of (3.8), but differs 
from the regular solution eMr) of (2.9) by an 1-
dependent factor. Comparing (3.26) with (3.19) and 
using (3.17), (3.18), and (3.23), we have 

T(/) = 1TI[2/r(1 + m-lp.( -/ - 1), (3.27a) 
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or, in virtue of (3.22), 

7'(1) = 1Tt[2Ir(l + !)r1 

obtain for the Jost function!, = IIzI e-i~1 the expres
sion 

x IT (l + M + 1)/ IT (l + L + 1). 
II = IT (l + L + 1)/ IT (l + M + 1) 

(3.27b) Le7' Me8 
Me8 LeT 

Consequently, the poles and zeros of 7'(/) are all in the 
region / < -i. 

Substituting the large-r asymptotic forms7 

u!(r) = sin (r - !1Ti) + 0(r-1), 

Vier) = -cos (r - !1Tl) + O(r-l) (3.28) 

in (3.13), we see that the behavior for large r of AL(r) 
is of the form 

A L(r) = B L cos (r - !1Tf3 L) + O(rl). (3.29) 

According to (3.28), (3.29), and (3.13), BL and f3L are 
given by 

'" cos (r - 1T! f3 L) cos [t1T( L - 1)] 
~BL--~-----=------------

LeT L(L + 1) - 1(1 + 1) 

= cos (r - i1Tl), 1 E S, (3.30) 

or, since (3.30) is an identity in r, 

'" I: cos [1T(L - 1)/2] _ +!i,,! 
~ "L - e , 

LeT L(L + 1) - 1(1 + 1) 
1 E S, (3.31) 

where 

At this point a difficulty can arise. It may turn out 
that (3.31) has no (finite) solution ~L' LET. If, for 
example, S consisted only of even integers and the set 
Tonly of odd integers, then the left-hand side of (3.31) 
would vanish, whereas the right-hand side would not. 
This state of affairs might be due to a choice of Sand 
Twhich would lead to a potential with a singularity in 
r on the positive real axis or perhaps a potential which 
does not have a physically acceptable form for large r. 
A somewhat similar difficulty also arises in connection 
with the Newton-Sabatier potentials,2 In order to 
avoid such problems, we will henceforth restrict Sand 
T by requiring that (3.31) have a (unique) solution. 

Substituting the asymptotic forms (3.28) and (3.29) 
in (3.24), we have 

q,l(r) = sin (r - t'1Tl) + 1 BL 
LeT 

x COS (r - !1Tf3 L) sin [!1T(I - L)] + 0 (!), (3.32) 
L(L + 1) - 1(1 + 1) r 

where BL and f3L are given by (3.30) or (3.31). Com
paring (3.32) with (2.11) and noting that ~k) = 
p( -/ - l)rp,(r), where p(/) is given by (3.22), we 

X (1 + i 1 ~ e-iJl '/2 sin [t1T(L - 1)] ). 
LeT L L(L + 1) - 1(1 + 1) 

(3.33) 

Thus, the Jost function is given explicitly by (3.31) 
and (3.33), once a choice of the sets Sand T has been 
made. The phase shifts are simply the negatives of the 
arguments of (3.33) for integer I. The potential giving 
rise to the phase shifts can be calculated explicitly 
from (3.13), (3.9), and (3.6), as can the wavefunction 
~k) from (3.13) and (3.24). It will be shown in Sec. 5 
that all such potentials have in general nonvanishing 
first moments. 

4. ONE-TERM EXAMPLES 

In the special case that the sum in Newton's series 
(2.1) reduces to a single term, the resulting scattering 
amplitude can be found in exact closed form.2 We will 
show in this section that the corresponding single-term 
case for our series (3.1 a) also yields an exact (but dif
ferent) closed-form scattering amplitude. The method 
which we use is different and perhaps more general 
than that originally used by Sabatier.2 One advantage 
of the method used below is that Sabatier's result 
for one term in (2.1) corresponding to integer / is 
readily extended to include noninteger 1 values. 

When the right-hand sides of (2.1) and (3.la) reduce 
to a single term and we relax the restriction in (2.1) 
that L be zero or a positive integer, we have, respec
tively, 

and 

g(r, r') = YMuM(r <)vM(r», (4.2) 

where Land M are real numbers satisfying L > -! 
and M > -i. We will now compare the results which 
follow from (4.1) with those which follow from (4.2). 

For the input (4.1) Eq. (2.12b) reduces to 

. ( eill
(L-O - 1 ) 

/,=1+1 2(L-l)(L+l+1) cLIL' 

[Recall that /(1 + !) == ",.J Letting / --+- L in 
yields 

[I + 1TcL(4L + 2)-IJJL = I, 

which, together with (4.3), implies that 

(4.3) 

(4.3) 

(4.4) 

II = 1 + ia[eiJl(L-O - 1][2(L - I)(L + I + 1)]-1, 

(4.5) 
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where The special choices of L an even integer or L an odd 
(4.6) integer imply h(O) == 0 or fiO) == 0, respectively, and 

so we have 
The partial-wave amplitude az = (1/2i)[e2icl, - 1] is 
thus given by 

a[l - cos 7T(L - I)] 
al = 2(L _ 1)(L + 1+ 1) + ia[eilT(L-ll _ 1]' (4.7) 

Thus, for integer values of t, (4.7) yields 

_ + ia[e"rL - 1]}-1 1 even a j - , , 

(

-a[cos TTL - l]{2(L - 1~(L + 1 + 1) 

+a[cos 7TL + IJ{2(L - 1)(L + 1 + 1) 

- ia[ei .. L + In-I, 1 odd. 

(4.8) 

The scattering amplitude/CO) is given by 

00 

f(O) = L (21 + l)azPz(cos 0). (4.9) 
1=0 

It is convenient to separate (4.9) into two parts and 
write 

where 

and 

00 

fl(O) = L (21 + l)azPlcos 0) 
z=o 

(l even) 

00 

f2(O) = L (21 + l)azPl(cos 0), 
1=1 

(l odd) 

(4.10) 

(4. 11 a) 

(4. 11 b) 

the sums in (4.1la) and (4.11b) being over only even 
t and odd t, respectively. When az is of the form (4.8), 
/1 (0) is a sum of type (B 1) and /2( 0) is a sum of type 
(B2) of Appendix B. It follows from the results of this 
appendix that 

fl(O) = -a7T (1 - cos 7TL) 
4 cos 7Tb1 

X [Pb1-l(cOS 0) + Pb1-l(-cOS 0)] (4.12) 
and that 

+a7T f2«() = (1 + cos 7TL) 
4 cos 7Tb2 

x [Pb._t(cos 0) - Pb.-t( -cos 0)], (4.13) 
where 

b~ = L(L + 1) + tia[ei 
.. 

L 
- 1] + t (4.14) 

and 

-a7T 
= [Pb1-l(cOS 0) 

2 cos 7Tb1 

+ Pb1-l( -cos 0)], L odd, 

where bl and b2 now reduce to 

b~ = (L + t)2 - ia, L odd, 
and 

b~ = (L + t)2 - ia, Leven. 

(4.16) 

(4.17) 

(4.18) 

The special cases (4.16) have been previously derived 
by Sabatier.2.9 

The Jost function corresponding to (4.2) is given by 
(3.33); it is 

(
1 + L + 1 ) 

11= I+M+l 

( 
. e-1i .. 1 sin [t7T(L - 1)J) 

X 1 + I~ , (4.19) 
(L - l)(L + 1 + 1) 

where, from (3.31), 

; cos [t7T(L - M)] = eh"M(L - M)(L + M + 1), 

IL - MI #: odd integer. (4.20) 

Also, according to (3.12), 

YM = (M - L)(L + M + 1), (4.21) 

so (4.21) defines Y M for given numbers M and L. 
Eliminating; from (4.19) and (4.20), we obtain 

fz = [(1 + M + 1)(L - 1)]-1[(1 + L + 1)(L - /) 

+ ibe+h,,(M-il sin [-~7T(L - I)]], (4.22) 
where 

b == (L - M)(L + M + l)/cos [t7T(L - M)]. 

(4.23) 

The partial-wave amplitude iiz obtained from (4.22) 
IS 

_ b cos [t7T(l- M)] sin [!7T(l- L)] 
~= , 

(L + 1 + 1)(L - I) - ibe!ilr(M-ilsin [i7T(l- L)] 

(4.24) 
which, for integer t, becomes 

b~ = L(L + 1) - tia[ei .. L + 1] + t. (4.15) _ -bcos [t7TM] sin [t7TL] 

a
l 
= L(L + 1) + ibehI™ sin [!7TL] -1(1 + 1)' 

leven, 

Although the validity of (4.12) and (4.13) is not 
dependent on the choice of sign of the real parts of bl 

and b2 , we may, for definiteness, require that Re bl > 
o and Re b2 > O. 

+b sin [t7TM] cos [i7TL] 1 odd. 

= L(L + 1) - be1ilrM cos [t7TL] -1(1 + 1)' 
(4.25) 
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The scattering amplitude g(B) corresponding to (4.25) 
is then 

ro 

g(B) = 2 (21 + l)ilzPz(cos B). (4.26) 
z=o 

Comparing the structure of (4.25) with that of (4.8), 
we see immediately that (4.26) may be summed by the 
same method that was used to sum (4.9); the result is 

noninteger L, integer M implies g2(B) == 0 if M is even 
and gl(B) == 0 if M is odd. According to (4.33) and 
(4.34), this statement is also true for integer L, since in 
(4.20) we are assuming that /L - M/ cannot equal an 
odd integer. 

The scattering amplitudes (4.10) and (4.28) which 
result from (4.1) and (4.2), respectively, are very 
similar in structure; each is of the general form 

(4.27) El[P",/cos B) - P"'l( -cos B)] 

where, from (BI2), we have 

gl(O) = 1Tb cos (t1TM) sin (i1TL) 
2 cos (1TC 1) 

X [Pel-l(cOS B) - Pel-l( -cos B»), (4.28) 

and, from (B13), 

g2(B) = 1Tb sin (t1TM) cos (!1TL) 
2 cos (1TCa) 

X [Pes-l(cos B) - Pca-i( -cos B»), (4.29) 

and where Cl and C2 are given (to within a sign) by 

c~ = L(L + 1) + ibeli7tM sin (i1TL) + t (4.30) 

and 

C~ = L(L + 1) - be!i7tM cos (!1TL) + t. (4.31) 

Special care is necessary in interpreting (3.28) and 
(3.29) when L is chosen to be an integer. In this case, 
Cl = ± (L + t) if L is even and C2 = ± (L + !) if L is 
odd; as a result, (4.28) and (4.29) become indeter
minate for L even and L odd, respectively, and it is 
necessary to return to (4.24) to evaluate aL when L is 
integer. We find 

ilL = -!1Tb cos [t1T(L - M)] 
X [2L + 1 + ii1Tbei7t(M-LJ]-l. (4.32) 

+ E2 [P",s(cos 0) + P"'s(-cos 0)], (4.35) 

where El , E2 , Kl' and K2 are complex constants. 
Although, as we will show in the next section, the 
potential which gives rise to (4.1) is different than the 
potential which gives rise to (4.2), the similar structure 
(4.35) of/CO) andg(O) suggests that for some choices of 
parameters they might be identical. We will now 
demonstrate that this can never be the case. 

Suppose that Eqs. (4.12)-(4.15) with L replaced by 
the symbol K are identical with Eqs. (4.28)-(4.31), 
respectively. Then we must have 

a(l - cos 1TK) = -2b cos t1TM sin f1TL, (4.36) 

a(1 + cos 1TK) = 2b sin f1TM cos I1TL, (4.37) 

K(K + 1) + fia(ei7tK - 1) 

= L(L + 1) + ibeli7tM sin f1TL, (4.38) 
and 

K(K + 1) - fia(e,uK + 1) 

= L(L + 1) - be'iuM cos f1TL, (4.39) 

where b is given by (4.43) and is thus determined once 
Land M are given, and, according to (4.6) with L re
placed by K, a is a real, but otherwise free, parameter 
which depend.s on cK' From (4.36) and (4.37) it 
follows that 

a = b sin f1T(M - L) (4.40) 
This is the only term which contributes to the in-
determinate expression (4.28) or (4.29). Hence, for L and from (4.38) and (4.39) it follows that 

an integer we have, in place of (4.28) and (4.29), iaei7tK = beiiu(L+MJ. (4.41) 

X 1 + ~ eli7t(M-L) Leven (4.33) 
[ 

. b J-l 

4L + 2 ' , 

and 

g2(0) = -1Tb cos [i1T(L - M)]PL(cos 0) 

X [1 + ~ i.7t(M-LI]-l L odd. (4.34) 
4L + 2 ' 

We note from (4.28) and (4.29) that there is also a 
simplification if M is chosen to be an integer. For 

Thus, from (4.41) we conclude that /a/ = /b/, and 
hence from (4.40) that /M - L/ is an odd integer. 
However, this violates (4.20). Thus,f(B) and g(O) as 
given by (4.10) and (4.28) can never be identical. 

S. THE FIRST MOMENTS OF THE 
POTENTIALS OF SEC. 3 

As was mentioned in Sec. 2 and as is evident from 
(2.14) in the limit as r -- 00, when (2.16) holds, then 
the sum on the right-hand side of (2.16) must con
verge very slowly, and indeed if the sum is finite, then 
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the potential '\J(r) must necessarily have zero first 
moment. Let us compare this latter result with the 
corresponding result for a potential VCr) resulting 
from the finite sum (3.1a) of Sec. 3. From (3.6) and 
(3.9) we find, with the aid of (3.14), (3.16), (3.23), 
(3.28), and (3.29), that 

("'rV(r) dr = 2 ~ [II (L - M)/ II (L - K)J. Jo LeT ltleS KeT 
K'I'L 

(5.1) 

Since sets Sand T are disjoint, each term in the sum 
on the right-hand side of (5.1) is nonzero; and since 
Sand T are otherwise arbitrary, the sum itself will in 
general be nonzero. Hence, in contrast to the potentials 
given by (2.16) which must necessarily for finite sums 
have vanishing first moments, the potentials given by 
finite sum (3.1a) do not in general have vanishing 
first moments. In particular, the one-term example 
resulting from (4.2) gives a potential with only one 
term in the sum on the right-hand side of (5.1); thus, 
this potential always has a nonvanishing first moment. 
[It follows, incidently, from this that the potentials 
which give rise to f(O) and g(O) of Sec. 4 can never be 
the same, since they have, respectively, vanishing and 
nonvanishing first moments.] 

Let us suppose thatft as given by (3.33) arises from 
a potential such that the right-hand side of (5.1) is 
nonzero. Then, if this Jost function fl satisfies New
ton's dispersion relation (2.12b), it follows that the 
sum on the right-hand side of (2.12b) and hence on the 
right-hand side of (2.14) must be an infinite sum. Thus, 
finite sums of the type (3.1a) in general correspond to 
infinite sums of the type (2.1), where the summation 
is now over the infinite set A. 

We will now show that/t as given by (3.33) always 
does, in fact, satisfy the dispersion relation (2.12b). 
NewtonS has shown that in order for a Jost function to 
satisfy (2.12b) it is sufficient that the functions gl{A.2) 
and g2(A2

), defined by 

gl(A2) == 1(1 - i cot 7TA)f(A) 

+ !(1 + i cot 7TA)f( -J.) (5.2) 
and 

[where, as in Sec. 2,f(A) == f;'-i]' possess the Mittag
Leftler expansions 

2 ~ a;.' 
gl(A. ) = 1 + t ;,,'2 _ A2 (5.4) 

and 

(5.5) 

and are such that 

and 
g2(J.2) ---+ 0, (5.6) 

as 1m A - ± 00. [The set A in (5.4) and (5.5) is the 
same as in Sec. 2.] 

The properties (5.6) follow from (5.2) and (5.3) if 
f(A) ---+ I as 1m A - - 00 and ei~'i(A) is bounded by an 
inverse power of 1m A as 1m A - + 00. That these 
conditions are fulfilled by (3.33) is readily checked; 
the inverse power of 1m J. is 2. In order to establish the 
existence of the expansions (5.4) and (5.5), we first 
show that 

gl(A2) - 1, 

g2(A2
) - 0, (5.7) 

for /A/- 00 and arg A ~ 0, 7T. The denominator 
sin 7TA. in (5.3) dominates over f(A) and f( -A) as 
given by (3.33) for /A/- 00, arg A ~ 0, 7T; this estab
lishes (S.7) for the function g2(A2). Defining 

K(A) == (1 + i cot 7TA)f( -A) = (ie-i";'/sin 7TA)f( -A), 

(5.8) 
so that by (5.2) we have 

gl(A2
) = ![K(A) + K( -A)], (S.9) 

we find, upon comparing (S.8) and (3.33), that 

K(J.) - 2 as IAI- 00, 0 < arg). < 7T, (S.lO) 

and 

K()') - ° as 1).1- 00, -7T < arg). < O. (S,I1) 

Substitution of (S.1) and (S:lI) in (5.9) then estab
lishes (S.7) for the function gl().2). Next, we note that, 
according to (3.33),f().) is analytic except for a finite 
number of poles; consequently, from (S.2) and (5.3) 
it follows that gl(A2) and g2{A2) are meromorphic 
functions of A, and that they have poles only at the 
points). = ±n, n = 0, ± I, ±2, ... , augmented by 
the finite set of points for whichf( -).) and f( +).) have 
poles. It then follows in the standard manner,lO upon 
use of (5.7), that gl().2) and g2().2) possess the ex
pansions (5.4) and (5.5), where the set A consists of 
the positive integers plus the (positive) points at which 
f( -).) becomes singular, in agreement with the dis
cussion in Sec. 2. Consequently, (3.33) can always be 
represented by a dispersion relation of the form 
(2.12b). 

Finally, we consider for the special case M integer 
the representation of the one-term example of Sec. 4, 
which results in the Jost function (4.22) in terms of the 
Newton-Sabatier formalism of Sec. 2. First, we note 
that (4.22) has no singularities. Thus. the set A of Eqs. 
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(2.14) and (2.l2b) consists only of the positive integer 
values of A = 1 + 1 or, equivalently, of odd half
integer values of l. Thus, the Cz in (2.14) or (2.12b) are 
nonzero only for odd half-integer values of I. However, 
by using (2.15), these values of Cz for (4.22) can be 
calculated explicitly. When this is done, it is found 
that there are an infinite number of them and that for 
large values of 1 they have the behavior 

Cz = -(4/TT)(L - M) + 0(1-1). (5.12) 

Since L ;to M, we see that the Cz do not vanish for 
large I, but only tend to a constant. Thus, for this 
example, which has a potential with nonvanishing 
first moment, the description in terms of the formalism 
of Sec. 3 requires a one-term series, whereas the 
description in terms of the formalism of Sec. 2 requires 
a (slowly converging) infinite series.u 
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APPENDIX A 

We show here that, with Sand T defined as in the 
first paragraph of Sec. 3, a matrix with elements 
[L(L + 1) - l(l + 1)]-1 or a matrix with elements 
(L - 1)-1, where LET and 1 E S, is nonsingular. 
From this result it follows, in particular, that the 
coefficients yz are uniquely determined by (3.12). We 
note that if L, K E S u T, and L(L + 1) = K(K + 1), 
then L = K. (The possibility L = - K - 1 is ex
cluded by the requirements L> -t and K> -t.) 
With this result it follows that matrices of the above 
forms are examples of a general class of matrices 
which we show below are nonsingular. 

If a i and bi , i = 1, ... ,n, are 2n distinct real or 
complex numbers, then the n X n matrix A with 
elements 

(AI) 

is nonsingular. This result can be obtained by induc
tion on n. For n = 1 the result is true. Suppose it is 
true for n = N - 1 > I; then it is true for n = N. 
To show this we expand the determinant of A about 
the first row, which yields 

IAI = i Ci 
, 

i=1 (a l - bi) 
(A2) 

where the C i are nonzero constants, being deter
minants of (N - 1) X (N - 1) matrices of the form 
(AI), which are nonzero by assumption. 

We wish to sum the two series 

~ (21 + l)azPz(x), I ~ 0, (B1) 
Zeven 

and 

~ (21 + l)a zPz(x), I ~ 0, (B2) 
Z odd 

where al has the form 

al = [b 2 - (l + t)2]-1 = [b2 - ! - l(l + 1)]-1, 

(D3) 

This function is invariant under the replacement 

/- -/- 1. (B4) 

Adding (Bt) and (B2) and using (B3), we have 
ex) 

~(21 + 1)[b2 - (l + t)2]-1PI(X), (BS) 
1=0 

Making the replacement (B4) in (BS) and using the 
relation P1(x) = P_ I_1(X), we have, in place of (BS), 

-1 

- ~ (21 + 1)[b2 - (I + l)2r1PI(x). (B6) 
Z=-oo 

For I a positive integer or zero, Pz(x) = (- )IPI ( -x), 
and for I a negative integer, PI(X) = (- )l-IPI( -x), 
Hence, from the equality of the expressions CBS) and 
(B6) we have 

00 00 

~(21 + l)azPz(x) = l ~(21 + l)az( - )lpz( -x). (B7) 
~o -00 

The sum on the left-hand side of (B7) can be replaced 
by a contour integral by using the properties of sin TTl. 
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Thus, we have 

I(21 + 1)aIP,(x) = ~ r (21 + 1) -!!L PI( -x) dl, 
,=0 41 Ja sm TTl (B8) 

where C is a contour encircling the zeros of sin TTl but 
excluding the poles of a,. 

The contour C can be replaced by two contours by 
adding two infinite semicircles to the integral; thus, we 
have two clockwise contours-one in the upper and 
one in the lower half I-plane. We can check that the 
contributions from the infinite semicircles are zero by 
considering the asymptotic expansion in l12: 

Plcos 0) = r(l + 1)(_~ _\l 
r(l + j) TT sm oj 
X {cos [(1 + !)O - iTT] + O(l-I)}, (B9) 

where E < 0 < TT - E and E > O. 
Comparing (B9) with (BS) and using (B3), we see 

that the integrand of (BS) tends to zero, as /l/ tends to 
infinity, sufficiently rapidly to guarantee zero contri
bution from the infinite semicircular contour integrals 
that we have added to (BS). Hence we have 

00 ( Ph-l( -x) P -b-t( -X») 
1(21 + 1)aIP,(x) = iTT • (b 1) - . (b + 1) 
1=0 sm - "2 TT sm "2 TT 

or 
"" TT 1(21 + 1)a,P1(x) = - --Pb-l( -x). (B10) 

1=0 cos TTb 

Replacing x by -x, we also have 

00 TT 
1(21 + l)al- )IPlx) = - -- Pb_l(x). (Bll) 
'=0 cos TTb 

Thus, addition and subtraction (BlO) and (BlI) yields 

1 (21 + 1)a,P,(x) 
I even 

= - TT [Pb-l(x) + Pb-l( -x)] (B12) 
2 cos TTb 

and 

1 (21 + l)aIPb) = TT [Pb_l(x) - Pb-l( -x)], 
lodd 2 cos TTb 

(Bl3) 

where b is the parameter introduced in the definition 
(B3) of a,. 
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It is proved that the solutions recently obtained by the authors [J. Math. Phys. 11, 805 (1970)1 
of the Regge-Newton integral equation (of interest in connection with the inverse scattering problem at 
fixed energy) are, for a given kernel, inhomogeneity, and boundary condition, uniquely determined. 

I. INTRODUCTION 

A general method of determining a central potential 
from a knowledge dall phase shifts has been developed 
by Newton! and extended by Sabatier2 and Newton.3 

In order to obtain the potential by this method, it is 
generally necessary to sum an infinite series. Unfor
tunately, this series always converges slowly except 
when the first moment of the potential vanishes.3 In 
particular, any truncation of this series after a finite 
number of terms necessarily results in a potential with 
a vanishing first moment. 

As a possible first step in the circumvention of such 
difficulties, we have introduced in a recent paper4 
a different series than the one used by Newton and 
generalized by Sabatier, which has the advantage that 
it does, in general, yield potentials with nonvanishing 
first moments for finite sums. However, we omitted in 
our paper any discussion of the uniqueness of the 
solution of the Regge-Newton integral equation (the 
analog in the fixed-energy case of the Gel'fand
Levitan equationS) which results when our proposed 
series is used as input for the theory. Since the unique
ness of the solution of this equation is essential if any 
method based on it is to work, and since neither ofthe 
two methods1.5 of proving the uniqueness of the 
analogous solution for the Newton-Sabatier series are 
applicable, we construct this uniqueness proof III the 
present paper. 

II. UNIQUENESS PROOF 

Let Sand T denote two disjoint finite sets, each 
containing N distinct real numbers chosen from the 
interval (-i, 00). Define the function g(r, r') by 

g(r, r') = II'MuM(r<)vM(r», (1) 
MEB 

where the I'M satisfy 

! [M(M + 1) - L(L + 1)]-l
l'M = 1, LET, (2) 

MeB 

and uM(r) and v,ll(r) are the regular Riccatti-Bessel 
functions (trrr)~JM+t(r) and the irregular spherical 
Weber-SchHifli functions (trrr)! YM+i(r),6 respectively. 
Let L(r, r') be any solution of 

L(r, r') = g(r, r') - J: dr l r"-2L(r, r")g(r", r'), 

which has the small-r' behavior 
r' < r, (3) 

r'-!L(r, r') = 0(1). (4) 

The problem is to show that L(r, r') is uniquely deter
mined by Eqs. (1)-(4). 

Introducing the function 

p[l(l + 1)] = 1 + I [leI + 1) - M(M + 1)]-l l'M 
]}fEB 

and comparing (5) with (2), we have 

p[/(1 + 1)] = 0, lET or -/ - 1 E T. 

Since also p[t(/ + 1)] --+ 1 as Il(l + 1)1 --+ 00, 

p[l(l + 1)] = IT [l(l + 1) - L(L + 1)] 
LET 

(5) 

x IT [l(1 + 1) - M(M + 1)] 
MEB 

and, hence, upon comparison with (5) we conclude 
that 

I'M = II [M(M + 1) - L(L + 1)]/ 
LeT 

IT [M(M + 1) - M'(M' + I)J, ME S. 
M'eB 

M',pM 

Thus, for sets Sand T given, the coefficients I'M' 
ME S, are uniquely determined and are nonzero. 

Suppose there were two different solutions of (3), 
each satisfying (4). Then their difference O(r, r') 
would satisfy the homogeneous version of (3), 

O(r, r') = - fdrllrll-20Cr, r")g(r", r'), (6) 

815 



                                                                                                                                    

816 J. R. COX AND K. W. THOMPSON 

and also, from (4), which would have as its solution a vector x with com

r'-!Q(r, r') = 0(1). (7) ponents 
XM' = XM<'lMM', (19) 

Define flM(r, r') by so that 

ME S. (20) 
fl.",ir, r') == - fdr"r,,-2Q(r, r")gM(r", r'), (8) 

where However, (19) and (20) imply that x == 0. Hence, 
A = M(M + 1), ME S, is not an eigenvalue of 

(9) A _ aaT. From this fact it follows that A - AI is 
nonsingular and thus from (18) that 

gM(r, r') == YMuM(r <)vM(r». 

It then follows from (1), (6), (8), and (9) that 

2 flM(r, r') = Q(r, r'). 
Me8 

Applying the operator 

(10) (21) 

Multiplying (21) on the left by aT, we have, since 
aTx =;f= 0, 

Do(r') == r'2('02/'Or'2 + 1) (11) aT(A - AI)-la = 1 

to (8) and noting that 

[Do(r') - M(M + 1)]g1l1(r", r') = Y Mr'2<'l(r' - r"), 

(12) 
we obtain 

[Do(r') - M(M + 1)]flM(r, r') + YMQ(r, r') = 0. 

(13) 

Letting YiJ denote one of the square roots of YliJ 
(recall that Y.1f =;f= 0, ME S) and defining 

Q1I1(r, r') == y]}flM(r, r'), ME S, (14) 

Eq. (13) becomes, with the aid of (10) and (14), 

or 
2 [M(M + 1) - ).]-lYM = 1, 

1I1e8 

from which we conclude, upon comparison with (2), 
that the eigenvalues of A - aaT are distinct, and that 
they are given by 

). = L(L + 1), LET. 

Thus, A - aaT can be transformed to the diagonal 
form 

D = P-l(A - aaT)p, (22) 

where the diagonal matrix D has diagonal elements 
L(L + 1), LET. 

Introducing 
[Do(r') - M(M + 1)]QM(r, r') Q' == P-1Q (23) 

+ ytf M~/t,QM.(r, r') = 0, ME S, (15) with components Q~(r, r') and using (22), Eq. (16) 
becomes 

or, in matrix notation, [Do(r') - D]Q' = ° 
(16) or, equivalently, 

where Q and a denote, respectively, column vectors 
with components QM(r, r') and ytf' and A denotes 
the diagonal matrix with diagonal elements M(M + 1). 

In order to decouple Eqs. (15), let us consider the 
eigenvalue problem 

(A - aaT)x = AX (17) 
or 

(A - AI)x = (aTx)a. (18) 

We first show that A = M(M + 1), ME S, is not an 
eigenvalue of A - aaT. If it were, then the Mth 
component of (18), 

[M(M + 1) - A]XM = (aTx)Yk, 

would imply that aTx = 0 and hence (18) would 
become 

[A - M(M + 1)]x = 0, ME S, 

[DoCr') - L(L + 1)]Q£(r, r') = 0, LET. (24) 

Since uL(r) and vL(r), as introduced in (1), are linearly 
independent solutions of 

[DoCr') - LCL + 1)]YL(r') = 0, 

the most general solution of (24) must be of the form 

QL(r, r') = AiJr)uL(r') + B£(r)vL(r'). (25) 

Hence, according to (10), (14), (23), and (25), 
Q(r, r') is of the form 

Q(r, r') = L [AL(r)uL(r') + BL(r)vL(r')]. (26) 
LET 

The smaIl-r behavior of U L(r) and v L(r) is6 

uL(r) = [7T~/2L+lr(L + t)]rL+1 + O(rL+3), 

vL(r) = -[2L r(L + !)j7T!]r-L + O(r-L+E
) , (27) 
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where € is such that ° < € < min (2, 2L + 1). Thus, 
since by assumption t < L < 00, it follows from 
(7), (26), and (27) that BL(r) == 0, LET. Equation 
(26), therefore, reduces to 

O(r, r') = L AI,(r)uL(r'). (28) 
LET 

Substituting (28) in (6) and using (1) and the identity 

d 
- W(ulli r ), vL(r)] 
dr 

= [L(L + 1) - M(M + 1)]ulIir)vL(r)/r2
, 

(7) only have the trivial solution n(r, r') == 0. There
fore, L(r, r') is uniquely determined by Eqs. (l )-(4). 

Finally, we remark that mere vanishing of L(r, r') 
at r' = 0 does not assure the uniqueness of L(r, r'). 
Indeed, if (4) is replaced by the weaker requirement 

L(r, 0) = 0, (4') 

and, for example, one chooses the sets S and Tin such 
a way that each contains only one member, M and L, 
respectively, and M > L, L E (-t, 0), ME (-t, (0), 
so that (1) reduces to 

where W[uM(r), vL(r)] == uM(r)v;'(r) - u~(r)vL(r) is where 
the Wronskian, we obtain YM = (M - L)(M + L + 1), 

where 

(29) then it is readily verified that (3) and (4') have the 
family of solutions 

C ML(r) == W[uL(r), vM(r)] 

X (M(M + 1) - L(L + 1)]-1. (30) 

It follows from properties of Bessel functions that 
det qr), where qr) is the N x N matrix with 
elements CML(r), M E S, LET, is an analytic function 
of r in some region containing the positive real r axis 
(0 < r < 00) and, hence, can have only isolated 
zeros on (0, 00), unless, of course, det C(r) == ° on 
(0, (0). However, in our previous paper4 we have 
shown that det C(r) ¢ ° in some neighborhood of 
r = 0, so the latter possibility is excluded. Since, 
therefore, det qr) can only have isolated zeros on 
(0, 00), the only (continuous) solution of (29) is 

(31) 

Therefore, according to (28) and (31), Eqs. (6) and 

L(r, r') = {W{uL(r), vM(r)]}-lyMv"",ir)uL(r') 

+ !(r){W(vL(r) , v M(r)]uLlr') 

- W[ul(r), v,l1(r)]vL(r')}, 

where f(r) is completely arbitrary. 
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It is shown that the only curvature collineations admitted by an empty space-time, not of Petrov type 
N, are conformal motions. The curvature collineations admitted by the plane-fronted gravitational waves 
are found. 

1. INTRODUCTION 

A Riemannian space is said to admit a curvature 
collineation if there exists an infinitesimal transforma
tion Xi = Xi + €~i(X) for which £R~k! = 0, where £ 
denotes the Lie derivative with respect to the vector 
~i and R~kl is the curvature tensor of the space. 
Katzin, Levine, and Davis1 have recently investigated 
such collineations and have derived several results of 
geometrical and physical interest. The application of 
such collineations to the space-times of general rela
tivity is, however, limited by the following theorem: 

Theorem: The only curvature coIIineations admitted 
by an empty space-time, not of Petro v type N, are 
conformal motions. 

This theorem is proved in Sec. 2. The curvature 
coIIineations admitted by the plane-fronted gravita
tional waves are found in Sec. 3. As a result, it is seen 
that empty space-times of Petrov type N do admit 
curvature collineations other than conformal motions. 

2. PROOF OF THE THEOREM 

the theorem stated in the introduction is proved. For 
space-times of Petrov type N, it is found that 

(2.4) 

where Ii is the principal vector of the Weyl tensor 
satisfying 

C}kl1i = O. (2.5) 

The question now arises as to whether or not empty 
space-times of Petrov type N can admit curvature 
collineations other than conformal motions. To an
swer this question, the curvature coIIineations admitted 
by the plane-fronted gravitational waves are found 
(these space-times are of Petrov type N). 

3. THE PLANE-FRONTED GRAVITATIONAL 
WAVES 

The metric of the plane-fronted gravitational waves 
can be written, in terms of two real coordinates p and 
a, and a complex coordinate z, in the form 

ds2 = 2 dp da - 2H da2 - 2 dz dz, 
where 

oH = 02H = O. 
op ozoz Katzin, Levine, and Davis show that a necessary 

condition for a curvature coIIineation is The vectors3 

(2.1) 
where 

hii = ~i;i + ~ i;i • (2.2) 
where (xl, X2, xo, XO) == (p, a, z, z) form a null tetrad, 
the intrinsic derivatives associated with the tetrad 
being 

D). = Ii). . = 04> 
'I' '1'" op' 

i 04> 04> 
L).). = n). . = - + H-

'I' '1',. oa op' 

In order to exploit Eq. (2.1) for the space-times of 
general relativity, the null tetrad2 components of the 
equation are written out explicitly. The resulting 
equations are then solved for empty space-times, 
the algebra being simplified for each Petrov type by 
choosing the usual canonical forms for the tetrad 
components of the Weyl tensor. The calculations are 
straightforward and it is found that, if the space
time is not of Petro v type N, 

and 

i4> 04> (»). = m . = -. 
'I' " at 

(2.3) The only nonzero spin coefficient is 

where gii is the metric tensor of the space-time. 
Equation (2.3) defines a conformal motion, and so 

818 

oH 
'11=--, 

oz 
(3.1) 
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while the only nonzero tetrad component of the Weyl and 
tensor is t~ = -(a + ii), 

o2H 
"P4=--' OZ2 

Equation (2.4) can be written as 

£gi; = Hg;; + aIJ;. 

(3.2) 

(3.3) 

In empty space the equation defining a curvature 
collineation can be written £C}kl = 0 or, using Eqs. 
(2.5) and (3.3), 

(3.4) 

The null tetrad components of Eq. (3.4) and of Eq. 
(3.3) (with a = 0) have been given in a previous 
paper.4 Substituting (3.1) and (3.2) into these equa
tions yields (with a =F- 0) 

D~l = 0, (3.5) 

f).~ = _ oH ~ _ oH ~ + 1.a (3.6) 
2 iJz 3 iJi 3 2' 

t5~3 = 0, (3.7) 

f).~l + D~2 - H = 0, (3.8) 

t5~1 + D~3 = 0, (3.9) 

aH 
t5~2 + f).~3 = - - ~l' (3.10) 

di 

J~3 + t5~3 + H = 0, 

D~3 = 0, 

(3.11) 

(3.12) 

a3H a3H o2H _ 
- oaoz2 ~l + OZ3 ~3 - 2 az2 (f).~l - b~3 - ~/4) = O. 

(3.13) 

Equations (3.5) and (3.7)-(3.12) can be integrated to 
give 

~l = ~l(a), 

~2 = - [a + ii + ~l]P 
- zzd - hi - bz - H~l + c(a), 

~3 = a(a)z + b(a), 

where a - ii = ikl (const). Equation (3.13) is manip
ulated using the separation of variables technique. 
Several cases arise. Only one case is discussed here, 
namely, that corresponding to o3HloZ3 = 0 (this is a 
plane gravitational wave). In this case, the coordinate 
system can be chosen so that 

H = a(a)z2 + ~(a)i2. 
Imposing the further condition (ati)-![Iog a/til =F
const, Eq. (3.13) then yields ~l = 0, a = ii, so that 
the null tetrad component of the most general curva
ture collineation are 

~l = 0, 

~2 = -2ap - azz - hi - bZ + c(a), 
and 

~3 = a(a)z + b(a). 

Substituting these into Eq. (3.6) yields 

ta = -2ap - iizi - f(b - 2~b) - z(b - 2ab) + C. 

For a conformal motion, a is zero. Since a does not 
vanish identically, it follows that not all the curvature 
collineations are conformal motions. The conformal 
motions admitted by the plane gravitational waves 
considered here can be found by putting a = O. It is 
then clear that 

a = kl' C = k2' and b - 2~b = 0, 

where kl and k2 are constants. The equation b -
2~b = 0 admits four independent solutions, and so 
there is a six-parameter group of conformal motions. 
The conformal motions with kl = 0 form a five
parameter group of motions (the existence of this 
group is well known). The conformal motion with 
k2 = b = 0 is a homothetic motion (since ~ is a 
constant), 

1 G. H. Katzin, J. Levine, and W. R. Davis, J. Math. Phys. 10, 
617 (1969). 

2 E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 
a C. D. Collinson, J. Math. Phys. 9, 403 (1968). 
'C. D. Collinson and D. C. French, J. Math. Phys. 8, 701 (1967), 
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The configuration variables for the gravitational fieldgmn are assigned arbitrarily on two infinitesimally 
neighboring spacelike hypersurfaces. We then investigate the extent to which a solution of the vacuum 
Einstein field equations can be found consistent with the given assignment. A local approach, employing 
Dirac's Hamiltonian formalism, reveals that solutions can be found locally which are nonunique and 
highly unstable. 

I. INTRODUCTION 

In the Feynman history integral approach to 
quantization, it is essential that the independent 
classical configuration variables can be assigned 
arbitrarily on two spacelike hypersurfaces and that a 
unique classical trajectory can be interpolated to such 
an assignment. With a view toward understanding the 
quantum theory of gravitation, it was proposedl to 
investigate the corresponding problem in the general 
theory of relativity. In view of the complexity of the 
general problem, it was found necessary to introduce 
the simplification that the two spacelike surfaces were 
infinitesimally neighboring. Within that more limited 
context, a variational approach seemed to indicate 
that in general with reasonable boundary conditions 
at infinity there were unique solutions. l However, the 
precise structure of the equations was not exhibited or 
analyzed. A by-product of such a result would be the 
impossibility of constructing general-relativistic ob
servables exclusively from the configuration variables. 

The purpose of this note is to present an alternative 
attack on this "thin-sandwich" problem which is 
completely local. The virtue of such an approach is 
relative clarity of the ensuing expressions resulting in a 
corresponding simplicity of the analysis. We shall 
determine the extent of arbitrariness of local solutions 
when they exist. Of course, we will not be able to 
treat questions of uniqueness in the large via our 
approach. Recent work of Bergmann2 attacks this same 
problem from a point of view complementary to ours, 
namely, by considering arbitrary variations of the 
configuration variables away from a given classical 
trajectory. With the ensuing linearization of the 
equations, the global problem may become more 
amenable. 

II. HAMILTONIAN TREATMENT 

Introducing the canonical field variables gmn and 
pmn, we can write the Einstein field equations in 
canonical form by defining the four Hamiltonian 

constraintsa 

Hs == pmngmn,s - 2(pmngms),n = 0, (2.1) 

HL == Igabr~ [pmnPmn - i(p:;:)2] + Igabl+hR = O. 

(2.2) 

With the above definitions, an arbitrary infinitesimal 
coordinate transformation 

XI" = XI' + ~JJ, 
described by the descriptor 

~I' = o~e + ll'~L, 

(2.3) 

(2.4) 

(where II' is the unit normal to the spacelike surface on 
which the canonical variables are defined) is generated 
by the Hamiltonian 

H = - J(~SHs + ~LHL) daX. (2.5) 

We shall require the fundamental existence theo
rem4 : To every solution gmn(XS) and pmn(X8) of the 
constraint equations (2.1) and (2.2), there exists a 
solution of the vacuum Einstein field equations, GIlV = 
0, unique up to a diffeomorphism generated by H, 
which preserves the initial values of gmn and pmn. 

Let us assume that, rather than assigning gmn(XS) 
and pmn(xs) on some initial surface, we are given 
instead gmn(XS) and ogmn(XS) == hmn(XS). The "thin
sandwich problem" can now be posed: Determine 
pmn(xs), which satisfies the constraint equations (2.1) 
and (2.2) in such a way that hmn(XS) can be obtained 
by commuting gmn with H of Eq. (2.5). Thus, we 
require 

hmn = [gmn' HJ. (2.6) 

Employing the explicit expressions (2.1), (2.2), and 
(2.5), we readily find 

hmn = -~m;n - ~n;m - 2lgabl-i ~L(Pmn - tgmnP!) 

(2.7) 

820 
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(the semicolon denotes covariant differentiation with 
respect to the spatial metric gmn). Solving Eq. (2.7) for 
Pm,,' we find 

Pmn = (lg(/II!/2~d[-hmll - ~m;n - ~1I;m 
+ gmn(h: + 2;";.,)]. (2.8) 

Substituting this expression into the four constraint 
equations (2.1) and (2.2), we obtain four equations for 
the four as yet undetermined functions, ~s and ~ L' 

Each solution ~s and ~L of the constraint equations 
will provide, via Eq. (2.8), a solution of the constraint 
equations in terms of canonical variables gmn and pmn 
and, thus, via the fundamental existence theorem, a 
unique Ricci flat Riemannian manifold, consistent 
with our given "thin sandwich." 

The fourth constraint, Eq. (2.2), being a quadratic 
algebraic equation in Pmn' can be solved immediately 
for ~t, yielding 

~}, = (4· 3R)-1[(h~)2 + 4h~e;s + 4(e)2 - hrshr., 

- 4hr"~r;., - ur;s~r;., - 2~r;'~,"r]' (2.9) 

If we substitute this expression into the three remain
ing constraint equations, we find an extremely com
plicated set of second-order nonlinear equations for 
the three functions e. Although the details of the 
equations are not terribly illuminating, we shall write 
them down should the interested reader wish to 
compare them with the corresponding relations of 
Bergmann's linearized approach2: 

[2~m;m" - ~m;,' m - ;";"'". + h;::;s - hsm;m] 

x [4(~m:m)2 - 2~m:n(~m;n + ~n;m) - 4hmn~m;n 

+ 4h;::~n;m + (h;::)2 - hmnhmnJ 

- H8~jJ;p~q;Qm - 4~p;q m(~p;q + ~q;p) + 4h~~Pp;m 
- 4hpq~p;Qm + 4hPp;m~q;q - 4hpq;m~p;q + 2h~hqq:m 
- 2hPQh pq:m - eR,m/3R)[4(~P:p)2 

- 2~p;qap:q + ~q;p) - 4hpq~p;q 

+ 4h~~q;q + (h~)2 - hpqh pq]) 

x [gms(h~ + 2~n;n) - r':"' - ~m;,' - hillS] = 0. 

(2.10) 
Ill. CONCLUSION 

An examination of Eq. (2.9) reveals that if the 
initial configuration variables g mn are assigned so that 

SR = 0, one cannot solve Eq. (2.2) for ~L' Ifwe ignore 
this possibility for a moment, another pathology arises 
when the right-hand side ofEq. (2.9) becomes negative, 
thereby leading to imaginary h. In general, we may 
avoid this pathology by selecting ~'(X2, X3) and 
(a~s/ap)(X2, X3) arbitrarily on an Xl = constant sur
face, in such a way that the right-hand side of Eq. 
(2.9) is initially positive and such that the three 
equations (2.10) can be solved for iJ2~S/ax12 in terms 
of the given functions. We can thus assert that solu
tions do exist at least for some finite distance off the 
initial surface. However, in view of our freedom to 
assign six arbitrary functions of two variables, the 
solutions are by no means unique. In addition, they 
are unstable to small changes in the Cauchy data 
(contrary to the indications of Ref. 1). 

For the case where 3R = 0, we must retain ~L in 
Eq. (2.1) and treat Eq. (2.2) as a first-order differ
ential equation exclusively involving ~'. An investi
gation of the resulting equations reveals a situation 
quite analogous to the case of nonvanishing 3 R. 
Namely, for a variety of situations, the six functions 
~L(X2, X 3), ~'(X2, X3), (iJ~2/iJXl)(X2, X 3), (iJ~3/aXl) x 
(X2, X3) can be assigned arbitrarily (subject to inequal
ities) on the initial surface Xl = const and uniquely 
determine an unstable solution for some distance off 
the surface. 

We conclude that, in a local region of a spacelike 
hypersurface, solutions to the "thin-sandwich prob
lem" can be found which are neither unique nor 
stable. A particularly puzzling feature of the equations 
obtained is that, when one examines the leading terms 
(highest derivatives) for the purpose of ascertaining 
the behavior of the linearized problem, one finds that 
there are assignments of gmn and hmn for which the 
resulting equations for ~8 and ~ L may become mutually 
incompatible. It is not clear why the linearized problem 
should have such a radically different structure and of 
what significance it may be. 

* This work is supported in part by the United States Air Force 
under Grant No. AF-AFOSR 68-1524. 
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3 P. A. M. Dirac, Phys. Rev. 114, 924 (1959). 
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The Mittag-Leffler summabilitx method is.appli~d to op~rator-valu~d analyt!c functions and a corr~
sponding procedure for perturbatIOn theory IS derived, whIch has a bIgger regIon of convergence. ThIS 
region is explicitly described. 

1. INTRODUCTION 

Let Ho be a closed linear operator acting in a 
Banach space and let V be another closed linear 
operator acting in this space, which is relatively 
bounded with respect to H o, with relative bound 
equal to zero. 

We will be interested in the resolvent operator 
R;. (z) = (Ho + AV - Z)-1 defined for z not in the 
spectrum of H;. = Ho + AV (here A is a complex 
parameter). Let 'f.'(Ho) be a finite system of eigen
values of H o, separated from the rest of the spectrum 
of Ho by a closed curve 0 encircling 'f.' (Ho). Then, 
there is a convex region A of the complex plane, 
containing the origin, such that for all }, E A, the 
spectrum 'f.(H)) of Ho + A V is likewise separated by 
o into a part 'f.'(H;) and a remainder, and the eigen
values in 'f.'(H;.) are analytic in A with only algebraic 
singularities.1 

2. RA YLEIGH-SCHRODINGER PERTURBATION 
THEORY 

Usual perturbation theory starts from the identity 

R;.(z) = Ro(z)[l + AVRo(z)]-l 

by developing the geometric series 

00 

[1 + AVRo(z»)-1 = ! (-A)"[VRo(z»)". 
n=O 

By our assumptions, VRo(z) is a bounded operator, 
so this series will converge in norm for IIAVRo(z)11 < 1. 
F or simplicity, we will treat the case of Ho, bein¥ a 
normal operator, in a Hilbert space and V beIng 
bounded. The results can be generalized to the general 
case. Then, IIAVRo(z)11 < 1 can be replaced by 
II A VII < d(z) , where d(z) is the distance of z from the 
spectrum of Ho. Thus the spectrum of H;, must lie 
within a distance of II AVII from the spectrum of Ho. 

Let P;, be the projection onto the subspace associ
ated with the eigenvalues EJ. branching off from EO in 
'i:,'(Ho)' Then, 

P;, = ~ r R;.(z) dz, 
27TI Jr (2.1 ) 

where r is a contour encircling E;. but no other points 
of 'f.(H;). 

The perturbation expansion for PA results from 
substituting the above geometric-series expansion in 
this integral. We obtain 

p). = ~(_A)n_l_. r Ro(z)[VRo(zW dz, (2.2) 
n~O 27T1 J r 

provided that r lies in the region of convergence 
defined by d(z) > IIAVII. The contour integrals on 
the right-hand side may be evaluated explicitly in 
terms of Po, the reduced resolvent, and V; this 
results in the usual Rayleigh-Schrodinger series. 2 

Now it may be impossible to enclose E;. but no 
other points of 'f.(H;.) by a curve r without leaving 
the region defined by d(z) > IIAVII. The geometric
series development used above represents an approxi
mation of [I + A. V Ro(Z)]-l by polynomials in A. V Ro(z) 
uniformly on any compact subset of the region 
{z I d(z) > IIAVII}. SO one is tempted to look for an 
approximation by different polynomials, converging 
in a bigger region, which contains a suitable contour 
r. But there is the following limitation. 

Theorem 1: For any approximation of [1 + 
AVRo(z)]-l by polynomials in A. VRo(z) , uniformly in 
z on some compact K, the eigenvalues EO and E;. will 
lie in the same connected component of the comple
ment of K. 

Proo/In order that the transition from (2.1) to the 
analog of (2.2) for some other polynomial approxi
mation is possible, r has to be in the region of con
vergence of this approximation and has to enclose all 
E;,. If EO and the E;, group would lay in disconnected 
components of the complement of K, then r could be 
chosen such that it does not enclose EO and thus P;, = 0 
because the integrands of the analog to (2.2) would 
have no singularities in the interior of the contour r. 
But P A = 0 is evidently impossible. 

3. MITTAG-LEFFLER SUMMABILITY 

We will give now an approximation based on the 
Mittag-Leffler summability method extending the 

822 
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region of convergence from the set {z I d(z) > IIAVII}, 
in the case of the geometric-series development to 
a region, which in view of Theorem 1 cannot be 
extended further. 

For reference we give a statement of the Mittag
Leffler summability method.3 

Let fez) be an analytic function which is regular 
at the origin, so that it has a power-series development 

00 

fez) = ~ cnz", for Izl < r ~ O. 
n=O 

Then define the entire function 

00 C 
fez) = ~ n z", 0 < ex ~ 1, 
. n=O f(1 + ocn) 

and let Ba be the set of all points z such that 

Vz = {v I Re(zlv)lIa > I, -iOC7T ~ arg(zlv) ~ ilX7T}, 

is contained in the principal star of fez). Then 

fez) = Loo dfe-1(zta), for z E B~ (interior of Ba). 

Remark: For each compact K c Ba and each 
E > 0, there is aT> 0 and an integer N such that 

/I(Z) - * z" (c n LTdfe-lt
an

) /f(1 + ocn) I < E, 

;; E K. 

Applying the above theorem to the operator
valued function fez) = (I + zA)-I, where A is 
bounded operator acting in a Banach space, we get 
the following corollary. 

Corol/ary: We have that 

(1 + Ar1 = rOOdte-l! (-At
a
)" , 0 < ex ~ 1, 

Jo 0 f(1 + exn) 

if ~(A) is contained in the complement of the set 

{z' Re(_z)lIa ~ 1, -iOC7T ~ arg(-z) ~ iOC7T}. 

We remark that, for oc = 1, this takes the form 

(1 + A)-1 = lOOdte-t<I+A), 

if ~(A)c{z'Rez>-I}. 

Proof' Because of the Mittag-Leffler theorem, it is 
true that 

fez) = (l + zArl = rOOdte-t I (-zAta)n , 
Jo n"~O r(1 + ocn) 

for z E B!. 

z = I is in B~, if there are no singularities of f(z) 
contained in 

VI = {v, Re (1Iv)l/a ~ 1, -iOC7T ~ arg (llv) ~ iOC7T}. 

But the singularities of fez) are just {v I -llv E ~(A)}, 
as one sees from 

fez) = (1 + ZA)-1 = (1/z) . [A - (-I/z)]-I. 

From that the Corollary follows immediately. 

4. APPLICATION TO THE RESOLVENT 
OPERATOR 

To apply the result of Sec. 3 to [1 + AVRo(z)]-1 
one has to locate the spectrum of AVRo(z). 

Lemma 1: The spectrum of AVRo(Z) for z 1= ~(Ho) 
is the set of all ft ~ 0 such that z E ~(H( - A/ fl,»; 
ft = 0 mayor may not belong to the spectrum. 

Proof [AVRo(z) - ft]-1 can be rewritten in the 
following form: 

[AVRO(Z) - ft]-1 = (-l/fl')(Ho - z) 

X [Ho + (-A/ft)V - z]-t, ft ~ O. 

If z E ~[H( -A/ft)] the second factor on the right
hand side is not defined, then ft E ~(AVRo(z». But if 
z 1= ~(H( - A/ ft» then the second factor is defined and 
its product with the unbounded operator Ho - z is a 
bounded operator on the whole space, because V 
has relative bound zero. 

Lemma 2: We have that 

for all z which are not in the spectrum of Hv for 

v E S;',a 

= A' {K IRe K-
1

/
a ~ 1, -iex7T ~ arg K ~ iex7T}. 

Proof This follows immediately from the corollary 
and the Lemma I. 

Theorem 2: If for A. E A no one of the branches 
emanating from EO, since the perturbation parameter 
v varies on the straight line segment [0, A], crosses 
any other branches starting from other eigenvalues in 
z,'(Ho), then there is an oc > ° such that 
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valid for all Z on some contour r, such that 

P, = dte 2 R", L
oo -t 00 (_Ata)n 

. 0 n=O r(t + oen) 

where Rn is the residue of Ro(z) VRo(z) ... VRo(z) 
at EO' 

Proof' The only thing to prove is the existence of a 
contour r encircling EO and E;. but no other eigen
values without leaving the region of convergence. 
But the set SN of Lemma 2 approaches, for IX -+ 0, 
the straight line segment [0, A] uniformly in IX, so that 

JOURNAL OF MATHEMATICAL PHYSICS 

the corresponding set of eigenvalues of H v , laying 
in the interior of 0, approaches the branches coming 
from the eigenvalues in L' (Ho) uniformly in IX. This 
follows for the special case of bounded V from the 
fact that the spectrum of H(v + K) lies within a 
distance of IKIII VII from the spectrum of Hv' 

1 T. Kato, Perturbation theory for iiI/ear operators (Springer
Verlag, Berlin, 1966), p. 379. 

• Ref. I, p. 75. 
3 G. Sansone and J. Gerretsen, Lectures on the Theory of Functions 

of a Complex Variable (P. Noordhoff Ltd., Groningen, The 
Netherlands, 1960), p. 432. 
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A rigorous analytical solution in terms of the elliptic integral function of the first kind is derived for 

the nonlinear inhomogeneous boundary-value problem lJ(d~t!dx2) = 'XI' - l' - (], f(s) =.7: 

I. INTRODUCTION 

Various physico-chemical phenomena are described 
by nonlinear differential equations of second order. 
Examples of such phenomena are chemical diffusion 
processes with unimolecular and bimolecular reac
tions, l collective diffusion processes with ionization 
and recombination reactions in plasmas,2 the energy 
release in nuclear systems from power excursions,3 
etc. The boundary-value problem associated with the 
latter example was treated recently4 by a method 
which is known as the expansion in Sturm-Liouville 
characteristic functions. s In this approach, the expan
sion coefficients are determined by an infinite set of 
coupled nonlinear algebraic equations,4 which can 
only be solved by a finite-mode approximation in any 
actual evaluation.s 

In this paper, a rigorous analytical solution in terms 
of the elliptic integral function of the first kind is 
established for the boundary-value problem of the 
nonlinear inhomogeneous Helmholtz equation. Thus 
the expansion in characteristic functions, the cumber
some determination of the expansion coefficients, and 
a concession in form of an approximate solution are 
avoided. 

II. FORMULATION OF PROBLEM 

Letf(x) be a function defined in the closed interval 
-I::;; x ::;; +1, and letf(x), df(x)/dx, and d2f(x)/dx2 

be continuous throughout. The function f(x) is 
described by the nonlinear differential equation 

d2f 
15 dx2 = rxf2 - Ef - rr, (1) 

where 
f(s) =/, s = ±I. (2) 

Equations (1) and (2) represent a nonlinear inhomo
geneous boundary-value problem of elliptic type.6 To 
relate it to a physical situation, identify f(x) with a 
particle density, 15, rx, and E with the kinetic coefficients 
of diffusion, tWO-body and one-body reactions, 
respectively, and (] with a particle source. 

With regard to the physical nature of the density 
function, it is assumed that the solution of Eqs. (1) 
and (2) is positive, unique, and uniformly bounded. 
Since, under physical conditions, 

d"l 1 - = - _(-rxf2 + Ef+ a) < 0, (3) 
dx2 15 

f(x) exhibits no minimum. Accordingly, f(x) has 
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valid for all Z on some contour r, such that 

P, = dte 2 R", L
oo -t 00 (_Ata)n 

. 0 n=O r(t + oen) 

where Rn is the residue of Ro(z) VRo(z) ... VRo(z) 
at EO' 

Proof' The only thing to prove is the existence of a 
contour r encircling EO and E;. but no other eigen
values without leaving the region of convergence. 
But the set SN of Lemma 2 approaches, for IX -+ 0, 
the straight line segment [0, A] uniformly in IX, so that 
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the corresponding set of eigenvalues of H v , laying 
in the interior of 0, approaches the branches coming 
from the eigenvalues in L' (Ho) uniformly in IX. This 
follows for the special case of bounded V from the 
fact that the spectrum of H(v + K) lies within a 
distance of IKIII VII from the spectrum of Hv' 

1 T. Kato, Perturbation theory for iiI/ear operators (Springer
Verlag, Berlin, 1966), p. 379. 

• Ref. I, p. 75. 
3 G. Sansone and J. Gerretsen, Lectures on the Theory of Functions 

of a Complex Variable (P. Noordhoff Ltd., Groningen, The 
Netherlands, 1960), p. 432. 
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only one maximum / = 1 located at x = x. For 
symmetry reasons [see Eqs. (I) and (2)], x is identical 
with the center x = ° of the interval -l:s x :S +1, 
i.e., 

- = - = 0, f(x) =f(O) =f. (4) (~) (~) . -
dx ",=.r dx ",=0 

The symmetry property of the boundary-value 
problem implies that 

/( +x) = /( -x). (5) 

III. ANALYTICAL SOLUTION 

Equation (1) is solvable by separation of the 
variables. To this end, Eq. (1) is multiplied by df, 
and subsequently integrated. Thus, one finds 

df (2 )' dX = ± ~ (trJ.f3 - kif2 - af + C1) • (6) 

Here, and henceforth, the upper and lower signs 
apply in the semi-intervals -I :S x < ° and ° < x :S 
+1, respectively, since 

df > 0, for -I :S x < 0, 

dx < 0, for ° < x :S + I. (7) 

According to Eq. (4), the integration constant C1 

and the maximum value 1 are related by 

C1 = - (!rJ.!s - keJ 2 
- af>. (8) 

Formal integration of Eq. (6) yields, under considera
tion of Eq. (8), 

i
f(;]J) df 

fC,) [loc(fs - r) - ~€(f2 - r) - a(f - J)]~ 

= ± G)l J"'dX. (9) 

For the following considerations, it is necessary to 
rewrite Eq. (9) in the form 

ifC" ____ -'df::..-___ -: = ± (~)t(X _ s), 

f(.') [toc(f - fl)(/ - f2)(/ - f3)]l 15 

(10) 
where 

(1/ ) 
and 

(12) 

In Eq. (10), the problem has been reduced to a simple 
quadrature, and thus essentially solved. The latter can 

always be carried through to give elliptic integral 
functions of the first kind. 7 

In kinetic applications, €/rJ.» 1 cm-3 holds, since 
two-body reaction coefficients are commonly small 
compared to one-body reaction coefficients. Further
more, the (maximum) particle density is generally 
large,]» 1 cm-s, and the particle source is by defini
tion positive i.e., a ~ 0. For these reasons, let the 
integral in Eq. (10) be evaluated for the case where all 
roots /1./2' and /s are real, and 

(13) 

The integral in Eq. (10) can then be brought into 
Legendre'S canonical form by means of the substitu
tion 

f = (/2 - fs) sin2 4> + f3' 

df = 2(f2 - f3)sin 4> cos r/){/1>, (14) 

which conserves the reality conditions. Thus one 
finds, for Eq. (10), 

F(1), k) - ct = ±[lOC(fl -fa)/215]ix , (15) 

where F(1). k) is the elliptic integral function of the 
first kindS 

(16) 

and 

( /7) 

Equation (15) represents the relation x = x(1)), i.e., 
the relation x = x(j), since by Eq. (14) 

4> = arc sin ((j - /a)/(/2 - fa)]!. (I 8) 

From x = x(j) the desired result/ = lex) is obtained 
simply by inversion9 ; ct is determined by the boundary 
conditions. 

(a) Central Boundary Condition: 

f(x) = J, for x = x = 0. (19) 

According to Eq. (15), the result in this case is 

ct = F($, k), 

and 
$ = 4>(/) = ~7T, (20) 

F(1), k) - F($, k) = ±[1rJ.(/1 -.fa)/2~]~x, (2/) 

i.e., 

f(x) = (/2 - fa)[sn (F(i7T, k) 

± [tOC(/1 - f3)/215]fxW + 11' (22) 

In this solution, the constants h, h, and fa are given 
by Eqs. (II) and (12), where/is the known boundary 
value of Eq. (19). 
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(b) Exterior Boundary Condition: 

lex) =./, for x = ±I. 

According to Eq. (15), the result in this case is 

q: = F(~, k) + [!OC(jl -fa)/2d]t[, 

(23) 

~ = cp(./), (24) 
and 

F( cp, k) - F(~, k) = [!iY.(f1 - fa)/26]*(I ± x), (25) 

i.e., 

f(x) = (f2 - fa){sn (F(~, k) 

+ [!CX(fl - fa)/2d]i(l ± X»}2 + /1' (26) 

r n this solution, /1 , /2' and fa are constants given in 
terms ofJby Eqs. (11) and (12), where! is defined in 
terms of the integration constant C1 by Eg. (8). 
According to Eqs. (17), (18), and (26),J=/ (x = 0) 
is given as the (positive real) root of the transcendental 
equation 

sn2 (F(~, k) + (oc/66)!IRl) = I, (27) 

where 

1 _ . (f - U(3E/2oc - J) - R])'~' 
'P = arc SIn '"" ~ , 

j - H(3E/2oc - J) - R] 
(28) 

k2 = HI - (3E/2rx - 31)R-1
], (29) 

R = [G; _1)2 + 4G; -1)J+ 12;r· (30) 

From Eq. (27),1 is readily obtained by iteration as 
soon as the physical constants oc, (), E, a, I, and cf> are 
specified. A first trial value for J is given by 10 = 
i{(Efoc) + [(E/OC)2 + 4(a/oc)]!}, since 1 ,.:;10 for phys
ical reasons. 

[Note that the upper sign applies to the semi
interval -1:5: x :5: 0, and the lower sign to the semi
interval ° :5: x :5: +1; Eqs. (15), (21), (22), (25), and 
(26).] 

If the roots /1' f2' and fa are real but satisfy inequal
ities other than those given in Eg. (13), the integral in 
Eq. (10) can be evaluated by means of a quadratic 
transformation similar to that of Eq. (14).7 In the 
alternative case where one root is real and the other 
two roots are conjugate complex, the integral in Eq. 

(10) is again reducible to elliptic integral functions of 
the first kind by means of a so-called linear trans
formation. 7 

IV. CONCLUSION 

The boundary-value problem for the nonlinear 
inhomogeneous Helmholtz equation has been solved 
analytically by the method of separation of variables. 
In this approach, the independent variable is obtained 
as a function x(/) of the dependent variable f, the 
functional relationship involving elliptic integral 
functions of the first kind. From this result, the 
dependent variable is obtained as a function f(x) of 
the independent variable x by inversion, which gives 
the final results in terms of the sine amplitude function. 
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2rr 00 q,n-!. rru 
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A proof is given that, in the numerical evaluation of lattice Green's functions, it is possible to restrict the 
wave-vector summation to an irreducible section of the Brillouin zone. It is shown that, in order to lise 
this simplification, the Green's functions must be appropriately symmetrized. 

I. INTRODUCTION 

Many quantities of interest in solid state physics 
can be expressed as sums of the following form: 

F = I f(k), (I) 
k 

where the allowed values of the wave vector k form a 
uniformly distributed set of points throughout the 
first Brillouin zone of the lattice. 

In practice it is not necessary to evaluate the sum 
(1) over the whole Brillouin zone. By using the sym
metry of the crystal, it is possible to restrict the sum to 
k values lying within a certain "irreducible section" 
of the zone, each term being multiplied by an appro
priate weighting factor, This procedure is weIl known 
for the calculation of phonon frequency distribution 
functions.1.2 

Another class of functions which can be expressed 
in the form of (I) are the lattice Green's functions. 3 

These functions are useful in calculating the response 
of a perfect harmonic crystal to perturbations, such as 
anharmonic terms or defects. Many authors4 ,5 have 
evaluated the Green's functions numerically by re
stricting the summation to an irreducible part of the 
Brillouin zone, but to our knowledge a formal proof 
that this can be done has never been presented. It is 
our intention in this paper to present such a proof. 

II. THE PROOF 

The general lattice dynamical Green's function IS 

given by3 

, , _ I '" W.(K I kj)Wp(K' I kj) 
Gap(lK, I K ) - t "" 9 2 

N(M.MK ,) ki w- - Wik) 
x eiko[x(fK)-x(f'.')], (2) 

where the symbols have the usual meanings. 
The crystal is invariant under operations of the 

space group, Such a symmetry operation is denoted by 
{S I yeS) + x(m)} , where S is a proper or improper 
rotation, yeS) is a vector smaIler than any primitive 
translation vector of the crystal, and x(m) is any 
translation vector of the crystal. We consider a 
subgroup G of the space group, which consists of 

those proper and improper rotations S for which 
yeS) = O. For symmorphic space groups, G is simply 
the point group of the crystal; for nonsymmorphic 
space groups G is a subgroup of the point group. The 
number of elements in G will be denoted by h. 

If we apply any symmetry operation S in G to the 
crystal, at the lattice site (lK), then the Green's function 
transforms according t03 

G.p(lK, I'K') = I S.)'Sp~G)'~(IK, I.:K'), (3) 
.,~ 

where (I' K') is the lattice site into which (L'K') is taken 
by the operation S, i.e., 

X(i'K') = Sx(I.:K'). 

Using (3), we then write the Green's function in the 
symmetrized form 

G.p(lK, I'K') = h-1 I I S.)'Sp~G)iIK, L:K') 
S ).~ 

= N -1 L g(kj), 
ki 

where 
g(kj) = (M

K
M

K
,)-1[W2 - w;()(Wth--1 

-I X 2 eik.[x(lK)-S XU'K')] 

S 

x L S.)'Sp~b(F(Kl; S), K') 
)'~KI 

(4) 

x wiK I kj)Wt(K1 , k i ), (5) 

where F(Kl; S) denotes the position to which an 
atom of type Kl is taken by the operation S. 

The sum over k in (4) is over the whole Brillouin 
zone. We want to show that we can effectively restrict 
this to an "irreducible section" equal in volume to 
h-1 of the whole zone. To show this we form the quan
tity g(Rkj), where R is any rotation in G, as follows: 

g(Rkj) = (M
K
M

K
,)-1[w2 - w~(Rk)]-lh-l 

-I X I eiRk.[x(lK)-S XU'K')] 

s 

X I S.)'Sp~b(F(Kl; S), K') 
ydKI 

x W/K I Rkj)w:(K t , Rkj). (6) 

The transformation properties of the frequencies 
and eigenvectors of the normal modes of a crystal 

827 
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have been worked out by Maradudin and Vosko. 6 

For the present case they are 

(.);(Rk) = (J)~(k), (7a) 

WaCK I Rkj) = IR~fJtJ(K, F(K'; R})WP(K' I kj). (7b) 
K'fJ 

We also simplify the exponent in (6) as follows: 

Rk· [X(lK) - S-lX(l'K')] 

= k· [R-1x(lK) - R-1S-1x(I'K')] 

= k· [X(lK) - (SR)-lX(l'K')]. 
Then (6) becomes 

g(Rkj) = (M"M"Tl[W2 
- w;(k)r1h-1 

X I eik'[XUK)-(SR)-lxU'",») 

S 

X ISal,SPdb(F(K1: S), K') 
y;;/(, 

X I Ry;/~(K, F(K2: R»wiK2/ kj) 
A/1"2"3 

X Rb/1b(Kl' F(Ka; R»W:(K31 kj) 

= (M"M",)-1(W 2 
- (JJ~(k)tlh-l 

X I eik'[XUK)-(SR)-lXO'K'») 

S 

X I (SR)a;.(SR)pJ1b(F(K3; SR), K') 
).,'KO 

(8) 

We then use the rearrangement theorem from 
group theory to replace the summation variable S by 
S' = SR. It then follows immediately that 

g(Rkj) = g(kj). (9) 

Hence to evaluate the sum in Eq. (4) it is necessary 
to choose a section of the Brillouin zone such that any 
value of k outide this "irreducible section" is related to 
a value of k inside the section by one of the operations 
R of the group G. This irreducible section wiII have a 
volume h-1 of the volume of the entire zone. The sum 
in Eq. (4) can then be written as 

G.p(IK, i'K') = 11-1 I w(q)g(qj), (10) 
q; 

where q is a k-vector inside the irreducible part of the 
zone, \I'(q) is a weight which is equal to h for values of 
q inside the irreducible section and smaller for points 
on the surface of the section, and n = ~q l1'(q). 

III. AN EXAMPLE 

To illustrate the method we evaluate a Green's 
function for the diamond structure. For this structure 
the group G is the point group Td , with 24 elements. 
Thus the irreducible section is }4 of the Bri1louin 

z 

FIG. I. Irreduc
ible section of 
Brillouin zone for 
diamond struc-

Y ture. 

zone. A convenient choice for this section is shown 
in Fig. 1. We will consider the Green's function 
G ",,,,(01, 12), the labeling scheme for the atoms being 
shown in Fig. 2. The 24 matrix representations of the 
rotations of Tn are listed by Kovalev. 7 Using these, we 
obtain for g(kj) the result 

g(kj) = M-1[W2 
- w;(k)r1 

X Hw x (1 I kj)w~(21 kj) 

+ wlI (1 I kj)w:(21 kj) + wz( 1 I ~j)w:(21 kj)] 

X (cos tkxao cos tk!lao cos tkzao 
+ i sin ikxao sin tk"ao sin tkzao)' 

The Green's function Gx",(OI, 12) is then given by 

Gx.,(Ol,12) 

= (3M)-111--1 2 w(q)(m2 - (r)7(q)]-1 
qj 

X [wil I qj)w:(21 qj) 

+ W!I(1 I qj)w:(2! qj) + wz(1 I q.J}w:(2/ qj) 

X (cos lq",ao cos tq.,ao cos tqzao 
. . 1 • 1 . 1 ) + I sIn 4;q,.aO SID 4;q yaO SID "4qzQo , 

where q is a wave vector in the irreducible section of 
the Brillouin zone. 

z 

----~----------~Y 

(2,2) 

FIG. 2. Label
ing of nearest
neighbor atoms 
for diamond struc
ture. 
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On the Solution of the Differential Equation 

( 
02 a a a) -- + ax - + by - + cxy + -'- P = 0 

oxoy ax oy at 

M. KOLSRUD 
Institute for Theoretical Physics, University of Oslo, Oslo, Norway 

(Received 21 June 1968; Revised Manuscript Received 5 September 1969) 

The following solution is obtained: 

P(x, y, t) = e-rll:lI- dPo(e-ax, e-Py, f), 

where Po(x, y, t) is the solution when the constants a, b, and c are zero, and where the time functions 
ex, ... , f are given explicitly. 

The operator T is assumed to be of the form In a recent paper,l where the above-mentioned 
equation is solved by a series expansion, the author 
says: "It appears that the solution of the equation in 
question is not available in the literature, nor does it 
seem feasible to solve it by conventional methods." 
The purpose of the present note is to draw attention 
to two papers2 which give the solution of the more 
general equation (Oi = %xi , at = a/at): 

where the time functions ex, /3, ... , E shall vanish for 
t = O. By writing T = dT/dt, etc., we get from (4) 
and (6) 

(Aijdidj + aidi + BijXiXj + bixi 
+ CijXidj + dt )1p = 0, (1) 

where the coefficients are arbitrary functions of t. 
Rather than specializing the general solution to the 
present case, we want to apply our method directly 
to the equation in question, viz., 

(dll:0ll + axoll: + byoll + exy + dt)P = 0, (2a) 
with 

P(X,y, O) = <I>(x,y), C2b) 

where <I>(x, y) is given. The coefficients a, b, and e are 
constants. We introduce the operator T by 

PCx,y, t) = TCo", , a.,,, x,y, t)<I>(x,y), (3) 

and thus, from (2) and (3)-as <I> is arbitrary3-we get 

(d",dll + axa", + byall + exy)T = -dT/dt, (4) 
with 

T = 1 for t = O. (5) 

dA, + aXd., + bydll + exy 
= -TT-1 

= (TIT2T3 + TIT2T3 + TIT2 T3)T"3l TiITll 

= -1~Tll - TICT2T-;I)Tll- Tl(T2Ct3T"3I)T-;I)Tll. 

(7) 
Each term is now evaluated: 

(8) 

- TICT2T;:I)Tll = e-y.,lI(lixo., + {Jyoy)ey
.,l1 

= liXd", + hOIl + Cli + (J)yxy, (9) 

-T2(TaT"3I)T;1 = iT2o",T;IT201lT;1, 

where 

= a., - IX [XOIl: , a",) 
+ (1X2J2!)[xo." [XO." ax)) - ... 

= 0", + IXO", + (1X2j2!)0", + ... = ea0ll:' 
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The following solution is obtained: 

P(x, y, t) = e-rll:lI- dPo(e-ax, e-Py, f), 

where Po(x, y, t) is the solution when the constants a, b, and c are zero, and where the time functions 
ex, ... , f are given explicitly. 

The operator T is assumed to be of the form In a recent paper,l where the above-mentioned 
equation is solved by a series expansion, the author 
says: "It appears that the solution of the equation in 
question is not available in the literature, nor does it 
seem feasible to solve it by conventional methods." 
The purpose of the present note is to draw attention 
to two papers2 which give the solution of the more 
general equation (Oi = %xi , at = a/at): 

where the time functions ex, /3, ... , E shall vanish for 
t = O. By writing T = dT/dt, etc., we get from (4) 
and (6) 

(Aijdidj + aidi + BijXiXj + bixi 
+ CijXidj + dt )1p = 0, (1) 

where the coefficients are arbitrary functions of t. 
Rather than specializing the general solution to the 
present case, we want to apply our method directly 
to the equation in question, viz., 

(dll:0ll + axoll: + byoll + exy + dt)P = 0, (2a) 
with 

P(X,y, O) = <I>(x,y), C2b) 

where <I>(x, y) is given. The coefficients a, b, and e are 
constants. We introduce the operator T by 

PCx,y, t) = TCo", , a.,,, x,y, t)<I>(x,y), (3) 

and thus, from (2) and (3)-as <I> is arbitrary3-we get 

(d",dll + axa", + byall + exy)T = -dT/dt, (4) 
with 

T = 1 for t = O. (5) 

dA, + aXd., + bydll + exy 
= -TT-1 

= (TIT2T3 + TIT2T3 + TIT2 T3)T"3l TiITll 

= -1~Tll - TICT2T-;I)Tll- Tl(T2Ct3T"3I)T-;I)Tll. 

(7) 
Each term is now evaluated: 

(8) 

- TICT2T;:I)Tll = e-y.,lI(lixo., + {Jyoy)ey
.,l1 

= liXd", + hOIl + Cli + (J)yxy, (9) 

-T2(TaT"3I)T;1 = iT2o",T;IT201lT;1, 

where 

= a., - IX [XOIl: , a",) 
+ (1X2J2!)[xo." [XO." ax)) - ... 

= 0", + IXO", + (1X2j2!)0", + ... = ea0ll:' 
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Correspondingly, 

T. a T-1 - e-pya·o epya• = epa 
2 y 2 - 11 y' 

The last term in (7) thus becomes 

- Tl(T2(t3 Tal) T;l) TIl 
= Ee<x+P(e-YXYo xeYXV)( e-YXYOyeYXY) 

= EeHil(ox + yy)(Oy + yx) 

= Eea+il(OXOy + yxo", + yyOy + y2xy + y). (10) 

Inserting (8)-(10) in (7), we get 

OxOy + ax ax + byoy + cxy 

= Eea+POXoy + (Ii + YEea+P)Xox 

+ «(3 + YEea+P)yOy 

+ (y + y2 Eea+il + y( Ii + (3»x y 

+ YEe a+P + J. (11) 

The time functions OC," • , e must therefore satisfy 
the equations 

Eea+P = 1, (12a) 

Ii + Y = a, (12b) 

(3 + Y = b, (12c) 

y + y2 + y(1i + (3) = c, (12d) 

Y + J = 0, (12e) 

and vanish for t = 0. [These equations (12) are also 
valid if a, b, and c are functions of the time t.) With 

.41,2 = -~(a + b) ± {[i(a + b»)2 - c }~, (13) 

we get the solutions of (12) as 

(14a) 

(14b) 

eA1t _ eAzt 

y = - eA1tj Al - eAztlA2 ' 
(14c) 

the solutions (14) become 

oc = !(a - b)t + log [1 + !(a + b)t], 

f3 = Hb - a)t + log [1 + tea + b)t], 

(17a) 

(17b) 

-L(a + b)2t 
y= 4, (17c) 

1 + tea + b)t 

b = -tea + b)t + log [1 + lea + b)t], (17d) 

t 
E = (17e) 

1 + Ha + b)t 

The solution (3) of Eq. (2) shall now be expressed by 
the function 

Po(X, y, e) = e-·a~a·<I>(x, y), 

which satisfies the equations 

--+- Po=O, ( 
02 0) 

oxoy oe 
Po(x, y, 0) = <I>(x, y). 

(18) 

(19) 

(20) 

This is a special case of Eq. (2), viz., with a = b = 
c = 0, and with t substituted by the symbol E. (Po 
corresponds to PII in Ref. 1.) 

From (3), (6), and (18), we now get the solution 
of (2) as 

P(x, y, t) = e-YXy-Oe-axa~-IM·e-·a~a·<I>(x, y) 

= e-YXY- O e-aXaxe-pya. P o(x, y , E) 

= e-YXY-OPo(e-ax, e-ily, e). (21) 

Here we have used 

e-axa"f(x) = exp [-ocojo(log x»)f[exp (log x») 

= f[exp (log x - oc)] = fee-ax), (22) 

etc. Putting t = 0 in the Eqs. (14), and using (20), 
we obtain (2b). 

Neuringer4 has given the following solution of 
Eq. (2): 

P = P'(x, y, t) = eA(Xy-tJJ dk:l) dkyG'¥, (23) 

where 

A2e
A1t - AleA•t 

b = log , 
.42 - Al 

'I" = _1 ffdX' dy' 
(14d) 47T2 

X exp [i(k:l)x' + kyy') - Ax'y')<I>(x', y'), (24) 

(14e) G = exp [-i(k",~ + kllrJ) + k:l)ky~], (25) 

When 
(15) 

1 _ e-(u+b+2Al t 
~ = xe-(uHlt ?J = ye-(b+Alt ~ = ~-=----

, 'a+b+2A ' 
i.e., (26) 

(16) and with A equal to either of the forms (13). 
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The equivalence of (23) with our solution (21) can 
be shown in the following way: From (24) we have 

(27) 
where 

1 ( M'YJ ) 
= 1 - A' exp A' - 1 

x exp {_l_. [-i(k",$ + kllr;) + k",ky,]}. (33) 
1 - 1.( 

'Yo = 4~2 II dx' dy'ei(kxX'+k.V'l<I:J(x', y'). (28) Inserting (26) in (33), we get, for each A, 

Hence (23) may be written 

pl(X, y, t) = e·Hxv-tl II dk", dkyGe).a~rok.ok.'Y 0 (29) 

where 

- e).(",y-tlffdk dk P G' - x v 0 , (30) 

(31) 

Here it is assumed that 'Yo has the necessary behavior 
when Ikl--'" 00. Considering (25) and (31), we first 
observe that 

Thus (31) may be evaluated as follows: 

G f = e).i)'/iJk.ak· exp {-i(k",~ + k
ll
r;) + k",k

ll
n 

= lim v exp (~'Y)) eAiJ2/akxiJk. 
v~ 1 ,1' 
X ; exp {~[ -i(k",~ + kj}'Y) + ki<:kj}~ - ~2J} 

= lim v exp (~'Y)) e-;..,·Iav 
v~l ~v 

X ~ exp {~[ -i(k",~ + ky'Y) + k",ky' - ~;J} 

= lim v exp (~'Y))_1_ 
v~l 'v l' - A' 
x exp {_l_[_i(k",~ + kv'YJ) + k",kv' - ~'YJJ} 

v - A' , 

e).(",'v-tlG' = e-YOJv- o 

X exp { - i(k",xe- a + k llye-fJ ) + k",ky€}, 

(34) 

where oc, .•• , € are the expressions (14). Hence the 
solution (30) becomes 

P'(x, y, t) = e-Y
"'lI-

O II dk", dky 

x exp {- i(k",xe- IX + kllye-fJ ) + k",kv€}'Y o' 

(35) 

To see that this is of our form (21), we consider the 
case a = b = c = O. Then (23)-(26) give the corre
sponding solution: 

P~(x, y, t) = II dk", dky 

x exp { - i( k",x + kyy + k",kyt) }'Y o(k"" ky), 

(36) 

where 'Yo is given in (28). Thus (35) may be written as 

PI(X, y, t) = e-Y"'1I-0P~(xe-lX, ye- fJ , E), (37) 

which is the form (21). 
We notice that 'Yo in (28), compared with 'Y in (24), 

may be found for a wider class of "suitable" initial 
functions <I:J(x, y). Therefore the form (37)-with 
(36)-would seem to be more convenient than (23)
(26). 

1 P. Lambropoulos, J. Math. Phys. 8, 2167 (1967). 
2 M. Kolsrud, Phys. Rev. 104, 1186 (1956); Phys. Math. Univ. 

Oslo, Institute Report No. 28. 
3 Notice that oxT = aT/ax + To~. 
• J. L. Neuringer, J. Math. Phys. 10, 250 (1969). 
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It is shown that one can construct a relativistically invariant classical mechanics in Hamiltonian form 
by utilizing as independent dynamical variables the position of each particle, together with its canonical 
conjugate variable, and the velocity of each particle, together with its canonical conjugate variable. The 
ten generators of the Poincare group, obeying the correct Poisson bracket relations between themselves 
and the position variables, are constructed in their most general form. By restricting this form, it is 
possible to construct a Hamiltonian theory where the equations of motion for the particle's positions and 
velocities depend only upon the positions and velocities (and not upon their conjugate variables): these 
turn out to be the most general relativistically invariant classical equations of motion of this type. This 
is not useful as a starting point for constructing a physically interesting quantum theory, since the proba
bility density in the quantized theory obeys the classical Liouville equation. This approach is also applied 
to the Galilean-invariant classical mechanics. 

INTRODUCTION 

A completely satisfactory relativistically invariant 
action-at-a-distance quantum mechanics has not yet 
been made. Diracl first emphasized the importance of 
being able to construct the ten generators of the 
Poincare group from the dynamical variables. Sub
sequently, Bakamjian and Thomas,2 Foldy,3 and Fong 
and Sucher4 showed how the ten generators and 
also the scattering matrix can be constructed when 
the dynamical variables are the physical momenta 
of particles and their conjugate variables (which can
not be interpreted as the physical position variables). 
However, one may require more of a relativistically 
invariant quantum mechanics than this. For example, 
one might ask that the theory also contain physical 
position variables which transform properly under 
Lorentz transformations and which have vanishing 
commutator brackets with each other. 

At this point, our discussion switches from the 
framework of quantum mechanics to the framework of 
classical mechanics. The classical problem is relevant 
to the quantum problem because the existence of a 
Poisson bracket algebra of classical variables is a 
necessary condition for the existence of the commu
tator bracket algebra of the analogous operator 
variables: this follows from the similarity of the two 
bracket-algebras. The major advantage in working 
with classical mechanics is that it is often easier to 
find the solutions to the first-order partial differential 
equations that arise from Poisson bracket relations 
than to solve the operator equations which arise from 
the commutator bracket relations of the quantized 
theory. 

The problem of forming a relativistically invariant 
classical Hamiltonian mechanics has a certain amount 

of intrinsic interest of its own. But it should be 
emphasized that, even if this is accomplished, it does 
not guarantee the existence of a useful quantum theory. 
The transition from Poisson brackets to commutator 
brackets introduces the additional problems of the 
ordering of operatorsS and the existence of operators. 
Moreover, even if these difficulties are overcome so 
that one has achieved operator expressions with the 
desired commutator bracket relations, there still re
main the problem of whether a meaningful interpreta
tionS can be given to the quantized theory and the 
question of whether it is a useful description of nature. 

It was shown by Currie,6 Currie, Jordan and Sudar
shan,7 Cannon and Jordan,s and Leutwyler9 that one 
cannot construct physical position variables (i.e., 
functions of the dynamical variables which satisfy the 
correct Poisson bracket relations with the generators 
of the Poincare group in order that they transform as 
position variables must under Lorentz transforma
tions and which have vanishing Poisson brackets with 
each other), unless the Hamiltonian function is just 
the sum of free-particle Hamiltonians so that the 
theory describes particles which do not interact. Next, 
HiIllO and CurrieIl went outside the Hamiltonian 
framework of classical mechanics and found the most 
general equations of the type of Newton's second law 
which are relativistically invariant: their results are 
nonlinear partial differential equations that the forces 
(functions of particle positions and velocities) have 
to satisfy. Following this, HiIll2 investigated a tech
nique of casting these equations of the type of 
Newton's second law in Hamiltonian form by an 
appropriate change of variables,l3 and examined the 
conditions under which the other generators of the 
Poincare group can be made to generate canonical 

832 
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transformations. He emphasized, following Kerner, 14 

that it is possible to find position variables which 
have the proper Poisson bracket relations with the 
Poincare generators, without foregoing interaction 
between the particles, provided one does not require 
that the Poisson brackets among the position vari
ables must also vanish. JordanI5 tried to circumvent 
the Currie-Jordan-Sudarshan no-interaction theorem 
by removing the requirement that generators of 
"boosts" be also generators of canonical transforma
tions, but he too encountered a no-interaction theorem. 

We would like to suggest a different way in which it 
is possible to bypass the no-interaction theorem. The 
idea is to admit more variables into the dynamics than 
just the usually allowed six variables for each particle.16 

For example, one might try to construct a relativistic 
theory where the particles interact through the media
tion of a finite number of degrees of freedom, instead 
of interacting through the infinite number of degrees 
of freedom of a field. Perhaps it may even be possible 
to choose these extra degrees of freedom in such a way 
that, in an appropriate limit as their number becomes 
infinite, the theory approaches electrodynamics. 

In the present work, we introduce twelve dynamical 
variables for each particle: the physical position x 
and its canonical conjugate variable p, the physical 
velocity v and its canonical conjugate variable which 
we shall call r. We shall construct the most general 
form of the generators of the Poincare group (to 
within a canonical transformation which does not 
affect the particle positions or velocities) for the 
interaction of two particles: the results may be readily 
extended to any number of particles. 

The equations of motion which arise from this 
theory might be called indeterministic, in the sense 
that, even when the initial positions and velocities of 
the particles are specified, the particle trajectories are 
not determined because the choice of different initial 
conditions for the p's and r's can lead to different 
particle trajectories. This situation, which always 
arises when there are "extra variables," is no problem 
when there is a Lorentz-invariant physical meaning 
associated with the extra variables (e.g., in electro
dynamics the extra variables are the electromagnetic 
field variables; in Ref. 16, the extra variables are the 
initial and final masses of the particles). In this work, 
we are not able to associate such a physical meaning 
with the extra variables p and r. Instead, we shall find 
it possible to eliminate the extra variables from the 
equations of motion for the particle positions and 
velocities by suitably restricting' the form of the 
Hamiltonian. The resulting equations of motion are 
those obtained by HilllO and Curriell : the interesting 

feature is that we are able to obtain their results by a 
Hamiltonian approach. Of course, the choice of 
initial conditions of the p's and r's do not affect the 
trajectories generated by this restricted Hamiltonian. 

In the next section, the Galilean-invariant theory is 
discussed within this framework because of its simplic
ity and familiarity. In particular, we concentrate on 
showing what happens when the theory is quantized. 
Following that, the Lorentz-invariant theory is pre
sented. 

I. THE GALILEAN-INVARIANT THEORY 

The time translation generator H, space translation 
generators P, rotation generators J, and boost gener
atorsI7 K satisfy the following Poisson bracket rela
tions: 

[Pi' Pi] = 0, (Ia) 

[Ji , Pi] = €iikPk' (Ib) 

[H, Pi] = 0, (Ic) 

[Ki' Pi] = biiM, (Id) 

[Ji , J i] = €iikJk, (2a) 

[Ji , H) = 0, (2b) 

[Ji , K j ] = €iikKk, (2c) 

[Ki' K j ] = 0, (3a) 

[Ki' H) = Pi (3b) 

(bif is the Kronecker b function; repeated Latin 
indices are to be summed over; M is a positive 
constant). 

The physical position variables x" and velocity 
variables Va satisfy the usual Poisson bracket relations 
with their canonical conjugate variables p" and r", 
respectively: 

(4) 

(all other bracket relations between these variables 
vanish). Because of the definition of a velocity as the 
time derivative of a position, we have: 

(5) 

In order that the positions transform properly under 
Galilean transformations, it must be true that 

[x~, Pi] = bii , 

[J i , x!] = €<JkX~, 

[Ki' x~] = 0. 

(6a) 

(6b) 

(6c) 

By taking the Poisson bracket of Eqs. (6) with Hand 
using Eqs. (1)-(5) and the Jacobi identity, we can 
deduce the following bracket relations involving the 
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velocities: 
[v;, Pj] = 0, 

[Ji' v~] = €ijkV:, 

(7a) 

(7b) 

[Ki' v!] = bij • (7c) 

We now proceed to determine the forms of the ten 
generators of the Galilean group. It is shown in 
Appendices A and B that P and J may be brought to 
the forms 

(8) 

J = Xl X PI + X2 X P2 + VI X fl + V2 x f2 (9) 

by a canonical transformation of variables that does 
not affect the xa nor the va. The methods used by 
previous authors7- 9 to obtain "standard forms" for 
the momentum and angular momentum are perfectly 
applicable here: our excuses for the demonstrations in 
the appendices are that we wish this paper to be self 
contained, that the variables we use are different than 
those of previous authors, and our methods of proof 
differ somewhat from those employed by previous 
authors. 

By putting the form for P in Eq. (8) into Eq. (I c), 
we find that H depends upon Xl and X2 only in the 
combination Xl - X2 == x. By putting the form for 
J in Eq. (9) into Eq. (2b), we find that H is a rotational 
scalar, depending only upon scalar products of the 
vectors X, Pa' Va' fa. The dependence of H upon Pa is 
determined by the most general solution of Eqs. (5): 

H = Pl' VI + P2' V2 + A(X, Va' fp), (10) 

where A is so far an arbitrary scalar function of its 
arguments. 

The boost generator K does not depend upon PI 

and pz at all, according to Eq. (6c). It is a vector under 
rotations according to Eq. (2c). The partial differ
ential equations (ld) and (7c) further restrict the form 
of K to: 

K = mixi + mZx2 - fi - f2 + x(x, va), (II) 

where ml , m2 are any numbers such that ml + m2 = 
M and x is a vector function of its arguments. 

Only Eqs. (3) remain to be satisfied. When our 
expression (11) for K is inserted in Eq. (3a), we obtain 
the partial differential equations 

-+- K = -+- K ( a a)i (a a)i 
avt av~ ovr ov~ . (12) 

where 'I.jJ is a scalar function of the vectors x, VI' V2 • 

According to Eqs. (11) and (13), our form for K is 
now 

K = mixi + m2x2 - (rl + "vl'P) - (r2 + "va'P). 

(14) 

We now make a canonical transformation to new 
variables iI, i 2 , PI' P2: 

(15) 

This transformation leaves Xa and Va unchanged. In 
the new variables, P and J become: 

(16) 

J=~x~+~x~+~x~+~x~ 

- (x x Va'P + VI X Vv1'P + V2 x Vvz'P). (17) 

However, since 'I.jJ depends only upon Xl - X2, the last 
term in Eq. (16) vanishes, and because 'II' depends only 
upon scalar products of the vectors X, VI' V2 , the last 
three terms in Eq. (17) also add up to zero. Therefore, 
our forms for P and J are not changed by this trans
formation. In the new variables, H becomes: 

H = PI • VI + pz • V2 + (A - VI • V zl'P - V2 • V za'P). 

(18) 

We can define the parenthetical expression in Eq. (18) 
as a new scalar function ;i of the variables X, Va' ra. 
Thus, we see that the canonical transformation (15) 
makes no essential change in H either. We henceforth 
adopt this new set of canonical variables, drop the 
superscript bars, and write down our general form 
for K: 

K = mlxl + m2xZ - fl - r 2. (19) 

We note in passing that this expression for K in the 
Galilean-invariant case is the same for noninteracting 
particles as for interacting particles, whereas this is 
not true in the Lorentz-invariant case. As is well 
known, this accounts for the greater complexity of the 
latter case when compared with the former. 

The only restriction remaining to be satisfied is Eq. 
(3b). Putting our forms (19), (10), (8) into this equa
tion, we find a restriction on the function A that 
appears in the Hamiltonian 

(VVl + Vva)A = -mlvl - m2v2 • (20) 

Equation (12) is the familiar statement that the curl of The most general solution of Eq. (20) is 
the vector x vanishes, which is the necessary and 
sufficient condition for A = -imlvi - tm2v~ + fleX, v, f I , (2), (21) 

. ( a a) 
K' = - ovf + ov~ 'I.jJ, (13) where v~ == Va' Va' V == VI - V2 , and fl is a scalar 

function of its arguments. Thus, the most general form 
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for His 

H = PI' VI + P2 • V2 - t mlvi - tm2v~ + fl, (22) 

and our construction of the ten generators is complete. 
We first remark that, although Pa and ra transform 

fairly simply under Galilean transformations (they do 
not change under translations; they transform as 
vectors under rotations, and ra is unchanged by a 
boost while Pa transforms as a momentum usually 
does under a boost), we cannot associate any simple 
physical quantities with these variables. This is 
emphasized by the equations of motion which, 
according to Eq. (22), are: 

x", = va' (23a) 

V'" = Vr fl, (23b) 
a 

Pa = -V xafl ' (23c) 

fa = -Pa + mav", - Vv fl. (23d) 
'" 

Although P, J, and H are constants of the motion, 
they are not solely functions of the physical variables 
xa and Va' This makes them less useful quantities than 
they are found to be in the usual Galilean-invariant 
classical mechanics. Indeed, the extra complexity 
introduced by the additional variables allows us to 
have trajectories for which the physical quantities 
which are usually constant are not constant at all. For 
example, according to Eq. (23b), 

d(m1V1 + m2V2) V + V (24) dt = m1 1"l fl m2 T2fl, 

which does not have to vanish. Thus, our theory, 
although Galilean-invariant, does not necessarily 
agree with nature. This has come about because the 
extra degrees of freedom have permitted us to main
tain the role of P as a translation generator while 
eliminating its role as the constant momentum. 

II. ELIMINATION OF EXTRA VARIABLES 
FROM THE DYNAMICS OF PHYSICAL 

VARIABLES 

The interaction is characterized, as in the usual 
Galilean-invariant Hamiltonian mechanics, by a scalar 
function. We now observe that it is possible to restrict 
fl in such a way that the extra variables Pa and ra do 
not enter into the equations of motion for x'" and V"'. 

The conditions to be satisfied are that the right-hand 
sides of 

x", = [xa' H], vl% = [VI%' H] (25) 

be independent of p", and rl% • As can be seen from Eqs. 
(23a, b), this simply amounts to the condition that 

(26) 

where the accelerations a are vector functions of their 
arguments. The solution of Eqs. (26) is 

fl = r1 • a1 + r2 • a2 + b, (27) 

where b is a scalar function of x, v. The Hamiltonian in 
this restricted case is, therefore, 

H = PI' VI + P2' V2 - tm1vi - tm2v~ 
+ fl • a1 + f 2 ' a2 + b. (28) 

The equations of motion, Xo; = Va and Vo; = a"" are 
the most general Galilean-invariant equations of 
motion for two particles. We do not believe that it has 
been previously shown that these equations can be 
obtained through a Hamiltonian formalism. 

Again, we remark that m1vl + m2v2 is still not a 
constant of the motion unless we demand the addi
tional restriction of Newton's third law, mlal + 
m2a2 = O. 

III. QUANTIZATION OF THE GALILEAN
INVARIANT THEORY 

Since this theory is in Hamiltonian form, we may 
formally proceed to quantize it, using Dirac's well
known transition from Poisson brackets to commuta
tor brackets. The operators Xa and Va (corresponding 
to the position and velocity variables) form a complete 
commuting set. In the representation where these 
variables are represented by diagonal matrices, the 
Schrodinger equation for '1jJ(xl , X2 , VI' V2), which 
follows from Eq. (28), is 

Ii Ii 
-: (VI' VX1 + V2' V(2)'1jJ + -: (al • VV1 + az ' VV2)'1jJ 
I I 

1 2 , 2 b ." O'1jJ + (-2mlvl - tm2V2 + )'1jJ = III -. ot (29) 

If we write '1jJ = peie/fi, where p and () are real functions, 
insert it into Eq. (29), multiply by riO/ii, and take the 
real and imaginary parts of the resulting equation, 
we find two uncoupled equations. p is found to satisfy 
the classical Liouville equation 

op 2 

- + L[Va ' V" + al%' Vv]p = 0, (30) ot a=l 1% a 

while () satisfies an inhomogeneous Liouville equation 

00 2 1 [2 2 ] -+L[V",.V"",+ aa'Vv",]() =- t!m",v",-b. ot «=1 h 1%=1 

Since 1'1jJ12 = p2 satisfies the classical Liouville 
equation, it is difficult to see how a physically inter
esting quantum theory can arise. The flow of prob
ability in configuration space (the quantum-mechanical 
configuration space and the classical phase space are 
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essentially identical: a point is specified by the coordi
nates x"' v,,) will not exhibit any of the familiar "wave
like" quantum-mechanical effects such as tunnelling, 
"interference" of probabilities, etc. We may note in 
passing, however, that Prigogine1B and coworkers 
have found it useful in nonequilibrium classical 
statistical mechanics to consider the Liouville "oper
ator" and its eigenvalues and eigenvectors, an ap
proach which does not appear too unnatural within 
the context of the present work. 

IV. THE LORENTZ-INVARIANT THEORY 

The Poisson bracket relations for the ten Poincare 
generators are: 

[Pi' Pi] = 0, (31a) 

(J" Pi] = €iikPk, (3tb) 

[H, Pi] = 0, (31c) 

[Kj> Pi] = o'iH, (31d) 

[Ji' J;l = €ijkJk, (32a) 

[J" H] = 0, (32b) 

[J" K i] = €iikKk, (32c) 

[Ki' K i] = -€iikJk' (33a) 

[K j , H) = Pi' (33b) 

In order that the positions transform properly under 
Lorentz transformations, it must be true that 

[x~, Pi] = Oii' 
[Ji , x~] = €iikX:, 

[x;, K;] = x~v!, 

(34a) 

(34b) 

(34c) 

where, as usual, Va == [Xa' H). Pryce19 first pointed 
out and Currie, Jordan, and Sudarshan7 emphasized 
the importance of Eq. (34c) which, together with 
Eqs. (31d) and (33a), differ from the corresponding 
relationships in the Galilean-invariant theory. 

P and J can be brought to the standard forms (8) 
and (9) because they are a consequence of Poisson 
bracket relations (5), (7a, b), (3Ia, b), (32a), (34a, b), 
which are the same in the Lorentz-invariant case as in 
the Galilean-invariant case. Likewise, Eqs. (3Ic), 
(32b), and (5) imply the form Eq. (10) for H. 

The partial differential equations (34c) for K have 
as their most general solution 

K = X1P1' VI + X2P2' V2 + Xl (X" , v .. , r .. ) (35) 

where, according to Eq. (32c), Xl is a vector function 
of its arguments. Putting the forms (35) and (10) into 
Eqs. (3Id), we find that Xl is restricted by the following 
condition: 

whose most general solution, when inserted into Eq. 
(35), yields 

K = X1(P1 • VI + !A) + X2(P2 • v2 + !A) 

+ x(x, Va' fa), (36) 

where x is a vector function of its arguments. 
Equations (33a, b) remain to be satisfied. When the 

forms (10), (8), (36) for H, P, K, respectively, are 
inserted into Eq. (33b), we obtain the partial differ
ential equation 

V1P1 • VI + tXPl • Vr) - Pl' Vrlx - tXVl • V",A 
+ V2P2 • V2 - !XP2 • Vr2A - P2 • Vr2X - tXV2 • V",A 

+ tV1A + i V2A + V1 • V",X + - V2' V",X 

+ [x, A] = P1 + P2, (37) 

which is linear in P1 and P2' By taking the partial 
derivatives of Eq. (37) with respect to these variables, 
we find the following equations which must be satisfied: 

actx'A - Ki) flii i ; 

art = u - V1V1 ' 
(38a) 

a( -txiA - Ki) _ 0" i i 

a . - - V2V2 • 
r~ 

(38b) 

If we define a new vector function x' by 

X == VI (VI' f 1) - r1 + V2(V2 • f 2) - r 2 + X' (39) 

and insert (39) into Eqs. (38), we find that the latter 
reduce to 

a(tXA - x') = ° 
ai' r 1 

a( -tXA - x') 
= 0, (40) 

ar~ 
whose solutions are 

tXA - x' = xA2 + v1A2 + v2B2 , 

-!xA - x' = -XA1 + VIAl + v2B1 • (41) 

Here ,11' AI, B1 depend upon f 1 ; A2, A2 , B2 depend 
upon r2 ; and all six functions also depend upon x, 
V1 , V2 • In writing Eq. (41), we have taken advantage 
of the fact that any 3-dimensional vector can be written 
as the sum of three independent vectors multiplied by 
appropriate scalar coefficients. 

Upon subtracting one of Eqs. (41) from the other, 
we see that 

XA = X(A1 + A2) + v1(A2 - A1) + v2(B2 - B1)' 

(42) 
which can be satisfied only if 

A = Al + ..12 , 

A1 = A2 , 

B1 = B2 • 

(43a) 

(43b) 

(43c) 
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Since A«, Ba depend upon f« only, it must be true that 
the A«, Ba are, in fact, independent of f1' f2' in order 
that Eqs. (43b, c) be satisfied. We define A == -AI = 
- A2 and B == - B1 = - B2, where A and B are scalar 
functions of 'X, VI' V2. Putting these results into either 
one ofEqs. (41), we find a form for x' that may in turn 
be inserted in Eq. (39) to give us 

x = iX(Al - 1.2) + V1(V1 • f1 + A) - f1 

+ V2(V2 • f2 + B) - f2. (44) 

The partial differential equation (37) still has not 
been completely satisfied. Equations (38a, b), (43a), 
(44) enable us to write Eq. (37) as follows: 

-x(v2 • V",)A1 + [(fl' V1)Vr1 + V1(f1 • Vr.)]A1 + VIAl 

- X(V1 • V,,)A2 + [(f2 • V2)Vr • + V2(f2 • Vr .)]A2 + V2A2 

+ (VI - V2) • V ivlA + v2B) 

+ [vIA + v2B, Al + 1.2] = o. (45) 

At this point in the argument, our forms for Hand K 
are [putting (43a) into Eq. (10) and (44) into Eq. (36)] 

2 

H = .zPa· V« + Aa , (46) 
a=l 

2 

K = .z [xip« • Va + Aa) + viva' fa) - fa] 
a=l 

(47) 

It will now be shown that the remaining Poisson 
bracket equation (33a), which we have yet to discuss, 
imposes additional restrictions on the functions A 
and B. 

V. SATISFACTION OF THE LAST POISSON 
BRACKET RELATION 

We first observe that Eq. (45) may also be written as 

-X[P2' v2, AI] + [J1Va(Va ' fa) - fa' AI] + VIAl 

+ X[P1 • VI' 1.2] + [J1ViVa ' fa) - fa' 1.2] + V2A2 

+ [VIA + v2B, PI • VI + Ad 

+ [VIA + v2B, P2 • V2 + 1.2] + X[AI' 1.2] = o. (48) 

We see from Eq. (48) that [AI, 1.2] is the sum of two 
terms, one depending only upon fI' the other de
pending only upon f 2 : denote these two functions by 
[AI, A2h and [AI' 1.2]2, respectively. Then, Eq. (48) 

may be separated into the following two equations: 

-X[P2' v2, Ad 

+ LtViVa' fa) - fa' AI] + VIAl + X[AI' A2h 

+ [VIA + v2B, PI • VI + AI] ==~, (49a) 

+X[P1 • VI' 1.2] 

+ [JIViV«' f«) - ra , 1.2] + V2A2 + X[A1' 1.2]2 

+ [VIA + v2B, P2' V2 + 1.2] == -~, (49b) 

where ~ is a vector function of x, VI' V2, only. If we 
calculate xW - xgi from Eq. (49a) and calculate 
xW - xgi from Eq. (49b) and subtract, we obtain, 
after quite a bit of manipulation, 

[Ki' K;] + EiikJk 

= [±V~(Va' f«) - r~, viA + ViB] 
a=l 

- [J1V~(Va' f«) - r~, vtA + V~B] 
- (Xi,; - xi'i). (50) 

The left-hand side ofEq. (50) must vanish according 
to the Poisson bracket relation (33a). Hence, the right
hand side of Eq. (50) must vanish identically: 

± [V~(Va • Vv ) - ~](ViA + viB) 
a=I IX av~ 

-± [V~(VIX' Vv ) - ~](vtA + v~B) 
a=1 a av! 

= Xi,; - Xi'i. (51) 

By regarding A and B as functions of their six scalar 
arguments ix2

, tv;, tv~, x • VI' X • V2, VI • V2, Eq. (51) 
may be written as 

.. i' (aA aA 
(vtv~ - VI v:) --2 + - V2 • VVIA atv2 a(Vl • V2) 

--- +v.VB aB aB ) 
atv~ a(Vl • V2) 1 VI 

= x" - x (' + (x'vi - x vD + ---. j j' .. j' (aA aA) 
a(x • VI) a(x • v2) 

+ (XiV~ _ XiV~) ( oB + oB ). (52) 
a(x • VI) a(x • v2) 

Again invoking the independence of the three vectors 
x, VI' V2 , we see that both sides of Eq. (52) must 
independently vanish. The bracketed term on the 
left-hand side of Eq. (52) is of the form X1A - X 2B, 
where Xl and X2 are first-order linear differential 
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operators which commute. The vanishing of this term 
thus requires the existence of a function <1> whose 
arguments are scalar products of x, VI' V2 , such that 

B= (V2.V - ~- a )<1> V2 1 2 • a2 V2 a(Vl • v2) 
(53) 

With these forms for A and B, our expression (47) 
for K becomes 

2 

K = LX..{Pa· Va + Aa) + VaVa' (ra + V va<1» 
a=l 

- (ra + V v <1» + X a<1> (54) 
a a(x. Va) 

A canonical transformation to new variables, 

fa == ra + Vv <1>, Pa == Pa + V", <1>, a a 

as shown in Eqs. (I5) et seq., does not affect the 
forms of P, J, and H. Upon dropping the superscript 
bars from the new variables, we see that the new form 
for K is 

2 

K = L X..{Pa • Va + Aa) + Va(Va • ra) - ra , (56) 
a=l 

and there is no loss in generality in choosing 

A=B=O. (57) 

The vanishing of the right-hand side of Eq. (52) 
requires that 

~ = xr; ) (58) 

where 'YJ is an arbitrary scalar function. In fact, there 
is no loss in generality in setting r; = 0, since it can be 
seen from Eqs. (49) that the part of ~ that is propor
tional to x can be altered or made to vanish by an 
appropriate splitting up of the term x [AI, A2] into 
X[A1' .1.2]1 + X[Al' .1.2 ]2' We can uniquely characterize 
this splitting by requiring it to be such that r; = O. 

We conclude that, when functions AI, A2 are found 
such that Eqs. (49) are satisfied (with A = B = ?; = 0), 
then all ten Poincare generators can be constructed: 
in particular, H is given by Eq. (46) and K is given by 
Eq. (56). 

It is possible to proceed somewhat further with an 
analysis of Eqs. (49), in order to elucidate further 
general restrictions on the functions AI' .1.2 , but 
since these coupled nonlinear equations do not appear 

to be solvable in closed form, such an exercise seems to 
be uncalled for. Accordingly, we will immediately 
turn to consideration of the interesting situation where 
the equations of motion for the physical variables 
xa and Va are independent of the "extra" variables Pa 
and ra' 

VI. ELIMINATION OF EXTRA VARIABLES 
FROM THE DYNAMICS OF PHYSICAL 

VARIABLES 

According to Eq. (46), the equations of motion for 
the physical variables are 

dXa -=v 
dt a' 

dVa _ n " 
- Vr Aa' 

dt " 

(59a) 

(59b) 

Therefore, Eq. (59b) will be independent of r" only if 

(60) 

where aa is a vector function and ba is a scalar function 
of arguments x, VI' V2 • Upon inserting (60) into Eqs. 
(49), we find that each equation contains a term 
independent of ra and a term linear in ra' Since Eqs. 
(49) must be satisfied identically, we end up with four 
equations. The two equations arising from terms 
linear in r1 and r 2 involve only the accelerations a,,: 

-X
i
(V2 ' V",)ai + (atvi + 2vtai) 

~(. a).. . + £.. -v~(v,,· Vv ) + a----: ai + x'(a2 • Vv2)ai = 0, 
,,=1 "v; 

-X
i
(Vl ' V",)a~ + (aM + 2v~ai) 
~(. a).. . + £.. -v~(v". Vv) + -a i ai - x'(a1 • Vv,)ai = o. 

,,=1 Va 

(61) 

Equations (61) were first obtained by Hill10 and in 
I-dimensional form by Currie,u These authors showed 
that the solutions aa are the most general accelerations 
which lead to Lorentz-invariant equations of motion 
of the type of Newton's second law. 

The two equations arising from terms independent 
of r 1 and r 2 are 

2 

-X(V2 • V",)b1 + "[ -Va(V,,' Vv ) + Vv ]b1 £.. a a 
a=l 

+ V2b2 - xa1 • V v,b2 = O. (62) 

Because the choice of bI , b2 does not affect the 
equations of motion of the physical variables, we 
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shall select the simplest solution of Eqs. (62); bI = 
b2 = O. 

To summarize, when a1 and az satisfy Eqs. (61), 
then 

2 

H = ~p"" Va + f",' a" (63) 
0:=1 

2 

K = ~X.(P.· Va + ra' a,,) + V",(V",' ra:) - ra (64) 
a=l 

are satisfactory forms for the Poincare generators,20 
leading to self-contained equations of motion for the 
physical variables. 

VII. CONCLUDING REMARKS 

It is of some interest to display the forms for Hand 
K that reduce to the Galilean forms (19) and (28), in 
the limit of large velocity of light c. To do this, we 
notice that 

bi = m1(1 - vi)!, bz = mll - v~}t (65) 

satisfy Eqs. (62). With these values for bi and b2 

inserted in the expression (60) for A, which in turn is 
inserted in Eqs. (46) and (56) for Hand K, we have 

2 

H = ~ Pa • Va + ra • a" + m",c2(J - v!/c~)k, 
,,=1 

2 

K = ~X",[Pa' Va + ra' a" + m"c2(1 - v!!c!)] 
1%=1 

(66) 

where the proper factors of c have been included. In 
the limit of large c, Eqs. (66) become 

2 

H = ~ m.c2 + Po: • Va + ra . a" - !m"v; + O(V2
/C

2
), 

a=1 
2 

c-2K = ~x"m. - r" + O(V2
/C

2
), (67) 

",=1 

which are the proper Galilean-invariant generators. 
The leading terms in Eqs. (61) for ap are simply 
~a (Jap/(Jv! = 0, which tell us that, to lowest order in 
c, ap depends upon VI and V2 only in the combination 
V == VI - V2 • 

The behavior of the quantized Lorentz-invariant 
theory differs in no essential way from the behavior 
of the quantized Galilean-invariant theory: the Schro
dinger equation has as its consequence the classical 
Liouville equation for the modulus of the wave
function, etc. Because of this, the particular theory 
constructed here does not possess too much physical 
interest. We believe that its chief interest lies in illustra
ting the possibility of obtaining a Lorentz-invariant 
Hamiltonian theory, in which the position variables 
transform properly, by the introduction of a finite 
number of "extra" variables. 

APPENDIX A 

In this appendix we will prove the following: Given 
that there exist three functions Pi' i = 1, 2, 3, of inde
pendent dynamical variables Xl' •.. , xn (and canoni
cal conjugates PI, ... , Pn)' VI' ••• , Vm (and canonical 
conjugates r1, ... , fm), and 4>1' ... ,4>. (and canonical 
conjugates 7Th ..• ,7TJ such that the following Poisson 
bracket relations are satisfied: 

[p"P j ] =0, [X;'Pj] = (jii' (1l!,Pj]=O, (A1) 

then it is possible to find a new set of momenta PI' ... , 
Pn canonically conjugate to Xl' •.. , xn such that 

P = PI +, ... , + p". (A2) 

When this is specialized to the case n = m = 2, s = 0, 
we obtain the result that is needed in the body of this 
paper. 

We first observe that if A~, (J. = 1, ... ,fl, are fl 
known independent functions of N dynamical vari
ables and, furthermore, if 

(A3) 

(where the c~p are constants), then the set of fl homo
geneous first-order differential equations, 

[A",f] == 0, (A4) 

possesses N-fl independent solutions. This is because 
Eqs. (A4) are a complete set: 

[A", [Ap,f)] - [All' [A",f)] = [(A", Ap],f] = 0 

[which follows from the Jacobi identity and Eqs. 
(A3)J; i.e., this introduces no new partial differential 
equation which the function f must satisfy. If we 
introduce another independent function B which 
satisfies 

(AS) 

(where the c~ are constants) and look for simultaneous 
solutions of the homogeneous equations (A4) and the 
additional inhomogeneous equation 

[B,fJ = 1, (A6) 

we will still find N-fl independent solutions: The 
conditions (AS) ensure completeness of the enlarged 
set of equations. 

We now proceed to systematically find the new 
momenta PI , ... , Pn • We first determine Pi by finding 
any solution of the (3 + 3m + 3n) partial differential 
equations: 

[Pi' fiiJ = 0, [v;, fin = 0, [x~ , fii] = 0, 

[xi, ftD = Oil' (A 7) 

i = I, 2, 3, (J. = I, ... , m, and f3 = 2, ... , n. This 
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set of equations is of the form mentioned in the 
previous paragraph. We further note that the solution 
.o~ must be functionally independent of v~, x!, because 
any function of these variables alone would have a 
vanishing Poisson bracket with x~ . 

We next determine Pi by requiring that it satisfy the 
first three of Eqs. (A 7) (with pi replacing .oD and, in 
addition, that 

[xi, .0;] = bi2 , [p~, .0;] = o. (A8) 

As before, a solution may be found that is functionally 
independent of v~, x~, and pi . 

Continuing in this way, we can determine PI, ... , 
PlI-I by requiring that each new component .0: have 
vanishing Poisson brackets with P, Va' Xp «(3 ¢ y), all 
the previously determined components of the p's, and 
also satisfy [x~, p~] = 0ii' We next define 

(A9) 

It folIows from Eqs. (A9) and (AI) and the way in 
which the PI' ... , Pn-l were constructed that 

[V;, .o~] = 0, [X~, p~] = 0pT/flii , [pl~' fi,{] = O. 

(AlO) 

Thus, we have constructed a set of 3n independent 
dynamical variables that are canonically conjugate to 
the x{J, and since Eq. (A9) is equivalent to Eq. (A2), 
our demonstration is virtually complete. 

One more consideration is necessary, however. The 
bracket relations between P and the r, 1>, 1T variables 
are assumed not important to us, and so far these 
variables have not been restricted in any way. How
ever, the p variables we have constructed will not 
necessarily have vanishing Poisson brackets with the 
r, 1>, 1T variables, and so we do not yet have a canonical 
set of variables. However, new canonical variables 
i', ~, iT can be systematicalIy constructed by an obvious 
extension of the method we used to construct the P 
variables. This completes our demonstration: We 
can remove the bars from the constructed set of canoni
cal variables, and this is done in the body of this paper. 

APPENDIX B 

In this appendix we shaIl closely follow Canon and 
Jordan8 to show that the angular momentum can be 
brought to the form 

2 

J = LXa x Pa + Va X ra (81) 
12=1 

by a canonical transformation on Pa and ra which does 
not affect Xa and va nor the form 

(B2) 

Cannon and Jordan used a theorem by Lomont and 
Moses2l which is more general than what we need: 
It is in the specialization of this theorem that this 
appendix differs from their work. 

There is no loss in generality in writing 

2 

J = ~Xa X Pa + Va X ra + N, (83) 
a=l 

where N depends upon alI the dynamical variables. 
However, the physical conditions that Xa and Va trans
form under rotations like vectors [the Poisson bracket 
relations between J and Xa , Va' Eqs. (6), (7)] lead to 
the restrictions 

[N i
, x;] = 0, [N i

, v~] = O. (84) 

Equations (84) tell us that N is, in fact, independent of 
the variables Pa and r{J' As a consequence, we note that 

(BS) 

We further note that, as a consequence of the Poisson 
bracket relation (I b) between P and J, 

[pi + pL Ni] = 0, 

and, therefore, each component of N depends upon 
Xl and X2 only in the combination Xl - X2 == X. 

It foIlows from Eqs. (B3) and (BS) that the Poisson 
bracket relation (2a) between components of J reduces 
to the following: 

Lt1(Xa x Pa + Va X r.);, NiJ 
- [±(X. X P. + v. x ra)i, NiJ = €iikNk, 

.=1 

which may be written as 

Lx N = iN, (B6) 

where L is the partial differential operator 

L == i-lex X V + VI X Vv + V2 X Vv ]' (B7) x 1 2 

The introduction of the factor i is gratuitous: It is 
merely so that certain properties of angular-momen
tum operators, familiar from quantum mechanics, will 
be called to mind. 

We now proceed to show that, as a consequence of 
Eq. (B6), N can be written as 

N = iL1>, (B8) 

where 1> is a function of Xa and Va' 

By taking the cross product of Eq. (B6) with the 
operator L, after some elementary manipulations and 
the use of the operator identity L x L = iL, we obtain 

L2N =LL.N. (B9) 
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Now consider any solution rp of the second-order 
partial differential equation 

Vrp = -iL· N. (BIO) 

For example, one can obtain a solution by expanding 
- iL . N in a power series in any suitable set of eigen
states of V, using Eq. (B 10) to determine the constant 
coefficients in a similar expansion of rp: rp will be 
determined up to an additive function which is an 
eigenstate of V with eigenvalue zero. By substituting 
the form for L . N in Eq. (BIO) into Eq. (B9), realizing 
that the operators V and L commute, we have 

V[N - iLrp] = 0, (Bll) 

which tells us that N - iLrp is an eigenstate of V with 
eigenvalue zero. From elementary properties of 
angular-momentum operators, we realize that it is 
also an eigenstate of each component of L with eigen
value zero, so that we may write 

N = iLrp + S, LiSj = O. (B12) 

Finally, putting the form (BI2) back into Eq. (B6) 
and again recognizing that L x Lrp = iLrp is identically 
satisfied, we arrive at a restriction on S: 

Lx S = is. (BI3) 

The left-hand side of Eq. (BI3) vanishes by virtue of 
Eq. (BI2), so we conclude that S = 0 and N = iLrp, 
as was claimed in Eq. (BS). 

The remainder of our argument is identical to that 
of Cannon and Jordan. s We have shown, using Eqs. 
(B3), (B7), (BS), that J can be written in the form 

where rp depends upon x == Xl - X2, VI' V2. We define 
a transformation to a new set of variables 

(BIS) 

which is readily shown to be a canonical transforma
tion by explicit evaluation of the Poisson brackets of 
these new variables with themselves and with Xa and 
Va' We observe that 

P = PI + P2 = PI + P2 (B16) 

because (V"'l + V "'2)rp = 0; thus, the form of the 
translation generator P is not affected by this trans
formation. Lastly, we see that, from Eqs. (B14) and 
(B15), 

2 

J = I Xa x Pa + VaX i' a' (817) 
a=l 

which is the same as the form (BI) which we set out to 
construct, provided that we drop the superscript bars 
on the new variables. 
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of transformation, which are obtained by solving the n equations 
<J>k(X) = ,¥k(Z} for x in terms of z (or vice-versa), will take one set of 
equations of motion into the other. In particular, if n is even, trans
formations can be found to convert a set of equations of motion into 
any Hamiltonian set of equations in II variables. 

14 E. H. Kerner, J. Math. Phys. 6,1218 (1965). 
15 T. F. Jordan, Phys. Rev. 166, 1308 (1968). 
16 P. M. Pearle, Phys. Rev. 168, 1429 (1968). 
17 In this paper, K is the time-independent boost generator: it is 

used to transform dynamical variables from an unprimed reference 
frame at time t = 0 to a relatively moving primed reference frame at 
timet' = O. 

18 I. Prigogine, NOllequilibrium Statistical Mechanics (Interscience, 
New York, 1962). 

19 M. H. L. Pryce, Proc. Roy. Soc. (London) A195, 62 (1948). 
20 Currie (Ref. 6, Appendix A) and Hill (Ref. 12, Footnote 35) 

have noted that it is possible to find some Lorentz-invariant equa
tions of motion for two particles moving in one spatial dimension, 
within a Hamiltonian framework without extra variables. Curiously 
enough, the generators Hand K in their examples are linear in the 
particle momenta, as are our Eqs. (63), (64). See also E. H. Kerner, 
J. Math. Phys. 9, 222 (1968) for a discussion of this I-dimensional 
problem. 

21 J. S. Lomont and E. H. Moses, Commun. Pure Appl. Math., 
14, 69 (1961). 
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The 2-dimensional square-lattice model of hard dimeric molecules has been studied over the entire 
range of dimer densities. The effects of an external field have been included by allowing different activ
ities for the two possible molecular orientations. Thermodynamic properties have been obtained by the 
transfer matrix technique for lattices of increasing finite circumference and infinite length. The conver
gence with increasing size has been the most rapid of all systems yet studied by this technique, satisfactory 
convergence usually being realized with a circumference of only ten sites. The results are in agreement 
with previous zero-field studies employing other methods. There is no phase transition in the presence or 
absence of an external field, and the equation of state is remarkably insensitive to the field. The limited 
information obtained regarding the nature of the approach to the close-packed limit is consistent with 
recent predictions based on the series method. 

INTRODUCTION 

In earlier papers in this series,1.2 we have reported 
studies of 2-dimensional lattice gases of hard "spher
ical" molecules. The exact finite method (EFM) 
entails the calculation of thermodynamic properties 
for lattices of infinite length and a series of increasing 
finite widths (circumferences). We and others3 have 
reported application of the method to "nearest
neighbor" systems, in which the molecules are so 
small-or the lattice so coarse-that the exclusion 
shell extends only to the coordinated nearest-neighbor 
sites of the lattice (square, triangular, honeycomb). 
The results, confirmed for the first two lattices by the 
series-expansion method4 and by other techniques,5.6 
have revealed the existence of second-order phase 
transitions at densities near 80 % of the close-packed 
density. 

The technique also has been applied to 2-dimen
sional lattice gases with molecules of more extended 
size. 7.8 For the triangular lattice8 this modification has 
yielded a reasonable change in the predicted phase 
behavior: The transition becomes first order and 
recalls the first-order phase transition thought to 
occur for the continuum gas of disk-shaped molecules. 9 
For the square lattice,7 however, increasing molecular 
size produces somewhat erratic results attributable to 
abnormal packing situations in the filled lattice. 

Here we introduce molecular asymmetry into the 
lattice-gas model with a return to the problem of 
dimers on the square lattice, whose initial treatment 
by Fowler and Rushbrooke10 anticipated the present 
procedure by many years. Fowler and Rushbrooke 
were interested in estimating the entropy-or the 
"molecular freedom" -of the square lattice filled with 
dimeric molecules twice as long as they are. wide. 
This problem has since, of course, been the subject of 

several classic publications in which the exact 
partition function has been obtained for finite and 
infinite lattices with various boundary conditions, 
and in the presence of an orienting field,u Also of 
considerable interest is the behavior of this system 
as a function of the density of the dimeric molecules. 
Initial computations of Onsager12 (on a continuum 
model), reinforced by later work of Zwanzig, 13 suggest 
strongly that highly asymmetric (needlelike) mole
cules should show preferential alignment above some 
critical concentration-at least in three dimensions. 
Current studies on 3-dimensional lattice14 and con
tinuum15 models are directed at a determination of the 
degree of asymmetry required for the phase separation 
to occur. 

The evidence has been accumulating that a length
to-width ratio of two is not sufficient, at least for the 
square-lattice model. In a study of dimer correlations 
in the completely filled lattice, Fisher and Stephenson16 

found a strong tendency toward local alignment but 
no long-ranged order. Series expansions by Nagle17 

and Gaunt18 and a variational treatment of the 
transfer matrix by Baxter19 have explored the proper
ties of the partially filled lattice with equal horizontal 
and vertical activities (zero field). No evidence was 
found for any thermodynamic singularity at finite 
activity. Our calculations over the entire density range 
support this position and extend its validity to include 
an external field favoring one orientation over the 
other. We find, moreover, that the equation of state 
is remarkably insensitive to the activity ratio induced 
by the field (except very near close packing). We 
obtain some confirmation of Gaunt's18 prediction of 
the form of the singularity near the close-packed 
limit and indirect evidence bearing on the dimer and 
monomer correlations discussed by Fisher and 

842 
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Stephenson. I6 Finally, some of the techniques em
ployed represent further development of the compu
tational procedure itself. 

METHOD 

We follow as closely as possible the formulation 
previously presentedI.2; the principal modifications 
arise from the need to add a second thermodynamic 
variable (the activity ratio) to the single parameter 
sufficient to characterize systems of hard, symmetric 
molecules or asymmetric molecules in zero field. The 
quadratic lattice under consideration is viewed as in 
Fig. 1, with a cylindrical boundary condition imposed 
in the horizontal direction (circumference M, assumed 
even) and with infinite extension in the vertical 
direction. It may be seen that the position and orienta
tion of a dimeric molecule is characterized by the bond 
it covers.20 We label the horizontal bonds only, indi
cated by crosses in the diagram, which represent 
possible sites for vertically oriented molecules. Vacant 
locations in the lattice will here be viewed simply as 
holes, although, equivalently, they may be considered 
as occupied by monomers. 

The transfer-matrix technique introduced by 
Kramers and Wannier2I generates thermodynamics of 
the semi-infinite22 lattice by means of a matrix P(x, y), 
whose Latin subscripts will refer to configurations of 
adjacent rings of the lattice, partially occupied by 
vertical molecules (on horizontal bonds); the param
eters x and yare the activities of horizontal and vertical 
dimers, respectively. In this description the matrix 
element Pu(x, y) is given by 

(1) 

where ni is the number of vertical dimers in the ring 
configuration "Pi and Hi;(x) is a polynomial (degree 
~ iM) representing the partition function of the 
horizontal dimers occupying the vertical bonds 

FIG. I. Dimers on the square lattice, viewed as a "paving" 
problem. The crosses indicate possible reference sites for molecules 
oriented vertically (the direction in which the lattice is infinite). 
The horizontal molecules have a different activity in the presence 
of a field and in a statistical sense determine the interaction between 
adjacent rings of vertical dimers. 

between the two adjacent rings of horizontal bonds. 
This factor clearly depends on the configurations "Pi 
and "Pj of vertical dimers, and in fact vanishes if these 
configurations are incompatible (due to overlapping 
molecules). Otherwise, the projecting vertical mole
cules from below and above divide the ring of M 
interstitial squares into disjoint segments k of length 
Ik' 1 ~ k ~ iM. Since these segments may be paved 
independently, we can express Hi;(X) as a product of 
factors of the form hwc)(x) , which are polynomials 
easily seen to be generated by the recursion formula 

(2) 

The initial conditions are h2(x) = 1 + x and ha(x) = 
1 + 2x. [For closed rings, needed only for 1= M, the 
initial conditions are 

h2(x) = 1 + 2x, h3(x) = 1 + 3x.] 

We are using the grand partition function, for which 
the dimensionless pressure plkT for the semi - infinite 
lattice is given by the dominant eigenvalue Al of P 
byI.2 

(3) 
with 

Al(X, y) = max vPv. (4) 
.. =1 

Although the eigenvector v belonging to Al is depend
ent upon the activities x and y, the densities of hori
zontal and vertical molecules may be computed as if 
all activity dependence were contained in the transfer 
matrixI: 

Mpx = a In Alia In x = (xIAl)vPxv, 

Mpll = a In Alia Iny = (yIAl)vPlIv. (5) 

The elements of the derivative matrices P", and Pyare 
to be obtained by differentiating Eq. (1) with respect 
to x and y, respectively. The densities so defined are 
the mean number of dimers of specified orientation 
per lattice site. 

Since the symmetric matrix P is finite and its square 
has strictly positive elements, we know from Perron's 
theorem that Al is nondegenerate and an analytic 
function of x and y. There can be no true singularity 
in the thermodynamic functions, except possibly in 
the limit M --+ 00, as is usual for lattice systems of this 
sort. 

Since the vertical molecules in anyone ring are 
strictly independent of each other, it follows that there 
are 2:11" ring configurations for a circumference of M 
sites, or the transfer matrix is 2J1 X 2.11. It is thus 
desirable to use the dihedral symmetry of the model 
to reduce the amount of arithmetic required. Specifi
cally, we group together in an equivalence class Ka. 
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all of those states "Pi which are transformed among 
themselves by the operations of the dihedral group 
D J[. The actual numerical operations are then per
formed on the reduced matrix 1t with elements given by 

(6) 

The dimension of the matrix 1T may be determined by 
an application of Polya's theorem. For details and 
further explicit formulas for the thermodynamic func
tions based on the reduced matrix, see Appendix A. 

The determinations of the permissible ring con
figurations and necessary matrix elements, as well as 
subsequent arithmetic, were accomplished with modi
fications of the MAP computer program employed 
in previous investigations. Modifications of three 
types were important: (1) There are now two inde
pendent parameters to vary rather than one; (2) due 
to the factors Hij(x) , previously integral matrix 
elements are now floating point numbers and can no 
longer be "packed" to conserve storage; (3) an addi
tional matrix of the same dimension as 1t is required 
to determine the horizontal density Px' 

These three factors together led us tentatively to 
discard the use of external storage in favor of the 
more rapid calculations possible when all storage 
is in the central processor. This decision implied a 
significant reduction in accessible lattice size and was 
adopted firmly only after the rapid convergence 
discussed in the next section became established. 

We investigated 19 different values of the activity 
ratio T = x/y, by varying the parameter ~ = T/(l + T) 
from 0.05 to 0.95 in steps of 0.05. Owing to the non
equivalence of the horizontal and vertical directions 
imparted by our technique, we felt it desirable to 
allow T to assume values greater than one as well as 
values less than one. At constant field (fixed values 
of 0 the logarithm of the vertical activity y was 
incrementally changed over a wide range of values, in 
steps of 0.1. At each stage the dominant eigenvector 
and eigenvalue of 1t were determined iteratively by 
repeated multiplication and renormalization of a 
trial vector. 23 The iterations ceased when the squared 
length of the vector change between successive trial 
vectors fell below a predetermined value, set at 1O-1l. 
The thermodynamic properties were then determined 
using the equations found in Appendix A. 

RESULTS 

Probably the most significant observation was a 
negative one: the absence of any indication of thermo
dynamic singularities at finite activities. In this way 
the dimer system differs from the nearest-neighbor 

hard-sphere lattice gases. It does, however, call to 
mind the anomalous behavior of more-extended 
symmetrical molecules on the square lattice, where 
the "solid-fluid" transition may be of high order, or 
absent altogether. 7 The feature held in common by 
these systems is a lack of a unique close-packed 
configuration; this is to be contrasted with the specific 
arrangement required for the nearest-neighbor systems 
at close packing. Close-packed dimers do possess 
disorder in thermodynamic quantities, while the 
anomalous quadratic lattice gases do not; the distinc
tion, however, might tend to escape calculations of the 
present sort on finite strips. 

As a general rule, we observed more-rapid conver
gence with increasing circumference than had been 
encountered with the symmetric lattice gases. This 
is undoubtedly due in part to the absence of a phase 
transition. A very abbreviated sample of calculated 
total density Px + py is given in Table I, for three 
activity ratios. Computations for a circumference 
greater than 10 would have required the use of external 
data storage; it was felt, however, that the convergence 
appeared to be adequate for most purposes without 
such extension. 

As is to be expected, the convergence is best at lower 
activities. There is also a decided difference between 
the convergence rate for large values of T and for 
small values, although T and T-1 should be equivalent 
for the doubly infinite lattice. Of all thermodynamic 
properties, the density ratio Px/ Pv is easily the poorest 
in convergence and will be used to illustrate the non
equivalence of T and T-1 for the semi - infinite lattice. 

At zero activity this ratio should equal T, regardless 
of lattice size, and should be approximately T for the 
close-packed lattice. In Fig. 2 we show the quantity 

Inya 

-2 

0 

+2 

TABLE I. Convergence of dimer density with 
increasing circumference. 

Circum- Densityb p,' + pu at activity ratio TC 

ference T=l T=1 T=3 

4 0.115314 0.146332 0.211389 
6 0.115314 0.146305 0.210604 
8 0.115314 0.146305 0.210572 

10 0.115314 0.146305 0.210571 
4 0.290931 0.319797 0.379251 
6 0.290910 0.319105 0.371602 
8 0.290910 0.319064 0.370203 

10 0.290910 0.319062 0.369930 
4 0.415453 0.432287 0.469096 
6 0.415274 0.429447 0.458350 
8 0.415263 0.429037 0.453913 

10 0.415263 0.428961 0.452309 

a Chemical potential of vertical dimer divided by kT. 
b Estimated uncertainty is five in the Jast figure. 
C Ratio of horizontal to vertical activity. The cylindrical latcice is infinite in 

the vertical direction. 
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FIG. 2. Convergence of corrected density ratio () = (p,lp.)r- 1 = yp)xp. for three value:; of the activity ratio x/yo The curves are labeled 
by rounded values of the activity-related parameter u, which is zero for the empty lattice and one for the close-packed lattice. The curves 
for /I = I are exact. The difference in vertical scales should be noted. Convergence is clearly enhanced when the field favors alignment 
along the cylinder axis. 

() = (Pa'; pyh-1 for each of the four lattice sizes 
studied (4,6,8, 10). The curves are labeled by rounded 
values of the activity-related parameter u = z/(l + z), 
where z is a mean activity, 

(7) 

The curves for u = 1 are exact, computed from 
known properties of the close-packed lattice.ll Calcu
lations were actually performed for many more 
activities than shown in the figure. 

Examination of Fig. 2 reveals interesting detail 
about the effect of finite circumference and the rate 
of convergence with increasing circumference. For 
any external field the corrected density ratio () is 
greater for finite circumference than for infinite 
circumference, showing an enhanced tendency of the 
dimers to align perpendicular to the cylinder axis. 
This is due, at least in part, to the added weight which 
is in effect possessed by configurations containing 
circumscribing rings of horizontal molecules; each 
such ring may be rotated by one lattice site without 
disturbing any other molecules. The extra degeneracy 
would not apply to circumscribing rings composed 
entirely of vertical molecules, since the rotated con
figuration would be indistinguishable from the 
original. 24 Configurations of either type would occur 
less frequently for larger lattices, which correlates 
with the positive slopes shown in Fig. 2. 

The slopes, however, are decidedly smaller (corre
sponding to more rapid convergence) for activity 
ratios 7" less than one than for values of 7" greater than 
one. Two factors contribute to this difference. With 
7' < I, the forced predominance of vertical molecules 

moderates the finite size effect just discussed by 
rendering rings of horizontal molecules unlikely even 
for small circumferences. Moreover, the large quantity 
of vertical molecules required at higher densities can 
still accommodate occasional horizontal molecules 
and holes, in any number per horizontal ring; in the 
corresponding situation for 7" > 1 (and even circum
ference), the predominant horizontal molecules are 
restricted by the requirement that an even total number 
of vertical molecules and holes must be encountered 
in any horizontal ring. This restriction amounts to 
long-ranged correlations for molecules perpendicular 
to the cylinder axis and recalls the effect found by 
Fisher and Stephenson16 : singlet correlations near 
an edge (of a close-packed lattice) die out more 
rapidly for molecules parallel to the edge than they 
do for molecules perpendicular to the edge. 

Regardless of the external field, convergence is 
always slowest near the close-packed limit. This 
observation is in accord with the very slow decay of 
monomer pair correlations at high densities,16 as well 
as with the singular nature of the close-packed limit. 
With due regard for the slower convergence in this 
region, our results do seem to establish the interesting 
effect suggested in Fig. 2 for 7' = t: with sufficiently 
large field, the corrected density ratio () is not a mono
tone function of the total density, even for the 
doubly infinite lattice. The evidence for this statement 
is stronger for even smaller values of 7' than shown. 

Total thermodynamic properties (such as total 
density or entropy) were found to converge more 
rapidly than the differential quantity () (see, for 
example, Table I). Further discussions will be based 
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T ABLE II. Comparison of EFM with Baxter's 
variational methodR 

S 1 h 

0.1 

0.3 

0.5 

1.0 

2.0 

5.0 

1.38150854 
1.381958 
1.488879377 
1.488912 
1.608381870 
1.608386 
1.940215351 
1.940217 
2.700426573 
2.700426 
5.366618412 
5.366619 

0.48228188 
0.482578 
0.4423290570 
0.442364 
0.4036382364 
0.403646 
0.3190615546 
0.319062 
0.2003225902 
0.200323 
0.06308145191 
0.063082 

R Reference 19, from which the notation is taken. The first of each pair of 
figures is from Baxter, the second from this work (with M = 10). The activity 
ratio is one (zero field). 

b In the present notation, x = v = s2 is the dimer activity. Since the independ~ 
ent variable in our calculations was equally incremented values of 2 In s. the 
EFM figures were obtained by Lagrange four·point interpolations. Their 
estimated uncertainty is 10.-5 • 

C In Baxter's notation In «/s'P) is the entropy per site, S/kB. 
d Dimers per site NIB, in agreement with our density definition. 

on calculations with 7 ~ I and, in fact, will use the 
parameters computed for M = 10 with no attempt 
to extrapolate to infinite circumference. Except for 
the region very near close packing, where the corre
lations become long ranged, it is felt that the numbers 
so produced are valid for the doubly infinite lattice 
certainly to three significant figures and in most cases 
more. 

This claim is supported by comparison with the 
results of a recent study by Baxter19 for 7 = 1. Baxter 
established an exact correspondence between the 
component of the eigenvector v and the traces of 
ordered products of noncommuting infinite matrices. 
Restricting the matrices to finite arrays and applying 
the variational principle led to a hierarchy of approxi
mations indexed by matrix size. Convergence with 
respect to matrix size was found to be very rapid, 
except at very high activities. Shown in Table II are 
some of Baxter's results, felt to be valid (for the 
doubly infinite lattice) to one in the last 'place shown. 
Also included for comparison are the values obtained 
in the present work for M = 10; since 7 = 1 repre
sents our poorest convergence, the results obtained for 
7 < I should be at least as accurate as suggested by 
Table II for the zero-field case. 

Although similar in appearance, there is no direct 
connection between the matrix dimensionalities in 
Baxter's approach and ours. Baxter describes the 
doubly infinite lattice by one diagonal and two 
symmetric matrices (r x r) whose elements are the 
variational parameters; there are r2 + 2r - 2 param
eters after accounting for symmetry and nMmalization. 
In the present approach there are a(M) - 1 parameters 

(see Appendix A): the components of the variational 
eigenvector of our exact matrix 7t describing an 
M x 00 lattice. Baxter's most accurate results (r = 6) 
corresponded to 46 parameters, while our computa
tions for M = 10 in effect used 77 parameters. 
Judging from Tables I and II, it appears that Baxter's 
technique is certainly at least as efficient as ours, and 
probably more efficient. We have not used double
precision arithmetic as Baxter did, but Table I suggests 
that no great increase in accuracy would result unless 
the circumference were also increased. Although 
simplest computationally for 7 = I, there appears to 
be no fundamental reason why Baxter's approach 
could not be used for the more general case. 

As already indicated, no thermodynamic singularity 
was discovered, for any finite activity or field; con
sequently, we shall not attempt to present any com
plete list of numerical results. We do summarize in 
Fig. 3 thermodynamic properties calculated for four 
values of the activity ratio 7, as functions of the con
venient parameter u. In addition to the corrected 
density ratio 0, we show the total density NIB = p = 
poo + Py, the dimensionless pressure plkT, and entropy 
per site S/kB. To some extent the behavior very near 
u = I reflects a finite size effect; for example, 0 at 
T = I should be identically one for all values of u. 
For small values of 7, however, it has been stated 
that 0 actually is not monotonic for the doubly infinite 
lattice. On the whole, the somewhat unorthodox 
approaches to u = I are manifestations of the singular 
nature of the functions at the close-packed limit. 

Based on series analyses, Gaunt18 has shown for 
7 = I that the approach of dimers to close packing 
may be represented by 

(8) 

where A and yare constants and z is the common 
activity. While the Bethe approximation predicts17 

y = 2 and A = 0.1875, Gaunt's extrapolations sug
gested y = 1.73 ± 0.04 and A = 0.3030 ± 0.0004 
for the square lattice. We have attempted to explore 
this asymptotic dependence for several constant values 
of T by plotting In y against In (l - 2p) and deter
mining the slope of the straight line through about ten 
points covering the approximate ranges 50 < y < 250, 
0.07 > (1 - 2p) > 0.02. Subsequently, the implied 
value of the amplitude A was calculated. 

The results are found in Table III and show clear 
substantiation of Gaunt's zero-field values. Several 
factors should be borne in mind, however, in assessing 
these parameters. The convergence (with respect to M) 
is poorest in this density region, and for any circum
ference finite size effects must appear at extremely high 
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FIG. 3. Thermodynamic properties for circumference M = 10. The scale on the left refers to corrected density ratio (J and dimensionless 
pressure p/kT, while the right-hand scale refers to total density p and the entropy per site S/kB. Many more activities (about 100) were 
included in the calculation of the curves. 

densities. Moreover, it is not altogether clear how 
Eq. (8) should be generalized for the case of unequal 
activities. Simply by replacing z by the vertical 
activity y, we have a form which should be exact in 
the limit T = 0 as well as reproducing Gaunt's repre
sentation at T = 1. According to the Bethe approxi
mation (Appendix B), such a correlation should be 
valid with the amplitude approaching 0.25 and the 

TABLE III. Estimatesa of asymptotic form near c1ose-packingh 

y ~ A(I - 2p)-Y. 

Activity ratio Exponent Amplitude 
T }' A 

1.74 0.29 
Jl 1.79 0.29 3 
I 1.83 0.32 , 
1 1.90 0.31 ... 

-}.- 1.93 0.31 1. 

a Obtained by EFM, with circumference M = 10. in the density range 0.465 
to 0.49. The uncertainties for the doubly infinite lattice are difficult to estimate 
but probably less than 0.02 for both exponent and amplitude. ' 

b The Bethe approximation gives )J = 2 for any 7": it predicts amplitudes of 
0.1875 at T = I and 0.25 at T = O. 

exponent approaching 2 as r -~ O. Table III bears out 
the latter but not the former, a fact which may be 
attributable to convergence difficulties. Another 
possibility is the inherent inaccuracy of the Bethe 
approximation at high densities for any nonzero T, 

as discussed in Appendix B. 25 

Finally, we show in Fig. 4 the equation of state 

FIG. 4. Zero-field equa
tion of state (M = 10). There 
is no hint of any singularity 
for any value of the activity 
ratio T. Again, many more 
points were calculated than 
are shown. 
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x Iy = I 
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TABLE IV. Effect of activity 'ratio T on equation of state,S 

Density 
p 

0,05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.475 
0.485 

p/kT at activity ratio T = x/y 
T = Ob T = ! T = 1 

0.0541 
0.1178 
0.1942 
0.2877 
0.4055 
0.5596 
0.7732 
1,0986 
1.7047 
2.3512 
2.8426 

0.0546 
0,1198 
0.1988 
0.2962 
0.4189 
0.5790 
0.7987 
1.1275 
1.7211 
2.3308 
2.7815 

0.0547 
0.1205 
0.2007 
0.2996 
0.4244 
0.5869 
0.8087 
1.1376 
1.7235 
2.3188 
2.7516 

a Circumference M = 10. for which the pressures are exact to the number of 
figures shown. For the doubly infinite lattice the last figure is unreliable at the 
higher densities. 

b Linear lattice, for which plkT = In [(I - p)/(I --- 2p)]; see Appendix B. 

for T = I, obtained by eliminating u and plotting 
p/kT against p. It would in fact be difficult to show 
on the same graph the equation of state for any other 
activity ratio, for it is remarkably insensitive to T. 

To the extent that this statement is true, the pressure 
could most simply be predicted by that of the linear 
lattice,26 for which Eq. (BS) reduces to 

p/kT = In [(I - p)/(I - 2p)]. 

Table IV shows that over a wide range of densities, 
this expression is in error by less than S %. 

DISCUSSION 

We have concluded that the square-lattice dimer 
system shows no thermodynamic singularities, regard
less of the relative activities of the two possible 
molecular orientations, except at the close-packing 
limit. In this sense the asymmetric molecules behave 
more simply than spherical molecules. The absence of 
a two-phase region presumably can be laid to the 
well-known disorder present in the filled lattice. This 
disorder should decrease with increasing molecular 
asymmetry, leading to the belief that linear polymers 
of sufficient length would exhibit an alignment transi
tion; the critical length, however, remains unknown. 
Alternatively, orientation-specific interactions between 
dimers could order a dense phase and stabilize it 
relative to a more dilute, disordered phase.14 ,15 

The calculations presented here show that the 
exact finite method can be applied to model systems 
containing two independent continuous parameters 
(x and y), Other related two-parameter systems 
include lattice gases of symmetric molecules with 
hard cores and soft interactions of longer range. 27 

We have studied such models and will report on them 
shortly. 
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APPENDIX A: SYMMETRY AND 
THERMODYNAMICS 

The reduced matrix 7t incorporates into one class il( 

all those states "Pi which are permuted among them
selves by the elements of the dihedral group D M . 

The number am(M) of such classes containing m 
(vertical) molecules is counted by Polya's theorem28 : 

I am(M)ym = ZJI(f1 ,f2, ... ,fu), 
m 

where Z.lI is the cycle index for the group DJlI and 
Jk = I + yk. For even M this cycle index is given by29 

Z.u = ftU'I-2)t(f~ + 12) + (2M)-1 I rp(k)ftIlk, 

the summation being over the divisors of M; rp(k) is 
Euler's totient function and is the number of positive 
integers less than and prime to k, with the convention 
that rp(J) = I. By setting y equal to one we obtain a 
simpler formula for the total number of equivalence 
classes: 

a(M) = 3 . 2kll- 4 ) + M-1 L rp(k)2UI- k )/k. 

Particular values are (6, 13,30, 78) for M = (4,6,8, 
10), respectively, in agreement with the findings of 
the computer program. 

The actual computations are then based on the 
matrix 7t. We determine numerically the dominant 
left eigenvector; (belonging to AI), with components 
related to those of normalized eigenvector v of P by 

(AI) 

where Wa is the number of states in class Ka. Since 7t 

is not symmetric, the corresponding right eigenvector 
is not (the transpose of);; it may, however, be shown 
that this right eigenvector is closely related and has 
components ~a/wa' 

The calculation of the vertical and horizontal 
densities are based on Eqs. (5). The former is the 
simplest, since y(oPi;/oy) = ten, + n)Pij; Eqs. (6) 
and (Al) then lead to 

py = M-1 ! na~;/! ~! . (A2) 
:x (f)a. a UJa. 

The horizontal density is somewhat more difficult to 
compute, owing to the more complicated x depend
ence of P. Following from Eqs. (4), (6), and (Al), we 
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have 

(A3) 

where 

A -1 ~ OPii 
afJ = WfJ "- X - , 

tl'jEKp AX 
(A4) 

The indicated derivatives oPdox must be determined 
from the factors Hii(X), which have the form 

The derivatives dHij/dx, in turn, are most conveniently 
expressed as 

dHii/dx = HoCx) I h;(k)(X)/ill!ljx), (AS) 
k 

in terms of the derivatives h;(x) of the basic polyno
mials hl(x). The computer determination of the matrix 
elements AafJ was based on Eqs. (1), (A4), and (AS), 
together with a recursion relation for h; (x) which 
follows immediately from Eq. (2). 

Once the densities have been determined, all other 
first-order thermodynamic properties follow immedi
ately. Thus the Gibbs free energy per molecule is given 
by 

fl/kT= (p",lnx + p"lny)/p, (A6) 

the entropy per molecule by 

S/kN = p-I(p/kT) - fl/kT, (A7) 

and the entropy per site by 

S/kB = p/kT - Pfl/kT. (A8) 

APPENDIX B: THE BETHE APPROXIMATION 

Following Nagle,I7 we derive the Bethe approxi
mation for the more general case of unequal horizontal 
and vertical activities by way of a mean field estimate 
of the entropy S = k In WeB, Nx, Ny) of a large 
quadratic lattice of B sites, with Nx = PxB horizontal 
and Ny = pyB vertical dimers. Denoting by N the total 
number of dimers, N = Nx + Ny, and by C the com
binatorial factor B!/[(2Nx)! (2Ny )! (B - 2N)!J, we 
have 

W = [C22.Y][PxPxp;].Y~[PYP"P;].Y·[p,;p~]~(B-2.\). (Bl) 

The abbreviations Px = 1 - Px and py = 1 - py have 
been used. The first factor is the number of choices of 
the 2N lattice sites which are to be covered by an end 
of a dimer, multiplied by an orientational factor of 
2 for each. The next three factors estimate the proba
bilities that the four neighbors of each x-dimer site, 
y-dimer site, and vacant site, respectively, will have 
compatible designations. Each of these latter factors 

occurs as a power equal to one-half the number of 
appropriate sites to avoid double counting. 

From Eq. (Bl) we obtain for the entropy 

S/kB = - p", In Px - py In py - (1 - 2p) In (1 - 2p) 

+ (1 - Px) In (1 - p",) 
(B2) 

in which we can recognize the last two terms as the 
excess contributions. Equation (B2) now serves as a 
thermodynamic potential function from which we 
can by differentiation obtain other properties such as 
activities and total pressure: 

x = Px (1 - Px)(1 - 2p)-2, (B3) 

Y = py (l - py)(I - 2p)-2, (B4) 

p/kT = In (1 - p",)(1 - py)/(l - 2p). (BS) 

These formulas have as special cases the zero-field 
equations (x = y, p", = Pv = p/2) and the linear lattice 
description (x = ° = p"" py = p). 

It should be recognized, however, that although 
these expressions are exact for the limit T = x/y = 0, 
they are seriously in error for the close-packed lattice 
at any finite T. Thus it may be shown from Eqs. (B3) 
and (B4) that the corrected density ratio 

() = (Px/ py)T-I 

is predicted to be given by () = I - p + OCT) for 
small T, or e = t at close packing and vanishingly 
small T. On the other hand, the exact result isH 

() = T-
1 tan-1 

T -+ ~ 
t7T - tan-1 

T 7T 

in this limit. It is apparent that for sensitive parameters 
the Bethe approximation is not reliable at high densi
ties, even for very small values of T. 
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A self-consistent measurement theory is set forth in this paper, which can be applied to the problem of 
measurement in field theory. Following the formulation of Birkhoff and von Neumann, we construct a 
system ofaxi.oms suff.cient to ensure that i~ is possible to find an implicit mechanism within each theory 
for the expenn.ental procedure correspondmg to each observable proposition of that theory. It is shown 
that any theory of a type similar to quantum mechanics cannot consistently describe a closed system 
from the point of view of a single observer. 

I. INTRODUCTION 

For some time it has been generally recognized that 
the quantum theory of measurement, as applied to 
field theory, is self-contradictory, and Schwinger1 

suggested that this fact may be the cause of the 
persistent problems of field theory. In the original 
article on the measurement theory of quantum 
electrodynamics, Bohr and Rosenfeld2 assumed that 
the experimentalist has at his disposal test bodies of 
arbitrarily large mass and charge density, which 
could be coupled directly to the electromagnetic field. 
This assumption is questionable in several respects. In 
the first place, interactions between the field and 
macroscopic objects can never be precisely localized, 
so that the fundamental dynamical quantities cannot 
have direct observational significance. Secondly, al
though such interactions involve collective effects, 
ultimately they are mediated by the primary inter
actions, which are known to be strictly limited in 
number, strength, and character. Indeed, no entirely 
consistent measurement scheme for field theory is yet 
known, i.e., one which does not involve concepts alien 
to field theory, such as rigid charge distributions with 
a finite number of degrees of freedom. In the foregoing 
example, it is problematical whether all the quantities 
which we asserted at the outset to be observable can 
actually be measured by any physically realizable 
mechanism. Thus, there might arise doubt concerning 
the internal consistency of such theories. 

language in which the ideas of a general theory of 
measurement can be expressed. 

Recently, however, there has been a resurgence of 
interest in the conceptual foundations and physical 
uniqueness of quantum mechanics along the line of 
investigation initiated by Birkhoff and von Neumann3 

over thirty years ago, the so-called axiomatic quantum 
mechanics; several books4 and scores of articles have 
been published lately on this topic. The same method 
of analysis can be extended to the case of field theory 
in a straightforward manner. Its great generality 
makes the axiomatic method a convenient medium for 
the expression of ideas in physical epistemology. 

The object of the present program is not to repro
duce the features of quantum field theory, but rather 
to seek a self-consistent measurement theory for 
systems of this kind. This means that in every ad
missible theory we must require that an implicit 
mechanism exists for the experimental procedure 
corresponding to each observable proposition. The 
purpose of this paper is to indicate how one might 
construct a system of axioms, similar to that of axio
matic quantum mechanics, which ensures that the 
foregoing requirement holds, even without specific 
information about the nature of the fundamental 
interactions. Of course, it may be desirable to impose 
additional conditions upon any proposed description 
of physical reality. 1t should be noted that, while this 
meta theory was conceived in connection with field 
theory, it is quite general and therefore applicable to 
any aspect of theoretical physics, for example, ordi
nary quantum mechanics, although that was not the 
original intention. The application of this method to 
problems of field theory is reserved for subsequent 
publications. 

However, in the meantime not much progress has 
been achieved in eliminating these contradictions. 
Some of them have been tacitly conceded in the axio
matic formulation of field theory, but as yet there has 
been no systematic attempt to resolve them in a funda
mental way. Certainly, this problem is no simple one, 
for it is complicated by the reciprocal relation between 
a measurement theory and the physical properties II. FUNDAMENTAL PRINCIPLES 

which it describes; at the same time that it underlies Empirical evidence supporting the quantum theory 
all of physical theory, it is also a consequence of that suggests that a complete description of physical 
theory. Thus, it is extremely difficult to find a suitable reality is necessarily a probabilistic picture. At any 

851 
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rate, a deterministic theory can always be represented 
as a special case of a statistical one. If we abstract a 
portion from the physical universe and restrict our 
attention to it, we can prepare an ensemble of 
representatives of this system and employ the relative
frequency interpretation of probability. Therefore, to 
a physical system in any given state Cl, we can attach 
a probability that any empirical proposition a about 
the system is true; this probability we denote p«(a). It 
is easy to define a partial ordering on the propositions: 
a ~ b if and only if pia) ~ p«(b) for all states Cl. This 
relation corresponds closely to the implication relation 
of ordinary logic. Given any pair of propositions a, b, 
it is reasonable to assume that a supremum and 
infimum with respect to this ordering can be found, 
with the obvious interpretation. This is precisely the 
definition of a lattice. Therefore, we assume that the 
set of propositions characterizing the given system 
forms an orthocomplemented complete lattice L, 
called the logic of the system, which defines the latter 
physically. With each system we also associate an 
abstract set of states S L' although strictly these are 
analogous to classes of partial states. Then we can 
write Lp: S L X L -+ [0, 1] c R, making the depend
ence on L explicit, to indicate the fact that Lp is a 
map which assigns to each physical state and propo
sition about the system a definite probability in 
the closed interval [0, 1]. In accordance with the 
Kolmogorov axioms of probability theory, we pos
tulate the first axiom. 

Axiom I: L is a family of orthocomplemented 
complete lattices. For each L E C, there is an abstract 
set SL of (relative) states and a function Lp:SL X 

L -+ [0, I] c R such that if Lp«(a) ~ Lp«(b), for all 
Cl E S L' then a ~ b. There are idealized propositions 
0, 1 E nLEL L such that Lp«(O) = ° and Lp,(l) = I 
for all Land oc E SL. Each map r'Pa is countably ad
ditive, that is 

for all Cl E S L and countable families of propositions 
a i E L. 

J n accordance with our assumption that the proba
bility measure Lp contains all possible physical in
formation about the system, we must insist that distinct 
states and propositions yield different probability 
distributions, since this is the only method of dis
tinguishing between them. To assure this uniqueness, 
we require the axiom: 

Axiom 2: If Lp«(a) = LPa(b) for all Cl E SL' then 
a = b. Likewise if Lp«(a) = Lpp(a) for all a E L, then 
Cl = /3. 

Part of the dispersion in these probabilities may 
arise from the fact that the ensembles of systems on 
which they are based are statistical combinations 
originating from several different sources or modes of 
preparation. To provide for the existence of such 
mixed states, we need the following: 

Axiom 3: For every countable family of states 
Cl j E SL and every convex partition of unity Ij' there is 
a state oc E SL such that 

00 

r'p.(a) = L tj Lp.j(a), for all a E L. 
j~l 

It is natural to write the mixture Cl as a formal sum 
of the states Cl j and to denote it as ':i.ljClj. States which 
cannot be formed from such linear combinations of 
other states are called pure; presumably the prepara
tion of all representatives of such states is uniform, 
and any dispersion in the probabilities arising from 
pure states may be ascribed solely to the essentially 
statistical character of the theory. In classical me
chanics, all pure states are dispersion free; that is, all 
probabilities computed for pure states have either of 
the values ° or I. 

III. MEASUREMENT THEORY 

Up to this point, we have refrained from innova
tion, and the preceding axiomatic formulation merely 
duplicates that of Birkhoff and von Neumann, and 
also Mackey and Jauch and others, suitably general
ized. However, our course now diverges from theirs, 
since our objective differs. Since we intend to con
struct a self-consistent measurement theory, we must 
first inquire into the nature of physical observation. 
For the purpose of conceptual clarity, we abstract a 
portion of the physical universe as the system under 
consideration, which we observe by means of experi
mental apparatus which ordinarily do not enter into 
the description of the system. On the other hand it is 
possible, by enlarging the system under consideration, 
to include part of the apparatus in our description of 
physical reality, and thereby construct a model of the 
measuring process. Interactions between the observed 
system and the measuring apparatus produce corre
lations which make physical measurement possible. 
Of course, this procedure can be repeated arbitrarily 
many times, and the system described can thus be 
made as large as desired. Since the division of the 
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universe into parts is entirely factitious, it must make 
no difference how this partition is made, consistent 
with the requirement of observability. In particular, 
if we are given two different domains on which 
physical systems can be described, there must also be 
a third domain which contains and encompasses each 
of the other two. Also, it may be possible to describe 
a certain subsystem on a restricted domain. In either 
case, the description of the physical system must 
coincide in the regions common to the various pairs of 
domains. This is expressed formally as the axiom: 

Axiom 4: For any pair of lattices L~, Lp E C, there 
is Ly E C with L~ C L Ly, L(J C L L)' such that, given any 
)' E SLy there is rx E S L~ and (3 E S Lp such that 

L~p~(a) = Lyp,(a), for all a E L~ 

and 
Lppp(b) = L~p/b), for all bE Lp. 

Likewise for any state rx E S L and lattice L' C L L, 
there is bE SL' such that L'Po(d) = Lp~(d) for all 
dEL'. 

Thus, we see that the states of SL" where L' C L L, 
are actually equivalence classes of states of Sf-, by 
Axiom 2. 

Now as a rule, in microscopic physics, the experi
mental apparatus consists of some sort of detector 
coupled to an amplifier which is capable of displaying 
the results of measurement on a macroscopic scale, 
for example the pointer of an instrument. We assume 
that the indications of these instruments are essentially 
independent and simultaneously observable in them
selves; that is, that propositions concerning theindi
cations of these instruments, e.g., positions of pointers , 
conform to the rules of ordinary logic. Furthermore, 
since these indications are directly perceptible, we 
assume that ideally they are uniquely correlated with 
the corresponding states of consciousness, so that they 
can be conceived as identical with the act of cognition. 
This last assumption has the double advantage of 
eliminating the need for any subsequent observers, 
and also of replacing conscious phenomena with 
relatively simple mechanical analogs of them; how
ever, it can be modified somewhat without serious 
consequences. To phrase these assumptions more 
precisely, the propositions about the readings of 
indicators form a Boolean algebra which is a sub lattice 
of the composite system of object and apparatus. 
Probabilities of microscopic events are operationally 
defined by equating th'!m to the probabilities of the 
corresponding macroscopic events. When we have 
been able to correlate propositions referring to the 

experimental system uniquely with the propositions 
of this Boolean algebra, we shall consider that the 
description of the measurement procedure is com
plete. The content of the foregoing discussion is 
summarized in the following axiom. 

Axiom 5: For every LEe, there is a lattice L' E C 
such that L C L L' , a Boolean algebra Ln C L L', and 
a map h from a subset M C s LB onto L, such that for 
every IX E SL there is )' E SL' such that,5 for all 
bEM, 

LpAh(b)] = L'py[h(b)] = L'py[h(b) n b) = L·pib). 

Now let us prove a theorem, 

Theorem 1: If L has a maximal element L J1 , then 
L J1 is Boolean. 

By Axiom 5, there is LB c L L111 and a map hM 
from a subset M C s LB onto L.ll , such that for every 
rx E SL there is )' E SL , such that for all bE M, 

M .If 

But, since hM is onto L M , we must have IX = )' and 
h.lt(b) = b by Axiom 2. Therefore, h.11 is just the 
identity map on L JI, implying that M = LB = L 111 

and L.11 is Boolean. Q.E.D. 

The preceding theorem has rather far-reaching con
sequences. Since every orthocomplemented sublattice 
of a Boolean algebra is Boolean, it is clear that if any 
of the lattices in L are not Boolean, then these lattices 
cannot be contained in a maximal element. Hence, by 
Zorn's lemma, C has no upper bound in this case. This 
means that for such systems there is no totality of 
physical knowledge. 

We shall not consider systems in which all of the 
lattices in C are Boolean, inasmuch as clearly the 
theory is not intended to treat this case, which always 
leads to a trivial measurement theory. This case is 
precluded by the empirical evidence supporting the 
quantum theory. 

Next we need to organize these logics L somewhat. 
Characteristically, physical measurements can be 
quantified; that is, the results of measurement can be 
disposed into suitably topologized scales. A prob
ability measure associated with one of these scales 
assigns a probability that a physical observation yields 
a result that lies within each measurable subset of this 
scale. Thus, by Axiom 1, each probability measure 
corresponds to a a-homomorphism into L. The set of 
measurable subsets of each scale forms a sublattice of 
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the subset lattice of that scale. Since the subset lattice 
of every set is distributive, so is every sublattice, and in 
particular the lattice of measurable sets. Furthermore, 
the homomorphic image of this lattice is also distrib
utive. The image of this homomorphism is a sub
lattice of L and has the orthocomplementation of L 
induced on it. Thus, it is a Boolean algebra. But 
generally speaking, and indeed in the case of interest 
here, L is not Boolean. In this case, none of these 
homomorphisms is onto. The image of each a-homo
morphism will be called a physical observable. The 
condition that every proposition in L lie in the range 
of at least one observable, has been obtained by 
Varadarajan,6 who found that it is just the separa
bility of L. In accordance with his results, it is reason
able to define an observable in L as a maximal Boolean 
sublattice of L. Consequently, for the present pur
poses, we shall assume that each logic L is separable. 
Let us denote the observables of L as Ai and the 
corresponding a-homomorphisms Ai' Then we have 
Ai: M(X;) -+ Ai for all observables, where Xi is the 
scale of the observable Ai and M(X;) is a a-algebra of 
subsets of Xi' the measurable subsets. As a rule, we 
will have the lattice-theoretic relation 

where P(X;) is the power set of Xi' made into a lattice 
by the obvious construction, and T(Xi ) is the topology 
of Xi' for all observables At. (Note that the topology 
of every space is a join-complete, distributive sub
lattice of its subset lattice.) In like manner, we denote 
the observables of LB , given by Axiom 5, as C: . 

A common feature of all known physical theories is 
the existence of algebraic relations between observable 
quantities. We may reasonably expect that, as in the 
semiclassical analysis of the quantum theory of meas
urement in field theory, 7 simple formulas can be 
found which express the relation between the prob
ability distribution of each observable Ai, over its 
domain Xi' and the probability distributions of 
various observables of L lJ , representing indications of 
the experimental apparatus. In particular, suppose 
that there is a pointwise correspondence; that is, there 
is a function, to be specified further below, for each 
observable Ai, say gi: Ilk Yk -+ Xi' relating meas
urements corresponding to points on the scale Xi to 
points on the scales of the experimental apparatus 
Y". Then we can formalize this general conception of 
a correspondence in the following axiom: 

Axiom 6: Each lattice L E L is separable. For every 
observable Ai in L, there is a measurable function 

AlE) = h[g,(Il~k)Cl<J ~ CkCF1J] 

for all E E M(Xi ), where h is given by Axiom 5. 
The completeness of L ensures the existence of the 

argument in the right member of the preceding 
equation. This is the most general condition which 
ensures the existence of recognizable relations between 
the observables of the experimental system and those 
of the experimental apparatus. If, for a moment, we 
restrict our attention to the case where gi is a function 
of one variable only, we see then by Axiom 5 that such 
correspondences induce homomorphisms from sub
lattices of LB to the observables Ai. It is natural, 
therefore, to speak of the general correspondences 
defined above as generalized homomorphisms. 

IV. CONCLUSIONS 

We have analyzed the experimental procedure and 
have attempted to formulate intuitively plausible 
axioms which appear to be absolutely necessary con
ditions for a physical theory which yields a consistent 
measurement scheme. It is easy to verify the consis
tency of the axiom system by considering classical 
mechanics. In this case, C contains a single element, 
the lattice of measurable subsets of phase space. 
Although this example is not included in the case of 
interest here, nonetheless, it suffices to illustrate the 
consistency of the axioms. Jauchs has shown that the 
superposition principle precludes Boolean logics. 
However, it would be desirable to discover a more 
intuitive principle which explains the non-Boolean 
nature of quantum mechanics. For the present, it 
seems impossible to find such a principle. 

In this connection, the result of Theorem is 
significant. If any of the logics is not Boolean, then 
there exists no totality of physical knowledge and no 
total system. Tn particular, if the universe is assumed 
to be a closed physical system comprised entirely of 
elementary particles which are individually indis
tinguishable, then it seems possible to describe it by 
means of a maximal logic, which by Theorem I would 
have to be Boolean. This apparently contradicts the 
possibility of quantizing such closed systems as the 
universe from the point of view of a single observer. 
However, such cosmological questions are purely 
incidental to the purpose of the present study, and we 
merely note one implication of this result, without 
further comment. 

Implications of the present formulation are the 
subject for further study. It remains to be determined 
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whether conventional quantum field theory, or any 
similar theory, obeys the system of axioms which we 
have constructed. These questions will be investigated 
in subsequent articles in this series. 

1 See the editor's preface in Quantum Electrodynamics, J. Sch
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chanics (W. A. Benjamin, New York, 1963); J. M. Jauch, Foundations 
of Quantum Mechanics (Addison-Wesley Publ. Co., Inc., Reading, 
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Mass., 1968). The latter reference contains a comprehensive bibliog
graphy, which the reader should consult for a survey of recent 
research. 

5 In many presentations of axiomatic quantum mechanics, the 
lattice operations nand u are identified with the operations of 
conjunction and disjunction, respectively, of ordinary logic. Al
though for reasonable physical systems this interpretation is 
satisfactory, simple examples suffice to show that in general, this 
correspondence is no more than formal. Indeed, if c is the propo
sition which is defined to mean "a and b are true," then one can 
only prove that c ~ a n b. It is worth remembering this fact when 
reading Jauch's book. Nonetheless, one can still see the necessity of 
the condition in Axiom 5. 

6 V. S. Varadarajan, Commun. Pure Appl. Math. 15, 2, 189 
(1962). 

7 B. S. DeWitt, Dynamical Theory of Groups and Fields (Gordon 
and Breach Publishers, Inc., New York, 1965). 
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Neutron-wave propagation in a system consisting of two adjacent half-spaces having different properties 
is investigated using four models: (A) one-speed diffusion theory; (B) one-speed transport theory; (C) 
energy-dependent diffusion theory; (D) energy-dependent transport theory. An oscillating exponential 
source of neutrons is located in the left medium. Isotropic scattering is assumed for the transport models 
Band D, and a one-term degenerate kernel is used for the energy-dependent models C and D. Elementary 
solutions for each model are obtained and are used to construct the general solution. The resulting 
solutions are identified in terms of incident, reflected, and transmitted components of the wave. Both 
discrete and continuum solutions are seen to exist for models B, C, and D. The analyses given are exact 
except for model C, where the continuum solutions are neglected in the evaluation of the coefficients. 
The expansion coefficients in model B are evaluated by solving a Riemann-Hilbert problem with discon
tinuous coefficients. A similar, but generalized Riemann-Hilbert problem was solv~d to obtain the 
expansion coefficients in model D. 

I. INTRODUCfION 

The problem investigated in this paper is how a 
discontinuity in material properties affects the propa
gation of a neutron wave. The system is made up of 
two adjacent half-spaces which have different neutronic 
properties (see Fig. 1). The problem of neutron-wave 
propagating in an infinite medium, a special case of 
this work, has been studied in great detail, even to the 
extent of including energy-dependent scattering kernels 
to represent crystalline media. The emphasis in the 
single-medium problem is centered on the propagation 
constant. Two definite works on this single-medium 
problem are those of Duderstadt1 and Warner. 2 For 
this two-region problem, the wave properties which 
depend upon the properties of the two half-spaces will 
be emphasized. 

Particular attention is devoted to the structure of 
the incident, reflected, and transmitted components of 

the wave. Decay constants, phase shifts, and ampli
tudes of the waves will be analyzed. It is expected that 
some of these quantities will depend only upon the 
local or single-medium properties, while others will 
depend upon global properties. These global charac
teristics depend upon the properties of both media. 
Discrete and continuum solutions will be generated, 
and the magnitudes of the continuum effects will be 
obtained by examining the discontinuity in the dis
crete components of the wave. 

The models used in the investigation are: 

model A-one-speed diffusion theory; 
model B-one-speed transport theory; 
model C-energy-dependent diffusion theory; 
model D-energy-dependent transport theory. 

It is assumed throughout that scattering is isotropic in 
the CM system. The equations appropriate to these 
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FIG. 1. Problem geometry. 

four models are: 

(A) 

! atp(x, t) _ D a
2
tp(x, t) () _ S( ). (1) 

a a 
2 + a"tp x, t - x, t , 

v t x 

(B) 

1 aN(x, fl, t) aN(x, fl, t) ( ) - + fl + atN x, fl, t 
v at ax 

= ta.,ll N(x'fl', t) dfl' +~S(X,fl, t); (2) 
-I 

(C) 

! atp(x, E, t) _ D a
2
tp(x, E, t) ",,' (E) ( E ) 

a a 2 + .... { tp x, , t 
v t x 

= 1" dE'K(E', E)tp(x, E', t) + sex, E, t); (3) 

(D) 

1 aN aN 
- - (x, fl, E, t) + fl - (x, fl, E, t) 
v at ax 

+ ~t(E)N(x, fl, E, t) 

= t roo dE' [I dfl' K(E', E)N(x, fl', E', I) Jo .-1 

+ tS(x, fl, E, t). (4) 

In the above equations, tp and N denote the diffusion 
and transport distributions functions, respectively, 
and the rest of the notation is standard. 3 As yet, no 
assumption has been made of the structure of the 
scattering kernel in models C and D, except that it 
does not depend upon fl (i.e., it is isotropic). 

Equations (1)-(4) shall be solved for the oscillating 
component of the distribution function only. For this 
wave problem, eiwt is assumed for the time dependence. 
I n the discussion to follow, a neutron-wave function is 
written as Aekx+iwt with the complex amplitude A 
independent of x and t. w denotes the oscillation 
frequency, and k is the propagation constant. 

Also in subsequent equations, the subscript is 
dropped if the discussion applies to either medium. A 
subscript 1 (2) indicates the medium on the left (right). 

II. DEVELOPMENT OF THE GENERAL 
SOLUTIONS 

Mode! A: For this model, the elementary solutions 
are exp (±x/Lj ), where 

_1 __ all, + iw/v 

L~(w) - D i 
j = 1,2. (5) 

The general solution is written as 

"I'(x, t) = eiwt[Ale-xlL, + Ble",IL,], x < 0, 

= eiwt[A2e-xlL. + B2exIL2], x > 0. (6) 

A I, A2, BI , and B2 are constants to be evaluated later. 

Model B: After assuming for either medium 

N(x, fl, t) = eiwt exp ( - (at + :w/V)X) (Mfl), (7) 

L~Ic/>.(fl) dp = at + iw/v, (8) 

and using the method described by Case, 4 two types 
of solutions result: 

BI-Discrete: 

..I.()_l _v_o_ 
'f± fl - 2eat , 

Vo =f fl 
B2-Continuous: 

Vo ¢ (-1, 1); (9) 

c/>.(fl) = !eatP-
V

- + A(V)O(v - fl), v E(-I, 1). 
V-fl 

(10) 

Vo and }.(v) are obtained by application of the normal
ization condition (8): 

at + iw = teatvo In (vo + I), 
v Vo - 1 

(11 ) 

A(v) = at + iw _ !ca/v In (I + v). 
v 1 - v 

After defining 

( 12) 

~Oi = (iw/v + a/i)/vOi ' j = I, 2, (13) 

~j = (iw/v + atj)/v j , j = 1,2, (14) 

one can write the general solution for this model as 

N(x, fl, t) = eiwt [ -a+e-<olxc/>1+(fl) - a_e~OlXc/>I_(fl) 

- L>l(v)e-"'Xc/>l\,(fl) dv 1 x < 0, 

= eiwt [ b+e-';02Xc/>2~ (fl) + b_e"o,x c/>2-(fl) 

+ f/ b )e-<2X c/>2\,(fl) dV} x> 0, (15) 
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where a±, b±, A leV), and A 2(V) are unknown expansion the general solution is written as 
constants. 

Model C: Setting 

'1p(x, E, t) = '1p(x, E)eiwt = X(x)F(E)eiwt, (16) 

one gets 

d
2

x _ eX(x) = ° 
dx2 

' 

(17) 

(
_1_. _ e) F(E) = (CO K(E', E)F(E') dE', (18) 
L2( E) Jo 

where 
1 L:t(E) + ;wjv 

--= 
L2(E) D(E) 

( 19) 

Again, two cases arise resulting in two types of solu
tion. Assuming 

K(E', E) = j(E)g(E') , (20) 

with F(E) normalized such that 

50"" g(E')F(E') dE' = 1, (21) 

the two types of solutions are as foIlows: 

CI-Discrete: 

';2 _ L-2
( E) ¥= 0, V E and w, 

F(E) - F(,; E) - feE) (22) 
- 0, - D(E)[L-2(E) _ ,;~] , 

where ';0 comes from condition (21) applied to Eq. 
(22); 

C2-Continuous: 

';2 _ L- 2(E) = 0, for a range of E and w, (23) 

F(E) = F(,;, E) = F(';+, E), ,; E C+W, 

= F(,;-, E), ,; E CJn (24) 

where 

{c (,;) I ~ = ± (VL:tCE) + iW)! 0< E < oo} (25) 
± vD(E) , , 

F(';± E) _ P feE) 
, - D(E)[C2(E) - e] 

+ A±(.;)t5[~ =F L-\E)], (26) 

A±(';) = 1 _ P rco 
f(E) dE . 

Jo D(E)[L-l(E) - mCl(E) + .;] 
(27) 

Two discrete solutions exist in each medium, so that 

'1p(x, E, t) = eiwt{F(';Ol' E)[_a+e-<OlX - a_e~OlX] 

- !a,A ( ';l)e-·,XF( ~l' x) d';l}' x < 0, 

= eiwt{F(';02' E)[b+e-~02X + b_i02X] 

+ L2B(';2)e-~2XF(';2' x) d,;]}, x > 0. 

(28) 

a±, bI , A (';1)' and B( ';2) are expansion coefficients 
which do not depend upon either E or x. F( ';OJ, E), 
j = 1, 2, are even functions in ';0' allowing one to 
factor them from the discrete solution. 

Model D: Setting 

N(x, fl, E, t) = N(x, fl, E)eiWi 

and defining new variables5 •6 Z and u, where 

u = vfl 
vL:t(E) + ;w ' 

vL:lE) + iw 
Z(x, u) = N(x, fl, E), 

vM(E) 
yields 

aZ(x, u) If-/. ' u ax + Z(x, u) = 'f(u )Z(x, u') du', 

where 

if>(u) = ~ VL.sM(E) 
2 vL:tCE) + ;w 

(29) 

(30) 

(31) 

(32) 

(33) 

G(w) is the area in the u plane which is generated 
when E and fl take on their range of values. To solve 
Eq. (32), we follow a separation of variables technique 
similar to that in the one-speed problem. 

Letting 

Z(x, u) = e-XhlvCu) 

and requiring that 

II if>(u')fv(u') du' = 1 

mwl 
gives 

(1 - u/v)fv(u) = 1. 

Again, two types of solutions arise. 

D I-Discrete: 

v ¥= u or v ¢: G( (f) ), 

f 
Vo ,,/u) = f±(u) = --, 1101= G(w). 

Vo =F 11 

(34) 

(35) 

(36) 

(37) 

(38) 
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D2-Continuous: 

v=u or VEG(W), (39) 

fv(u) = _v_ + p(v)o(v - u), v E G(m), (40) 
v- u 

p(v) = _1 (1 -ff4>(U) _v_ dU). (41) 
4>(v) v - u 

a«O) 

There exist5 two values ±vo for Case DI. Hence, the 
general solution is written as 

eiwtZ(x, u) = -a+Z1+(x, u) - a_Zl-Cx, u) 

-II A(V)Zlv(X, u) dv, x < 0, 

(h(w) 

= b+Z2+(x, u) + b_Zdx, u) 

+ II B(V)Z2JX, u) dv, x> 0, (42) 

G2(W) 

where a±, b±, A(v), and B(v) are the expansion 
coefficients. 

The conversion to N(x, fl, E, t) is easily made. 
However, in evaluating the coefficients, Z(x, u) IS 

easier to deal with. 

III. DISCRETE PROPAGATION CONSTANTS 

The discrete wave was written as e±k;r+irot, where k 
is given as follows for the different models: 

Model A: 

(43) 

Model B: 

k = (at + iw/v) , (44) 
Vo 

where 

at + - lIcatVO In , iW_l (~). 
v Vo - 1 

Model C: 

where 

Model D: 

where 

(45) 

(00 g(E)j(E) dE _ 1. (46 
Jo D(E)[L-\E) - ~g] - , ) 

k = vol, (47) 

If _Vo_ cp(u) du = 1. (48) 
Vo - U 

G(ro) 

Since models A and B are one-speed models, let us 
examine under what assumptions they are compatible. 

Expansion of the logarithmic term in model B reveals 
that 

(49) 
If one writes D = tail in Eq. (43), the result is 

(50) 

Hence, k of model B reduces to k of model Aif as/at = 
c --- I and w/vat « 1. This means that the one-speed 
diffusion-theory value for k is obtained from the one
speed transport-theory result, provided that absorption 
is small, and the collision frequency vat is much greater 
than the source oscillation frequency w. 

Next, the equivalence of the two energy-dependent 
models is shown. If the Corn gold kerneF is used, Eq. 
(46) becomes 

1 = (00 :2:.,M(E) dE 
Jo D(E)[L-2(E) - ~g] . (51 ) 

Equation (48) is given explicitly by 

1 = ! (YJ dE (1 dfl v:2:. tM(E) 
Jo J-l v:2:. t(E) + iw 

X Vo Vo - . ( 
Vfl )-1 

v:2:.tCE) + iw 
(52) 

The fl integrates at once: 

!vo ('Xl dE:2:.,M(E) In [V:2:. t(E) + iw + v/vo] = 1. (53) 
Jo· v:2:.tCE) + iw - vivo 

The logarithm may be expanded to give 

!vo In --- . 1 + - . [ J v [ 1 ( V )2J 
v:2:. t(E) + IW 3v~ v:2:.tCE) + iw 

(54) 
For the diffusion theory (Eq. 51), 

C:2:.t(E~ + iJ (1 
- 3:2:.t(E)[vi:~E) + iw]f 

___ ( v ) (1 + ~~V2 ). (55) 
v:2:.tCE) + iw 3v:2:.tCE)[v:2:.t(E) + iw] 

Therefore, the integrands reduce to one another 
provided that w/v:2:. t(E) is negligible; that is, for the 
two energy-dependent models to have equivalent 
separation parameters (or equivalent discrete propa
gation constants), one must have (v:2:. t)min »w. For 
the case of :2:.tCE) = as + aavo/v, it is only necessary 
that Gavo» w. A numerical comparison of the two 
one-speed theories (A and B) with the two energy
dependent theories (C and D) is simple, provided that 
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the cross sections are properly normalized. One sees 
that the spatial dependence of these waves is not 
energy dependent for these discrete terms, since, in 
the ekx+iwt term, k is independent of energy. The case 
of the continuum terms is, however, different. The 
results of some numerical calculations quantifying 
these effects are shown elsewhere. 8 

IV. CONTINUUM PROPAGATION CONSTANT 

The propagation constant k assumes a continuum 
of values in all models except model A. The set of k is 
a line set for models Band C, and is an area set in 
model D. The expressions for these continuum propa
gation constants are given below: 

Model B: 

(
iW )-1 ( 1)' k = -; + O't v , v E -1, , 

Model C: 

k=~, ~EC±(~), 

{c (~) I ~ = ± (V~t(E) + iW)!, 0 < E < oo}; 
± vD(E) 

Model D: 

k=v-1
, vEG(W), 

(56) 

(57) 

(58) 

(59) 

{G«(I) I U = VI-' ,0 < E < 00, -1 -::;'1-' -::;, I}. 
v~lE) + iw 

(60) 

In model B, the I-' (in model C, the E) variable, gives 
rise to the continuum solution and, in model D, both 
E and I-' are present, resulting in an area continuum. 
The regions where these continua exist are shown in 
Figs. 2-4. 

-0; 
I 
I 

fJ 

o 
/------ ~ 

~sz 

K PLANE 

ex 

FIG. 2. Lines in K plane which are valid propagation constants. 

S PLANE 

// 

I PLANE 
/ 

/ 
/ 

/ 
/ CZ+ 

FIG. 3. The open curve C = C1 _ U C2+. 

V. APPLICATION OF THE BOUNDARY AND 
INTERFACE CONDITIONS 

The source is assumed on the left, and is one of the 
elementary solutions in each model. The neutron 
distribution function vanishes at x = 00 and is con
tinuous at the interface. Tn addition, for model A, 
continuity of current is required. Thus, we have the 
following: 

Model A: 

lim 1p(x, t) = 0, (61 ) 
x .... 00 

lim 1p(x, t) = Soeiwte-xiL" (62) 
x-+-oo 

U PLANE 

FIG. 4. The G region for two adjacent half-spaces. 
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'!p(0+, t) = '!p(0-, t), (63) see, for example, Ref. 9. The results are 

D O'!p(O-, t) _ D O'!p(O+, t) . 
1 OX - 2 OX ' (64) 

Model B: 

lim N(x,,u, t) = 0, (65) 
x-oo 
lim N(x,,u, t) = Soe;wte-~OlX<pll-(,u), (66) 

x-+-oo 

N(O+,,u, t) = N(O-,,u, t); (67) 

Model C: 

lim '!p(x, E, t) = 0, (68) 

(69) 
X-+-OCi 

(70) 

Model D: 

lim N(x,,u, E, t) = 0, ( 71) 

I· N( E) S iwt vM(E) -XIV01} .) 1m x,,u, , t = oe, . e V01(U , 
x--o: v~t(e) + lW 

(72) 

N(O+,,u, E, t) = N(O-,,u, E, t). (73) 

Upon application of these boundary and interface 
conditions, the expansion coefficients in each case 
can be written down. 

For model A, the solution is 

'!p(x, t) = Soeiwt[e-xiLl + (r - 1)exiL1], X < 0, 

x> 0, (74) 

where 

For model B, the vanishing condition at + 00 and 
the source condition imply 

(76) 

The interface condition leads to 

where 

Equation (77) is a singular integral equation for the 
coefficients Al(V) and A 2(v), which can be solved; 

G_ = -So V02 - 1'01 X(V01) , 
V02 + VOl X( - VOl) 

(79) 

2VOl 1) 
- VOl + V02,u - V02 ' 

(81) 

(82) 
where 

X ( ) ( 
1 [lin G(,u) d,u) o z = exp -

27ri ,-1 ,u - Z 
(83) 

and the remaining symbols are defined in Ref. 9. 
In model C, conditions (I) and (2) lead to 

a+ = -So, A($l) = 0, for Re $1> 0, 

b_ = 0, B( $2) = 0, for Re $2 < O. (84) 

The interface condition leads to 

L-A($l)F($l-' E) d$l + L+ A($2)F($2+, E) 

= h( $0' E), (85) 
where 

h($o, E) = -F($02, E)b+ + F($Ol' E)(So - Q_). 

(86) 

This is also a Rieman-Hilbert problem; but, since this 
is a diffusion model, this line of investigation was 
discontinued and the continuum solutions were 
neglected. Assuming that only the discrete part of the 
spectrum exists and that diffusion-type boundary 
conditions are employed, another condition is to be 
added-that the integrated net current at the interface 
is zero: 

roo D
1
(E) o'!p(O-, E, t) dE = roo D

2
(E) O'!p(O+, E, t) dE. 

Jo ox Jo ox 
(87) 

This extra condition allows us to evaluate the discrete 
coefficients: 

(88) 

(89) 
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where 

d = l<» D2(E)F(~02' E) dE / l<» D1(E)F(~01' E) dE. 

(90) 

For model D, the vanishing condition at 00, the source 
condition at - 00, and the continuity condition at the 
interface lead to 

II B(v)j~v(U) dv + II A (V)flv(U) dv = ~(ft), (91) 

G2+ Gl-

where 

~(fl) = SOZl+(O, u) - b+Z2+(0, u) - a_Z1_(0, u). 

The details of the solution to Eq. (91) are in the 
Appendix. The results are 

lSI =ff VIX(V)SOV01 dv , 
(VOl - v)p(v) 

G 

I _IIv
I
X(v)v01 dv 

11 - (l'Ol + v)p(v) , 
() 

21 - , 1 = 1,2. I -If vI
X(V)V02 dv 

('1102 - v)p(v) 
G 

(93) 

The solutions can be written down in all four cases 
in terms of incident, reflected, and transmitted com
ponents: 

1p = I + R, x < 0, 

= T, x >0. (94) 

Here I is the incident component, R is the reflected 
component, and T is the transmitted component. We 
obtain the following results: 

Model A: 

1p = 1p(x, t), I = lex, t), R = R(x, t), T = T(x, t), 

(95) 

lex, t) = Soeiwt-<al+iPll"" (96) 

R(x, t) = So[2(1 + L1D2/L2D1rl - 1]eiWt+(al+iPlla; 

(97) 

T(x, t) = So[2(1 + LID2/L2Dl)-l]eiwt-<a2+iP21",; (98) 

Model B: 

1jJ = N(x, fl, t), I = lex, fl, t), 

R = R(x, fl, t), T = T(x, fl, t), (99) 

I - S iwt (iW/V + O'tl)X),J. ( ) - oe exp - '1'1+ ft , 
VOl 

R = a_eiwte(iW/V+t1tll",voclcf>l_(fl) 

(100) 

+ eiwtf/(v)exp (_ (iW/V: O'tl)X)cf>lv(ft)dv, 

(101) 

T b iwt (iW/V + O't2)X) = +e exp -
'1102 

+ eiwtfB(v)eXp (_ (iW/V: O'i2)X)cf>2V(ft)dv; 

(102) 
Model C: 

1p = 1p(x, E, t), I = lex, E, t), 

R = R(x, E, t), T = T(x, E, t), (103) 

I = Soei"'te-~Ol"'F(~Ol' E), (104) 

R = - A_eiwte~ol"'F(~Ol' E) 

- eiwt f A(~l)e-h"'F(~l' E) d~, (105) 
)01_ 

T = B+eiwte-~02"'F(~02' E) 

+ eiwti A(~2)e-h"'Fa2' E)d~2; (106) 
OH 

Model D: 

1jJ = N(x, fl, E, t), I = I(x, ft, E, t), 

R = R(x, ft, E, t), T = T(x, ft, E, t), (107) 

I - S iwt vM(E) - oe 
vLiE) + iw 

x V e-"'/VOI (V _ Vfl )-1 
01 01 VLtCE) + iw ' 

(108) 

R = eiwt vM(E) 
vLtCE) + iw 

X {A_V e"';"OI (V + Vfl )-1 
01 01 VLtCE) + iw 

-II A(v)e-"'/Vflv(U) dV}, (109) 

Gl-

T = eiwi vM(E) 
vLtCE) + iw 

X B v e-"'/V02 'V r { ( VII. )-1 
+ 02 02 - vLtCE) + iw 

+ II B('II)e-"'/Vf2V(U) d'll}-

(12+ 

(110) 



                                                                                                                                    

862 O. C. BALDONADO AND R. C. ERDMANN 

I, which is the source term, was chosen to be dis
crete only. In models Band D, there is a limiting 
frequency above which only continuum waves can 
propagate in a given medium. It is assumed that 
OJ < min [OJL

1
, OJL.l in both models to be consistent 

with the assumption that a discrete incident wave 
coming from x = - 00 can exist. I is a wave which 
propagates to the right, up to the interface. A com
ponent R is identified as a wave propagating to the 
left; R is purely discrete for model A and is a mixture 
of both discrete and continuum terms for models B, 
C, and D. To the right of the interface is the trans
mitted component T. T is purely discrete for model A 
but, for OJ < OJ L

2
, T is a mixture of discrete and con

tinuum terms in models B, C, and D. 

VI. CONCLUSIONS 

The purpose of this paper has been to give the 
theory of neutron-wave propagation through an inter
face. The expressions for the incident, reflected, and 
transmitted waves are given. Numerical comparisons 
are shown elsewhere. lO 

From this study one can see that the analysis 
quickly becomes very complicated as the theOlY 
applied becomes more sophisticated. However, the 
basic concepts of incidence, reflection, and trans
mission of waves are found to hold in all theories. 
Extensions to include more general scattering kernels, 
though not possible in model D, are not expected to 
change the conceptual results obtained here. 

APPENDIX: SOLUTION OF THE GENERALIZED 
RIEMANN-HILBERT PROBLEM 

The problemll is to solve 

~(u) = II Ab)k(u) dy + II A1(y)flv(U) dy (Al) 

(/2+ 01-

for A 1(y) and A 2(y), where u and yare complex vari
abies: 

u = r:J. + i{3, 

y = y + ib. (A2) 

The integrals are integrals in the complex plane and 
are interpreted to mean 

ffh(Y,U)dy=ffh(y+d),U)dYda. (A3) 

Gi± Gj± 

G; is a region which is anti symmetric about the origin 
(see Fig. 5). For definition, let GH equal that part of 
region Gj where Re (y) > 0, and Gj _ that part where 
Re (y) < 0; that is, 

Gj = Gi+ U Gj _, j = 1,2. (A4) 

f3 

FIG. 5. The G region in the II plane. 

If D is a domain, then let l> denote the closure of 
D and aD denote the boundary of D. The following 
definitions of the functions are taken from 

fiV(U) = -y- + p;(u)b(y - u), (AS) 
y-u 

1 ( If rp;(u)u ) Pi(Y) = -- 1 - -- du . 
rpiy) u - y 

Gj 

(A6) 

For purposes of discussion, ~(u) and rp(u) are con
sidered to be known functions, and we shaH impose 
conditions on them necessary to solve the problem. 

The regions G1 and G2 are, in general, different from 
each other; thus, the region of integration specified in 
Eq. (AI) is 

which is given schematically in Fig. 5. 
Two theorems which are needed in the development 

are next stated. They are proved by Vekna,u 

Theorem 1: We take J(u) E L 1(0), or 

II feu) du < 00, 

G 

and define the T G operator as 

1 If fey) TGf= - - -- dy. 
7T Y - U 

(A7) 

G 
Then, 

(1) TaJexists Vu ¢: G; 
(2) TaJis holomorphic Vu ¢: G; 
(3) TaJbehaves like u-1 as u-+ 00; 

(4) TaJ is continuous on oG, except perhaps at a 
finite number of points; 
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(5) TaJ possesses a generalized derivative with 
respect to u in the Sobolev sensel2 ; that is, 

a - T,,! = feu), U E G, ail ex 

= 0, U 1: G. 

Theorem 2: SupposeJ(u) E Ll(G) and 

Taf = - ~ If f(v) dv. 
'Tr V - U 

a 

Suppose further that: 

(1) g(u) is holomorphic Vu 1: G; 
(2) g(u) ->- u-1 as u ->- 00; 

(A8) 

(3) g(u) is continuous almost everywhere at oG; 
(4) g( u) has the generalized derivative 

O;:f = feu), U E G, 

= 0, U 1: G. 
Then, 

g(U) = Taj. (A9) 

In the above, iI denotes the complex conjugate of u. 
We now proceed with the solution. From Eq. (A5) we 
substitute /;v(u) , j = 1,2, in Eq. (AI), giving 

~(u) =ff Ab')v dv +ff Ab)v dv 
v-u • v-u 

+ {A 2(U)P2(U), UU ~ GG
I2

_+., (AIO) 
A1(u)Pl(U), c 

Using the definition of TaJ, we write Eq. (A I 0) as 
follows: 

;(U) = 'TrTa2+(A2u) - 'TrTa,jA1u) 

+ {A 2(U)P2(U), 
Al(u)Pl(U), 

U E G2+ 
, (All) 

tt E Gl _. 

Also by the same definition, from Eq. (A6), we have 

( ) 
_ 1 - 'TruTo;(cp;) . _ 1 2 

Pj U - , J - , . 
cp;(u) 

Substituting Eq. (AI2) into Eq. (All) gives 

;(u) = -'Tr[To2+(A 2u) + Ta1jA1u)] 

(AI2) 

{

I - 'TruT02 (CP2) A
2
(u), U E G

2
+, 

+ CP2 (A13) 
1 - 7TuTo1(CPl) Al(u), U E G1+' 

CPl 

The equations simplify considerably with the follow
ing notation: 

G = G2 .. _, U E G2+' 
= G1_, U E Gl _, (AI4) 

A(v) = A2(v), v E 02+' 

= A1(v), v E 01_' (Al5) 

p(U) = P2(U), II E G2+, 

= PlClI), LI E Gl _, (AI6) 

Taf = - I Iff(v) dv = TG2 J + To,j. (AI7) 
7T v - LI 

Accordingly, Eq. (AI3) becomes 

~(II) = -7T1r;(lIA) + p(u)A(u), U E G. (A18) 

Suppose that 

ffUA(U) du < 00 

G 
or 

ffUA2(U) dll + ffUAl(LI) du < 00. 

02+ (:1-

This is satisfied, if 

ffuA2(U) du < oc, 

02+ 

JJUA1(U) du < 00. (A19) 

(x\_ 

By definition of Ta(uA) arid Eq. (A8), there results 

a 
- Tu(uA) = uA(u), 1I E G, au 

More explicitly, 

a 
~ Ta(uA) = uAl(u), 
ou 

= 0, u 1: G. (A20) 

= 0, u 1: G2+ U G1_ + boundaries. 

To solve Eq. (Al8), we define a function X(u) such 
that 

(A21) 

and form the function 

X(u) Ta(uA). 

By the chain rule for differentiation, 

a ax a 
--: [X(u)Ta(uA)] = -_ Ta(uA) + X(u) --: TaCuA). au au au 

(A22) 
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By combining Eq. (A20) and Eq. (A22), one gets 

o 
ou [X(u)To(uA») 

oX 
= - T(,(uA) + X(u)uA(u), u E G, 

ou 

= oX T.a(uA). u ¢ G. (A23) 
ou 

From Eq. (AI8) we solve for uA(u): 

uA(u) = u~(u) + 7TuTa(uA) 
p(u) 

(A24) 

for p(u) ~ 0 (this is also necessary since it was required 
that uA(u) E LI(C)]. This restriction imposes certain 
conditions on ~(u) and uTa(uA). 

By substituting Eq. (A24) into Eq. (A23), there 
results 

o 
- [X(u)To(uA)] 
ou 

oX ( ) X(u)[u~(u) + mITo(uA)] 
= - Ta uA + , oa p(u) 

u EG, 

oX 
= oil TuCuA), u ¢G. 

(A2S) 

Equation (A2S) is already in a form which allows 
the use of some of the techniques of generalized 
analytic functions. In particular, X(u) is arbitrary, 
except for the requirement that it is analytic every
where so that oX/ou is well defined. The procedure is 
to construct X(u) so that Eq. (A2S) can be solved. 
Note that Eq. (A2S) already contains the essence of the 
original Eq. (AI8). Now we suppose that X(u) is 
defined such that 

oX -X(U)7TU 
- = U EG, 
ou p(u) 

= 0, u ¢ C. (A26) 

Equation (A26), which X(u) has to obey, is one re
quirement of Theorem 2. The actual construction of 
X(u) is delayed until later. Using Eq. (A26) into Eq. 
(A2S), one gets 

0_ [X(u)To(uA)] = X(u)u~(u), U E G, 
ou p(u) 

= 0, U ¢ C. (A27) 

Theorem 2 shall now be used. All the requirements of 
the theorem have to be satisfied. It is, therefore, 

necessary to suppose that: 

(1) X(u)u~(u)/P(u) E LI(C); 
(2) X(u)Ta(uA) is holomorphic '<Iu ¢ G; 
(3) X(u)Ta(uA) ----+- ° as u -+ CX); 
(4) X(u)Ta(uA) is continuous almost everywhere 

on oG. 
Because ofEq. (A27), the above are just the assump

tions of Theorem 2; and, therefore, using the con
clusion of the theorem, one gets 

X(u)Ta(uA) = Ta[X(U)U~(U)J, 
p(u) 

(A28) 

which can be solved for Ta(uA) provided X(u) is a 
non vanishing function 

Ta(uA) = _1_ Ta[X(U)U~(U)J. (A29) 
X(u) p(u) 

Equation (A29) is in a form which allows one to 
solve for uA(u). We had already seen that uA(u) obeys 
Eq. (A20), provided that uA(u) E LI(G) by Theorem 1. 
Hence, by using the aerolar derivative in the Sobolev 
sense, 

uA(u) = .£-.[_1_ T. (X(U)U~(U»)J (A30) 
ou X(u) . a p(u) , 

which gives the desired coefficients. In particular, 

Alu) = 1 .£-.[~ If X(U')U/~(U') dU'] 
u aU 7TX(U) p(u')(u' - u) • 

a 

A
2
(u) =1. ~[~IJ X(u')u'~(u') dU'], (A31) 

u OU 7TX(U) a p(u')(u' - II) 

where X(u) is different for each u and so with p(u). 
The X function is considered next, since it was seen 

that this function is crucial in order to solve for AI(U) 
and A2(U). The following conditions were imposed on 
X(u): 

(1) By Eq. (A26), 

oX - X(II )7Tl1 
- = l/ E G, au p(u) 

= 0, u ¢ C; (A32) 

(2) X(u) is a nonvanishing function in G; this is 
necessary to get Eq. (A29); 

(3) X(u) must be holomorphic, '<Iu E C, since (a) 
X(u)Ta(uA) is holomorphic, '<Iu ¢ C, and (b) uA(u) E 

Ll (C) so that, by Theorem 1, T G(uA) is holomorphic in 
C; hence, this is required of X(u) as well; 

(4) X(u) is continuous everywhere on oG; this 
follows from the requirement that X(u)TG(uA) is 
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everywhere continuous on aG and TG(uA) is every
where continuous, again by Theorem 1. 

The construction of the Xfunction is done by the use 
of Theodorescus's formula in Vekua.13 Theodorescus's 
formula gives a solution to the following equation: 

oW - + A(u)W = 0, (A33) 
au 

where W is a function of the complex variable u. The 
solution to Eq. (A33) is 

(A34) 

where V'(z) is an arbitrary analytic function. To use 
this result, we consider a function Xo(u) defined by 

Xo(u) = exp TO(-7TU) = exp TG( -7TUcp(U) ), 
p(u) 1 - 7TuTH(cp) 

(A35) 

where H implies the whole region G1 or G2 , depending 
upon whether Re (u) < 0 or Re (u) > 0, respectively. 

If the derivative of Eq. (A35) is taken, 

axo = X (u) 1. T. (-7TU). (A36) 
au 0 ail G p(u) 

To solve Eq. (A36), we impose 

(A37) 

This will have the effect of requiringp(u) not to vanish 
in G, except perhaps at u = O. By Theorem 1, 

u EG, 

u tt G. (A38) 
Therefore, 

axo X07TU 
-=--, uEG, 
au p(u) 

= 0, U ¢G. (A39) 

Hence, Xo(z) satisfies the derivative condition (1). 
To construct an X function which satisfies also the 
rest of the conditions, we assume that 

X(u) = V'(u)Xo(u), (A40) 

where 1p(u) is an analytic function. Since 1p is analytic, 

01p = au 01p = 0; 
au au au 

(A41) 

hence, 

aX = 1p(u) axo = -1p(u)XO(U)7TU u E G, 
au au p(u) , 

= 0, u ¢ C. (A42) 

Hence, the X(u) of Eq. (A40) still satisfies the differ
entiation condition (1). 

Now V'(u) shall next be determined by the remaining 
conditions that were imposed on X(u). To do this, we 
observe that 

thus, 

T (~) -ff U'CP2(U') du' 
H p(u) - 1 - 7TU'TO/CP2)(U' - u) 

G2 + 

+ (A44) ff u' CP2(U') du' 

1 - 7Tlt'TOr(CPl)(U' - u)' 
0

1
_ 

By defining 

__ CP:.....:(......:u ):.-_ = _--!...CP.!.,;.l (....,;u ):...-_ 

1 - 7TuTH(cp) 1 - 7TuTo/CPl)' 

CP2( u) 
= , UEG2+, (A45) 

1 - 7TuTo2( CP2) 

we obtain 

To -- = To . (
-7TU) [-7TUip ] 
p(u) 1 - 7TuTH CP 

(A46) 

Now, since 

a of 1 
-Inf(u) = --
au ouf(u) , 

there results 

To = To --:In [1- 7TuTH(cp)]· 
[ 

- 7TU ip ] { a } 
1 - 7TuTH(cp) au 

(A47) 

The last inequality follows since 

:u [uTH(cp)] = U :u (TH(CP») = ucp, u E H, 

= 0, U ¢ H. (A48) 

By definition, 

TO{:U In [1 - 7TUTH(CP)]} 

= - .!. If ' 1 a_, In [1 - 7Tu'TH (ip)] du'. 
7T (u -u)au 

(A49) 

Also, by a generalized Green's formula,a 
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and, therefore, 

T [ -1TU~(U) ] 
a 1 - 1TU TIl( ~) 
-I [1 T ()] 1 1 In [1- 1TzTfI(~)]d - n - 1TU Il ~ - -. z, 

21Tl iJG Z - U 

u EG, 

= _ ~ r In (1 - 1TzTIl(~)] dz, U ¢ G. 
21TlJiJG Z - U 

(A51) 

The purpose of introducing the logarithm is to con
vert the expression in the exponential of the Xo(u) 
function to a form where one can use the generalized 
Green's formulas. 

Because of the presence of the logarithm, there is a 
change in the value across the branch when there 
exists a discrete spectrum. If we are talking about the 
region H, with oH as its boundary, we define 

(A52) 

Then the change in the imaginary part of [l -
1TuTH(~)] is equal to 21Ti (number of zeros-number of 
poles) outside H. But In [1 - 1TuT H(~)] has no zeros, 
only poles; hence, 

LHm[L(u)] = 0, 

= -2n1Ti, 1 - 1TuTIl(~) = 0. (AS3) 

The value 2mri is used when there exist 2n possible 
solutions. 

From the structure of the regions, there are four 
possibilities concerning the position of the zeros. Let 
Uo be a zero of I - 1TuTH(~)' Then, we have the 
following: 

Case 1 : Uo ¢ G; 
Case 2: Uo EO G2+ , but Uo ¢ G1_; 

Case 3: Uo EO G1-, but Uo ¢ G2+; 
Case 4: Uo EO G1_, G2+' 

Since 
H = G1 , Re (u) < 0, 

=G2 , Re(u»O, 

then 
Ll1m[L(u)] = -41Ti, for Case 1, 

= -21Ti, for Case 2, 

= -21Ti, for Case 3, 

= 0, for Case 4; 

so, for X(u) to satisfy property (4), it is necessary that 

1p(u) = u-2 , for Case 1, 

= u-I, for Case 2, 

= u-1 , for Case 3, 

= uo, for Case 4. 

Thus, the X(u) function we need is 

(AS4) 

where h assumes values 2, 1, 1, and ° for Cases 1-4, 
respectively. Knowing X(u) , we can evaluate the 
coefficients, and the solution is complete. 

Where the zero of [1 - 1TuTH(~)] exists is deter
mined by the function ~(u). ~(u), from Eq. (33), is a 
function of the frequency OJ and the cross sections. 
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It !s s.hown that ~jJn~'s s~ecial n:l~tiv!stic cosmology is consistent with Birkhoff's flat-space theory of 
gravItatIOn and maintainS Its stabJllty In the presence of gravity. The gravitational correction to the 
redshift in the light from distant galaxies is calculated. 

1. INTRODUCTION 

It has been pointed out by Milnel that his special 
relativistic uniformly expanding model of the universe 
must be consistent with any conceivable flat-space 
theory of gravitation, in the sense that gravity will not 
exert any net force on the fundamental particles 
(galaxies) to disturb their uniform motion. This 
follows at once from symmetry considerations, since 
an observer attached to a fundamental particle will 
always see the universe as being spherically symmetric 
about himself. In the case of Whitehead's theory of 
gravitation,2 this consistency property has been 
demonstrated explicitly by Rayner,3 who also proves 
that the model is stable against disturbances of the 
motion of its fundamental particles. In fact, a test 
particle projected with arbitrary velocity ultimately 
comes to rest relative to its local surroundings in the 
universe. The behavior of photons in this universe is 
also investigated. The presence of gravity results in a 
small correction to the formula for the redshift in 

. light coming from distant galaxies. 
In this paper we consider the effect on Milne's 

cosmology of Birkhoff's flat-space theory of gravita
tion.4 We find that the consistency and stability 
properties again hold, but there is no effect corre
sponding to the "visual barrier" of the Whitehead 
theory.3 

2. THE GRAVITATIONAL POTENTIAL 

We shall assume that the special theory of relativity 
holds and that the universe is populated by a dust of 
fundamental particles which originated from a 
primeval fireball. Only those inertial frames will be 
considered in which the explosion of this fireball is 
taken as the origin of space-time. It follows that the 
fundamental particles are confined within the forward 
light-cone of this initial catastrophe, i.e., they can 
only occupy world points whose space-time coordi
nates XO = ct, xl, X2, and x3 satisfy the conditions 

XO = ct > 0 
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and 

x2 = x~x" = g"vxfl.X
V = (XO)2 _ (X!)2 _ (X 2)2 _ (X!1)2 

= c2t2 _ r2 > o. 

We assume! that the 4-velocity of the fundamental 
particle at the world point xfl. is 

(1) 

and that the density p of the fundamental particles 
(i.e., rest-mass per unit volume) is given by 

where B is a constant with the dimensions of energy. 
The energy tensor must therefore be 

(2) 

We shall further suppose that gravity may be ac
counted for by Birkhoff's theory of gravitation4 in the 
modified form proposed by WeyI.5 Here the gravita
tional field is derived from a symmetric second-order 
tensor potential hfl.' which satisfies the field equations 

where 

a 0=-, ox' ' 
and we have used the notations 

h: = h, 

T"= T, 
T"v = Tfl. V 

_ !gfl.vT. 

(3) 

(4) 

The constant K is related to Newton's universal 
constant of gravitation G by 

K = 87TGC-4 • 
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The gravitational 4-force F/1 acting on a test particle whence 
of (rest) mass m and 4-velocity u/1 is given by (12) 

F/1 = m(o"h"" - ol'h;..)u"u)'. (5) 

We note that this 4-force satisfies the orthogonality 
condition 

F/1UIl = O. 

Now the world model under consideration has the 
property of looking exactly the same in every inertial 
frame in which time move& forwards and the initial 
catastrophe is taken as space-time origin. It follows 
that the symmetric tensor field h"v must take the same 
form in every such inertial frame. This can only 
happen if 

hllV = cp(x2)x"x" + 1p(X2)glJ" (6) 

for suitable functions cp and 1p of the single variable 

x2 =X. 

We shall now investigate the conditions imposed on 
the functions cp and 1p by the field equations (3) and 
(4) with the energy tensor (2). 

Substituting (6) and (2) into (3) gives 

4(4cp' + x2f')x llx· + 2(cp + 41p' + 2X21p")gIJ V 

= KB(x2)-i(x"x· - tx2g/1 V
), 

where the primes denote differentiation with respect 
to the variable X. Consequently, 

41/ + x2rp" = tKB(x2)-i (7) 
and 

cp + 4"1" + 2x21p" = -lKB(x2)-!. (8) 

Similarly, substitution of (6) into (4) yields 

x2cp' + 4rp - 21p' = O. (9) 

Eliminating the constant B from Eqs. (7) and (8), 
we obtain 

X2rp" + 4Xrp' + cp + 41p' + 2X1p" = O. 

Substituting for "1" and 1p" from (9), we find that cp 
satisfies the homogeneous differential equation 

2X2rp" + IIXrp' + 9rp = 0 

whose general solution is 

rp = PX-~ + QX-8 , (10) 

where P and Q are constants. Substituting (10) into 
(7) we find that 

Substituting (10) and (11) into (9) gives 

1p' = -35SKBX-li + tQX-3 , 

(11) 

for some constant R. Substituting (10), (11), and (12) 
into (6), we see that the gravitational potential h/1v 

must be of the form 

h"v = T~KB(x2)-!(5x2glJv - 2x/1xv) + 01,cJ.A, (13) 

where 
A = QJ8x2 + iRx2 

is a solution of the wave equation 

OA=O. 

Since the last term on the right-hand side of (13) 
makes no contribution to the force (5), we may assume 
A = 0 and 

(14) 

In this last step we have simply used the gauge invari
ance of the Birkhoff theory. 

3. THE MOTION OF TEST PARTICLES 

The equation of motion for a test particle of mass 
m is 

where d7' denotes the interval of proper time along 
the world path of the particle, and P is the 4-force 
given by (5). Substituting (14) into (5), we find that 
the equation of motion for a massive test particle in 
Milne's universe is 

d2x ll ,1 • 
-2 = -tKB(X2)-2[(X .. U")U" - c·xIlJ. (15) 
d7' 

Since the 4-velocity of a fundamental particle is given 
by (I), we see at once that such a particle is not 
accelerated by gravity, so that the model is indeed 
consistent. To prove that the model is also stable, we 
must show more generally that the motion of a test 
particle always becomes asymptotically that of a 
fundamental particle. Let v be the instantaneous 
speed of the test particle at a general world point xl' 
on its world path as seen by an observer attached to 
a fundamental particle at x". We must show that v 
tends to zero as the proper time 7' of the test particle 
(measured from some arbitrary "initial event" on its 
world path) tends to (plus) infinity. This is equivalent 
to showing that y ~ 1, where 

y = (1 - v2Ic2)-~. 

Now the observer attached to the fundamental 
particle at xl' may use an inertial frame in which he is 
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permanently at rest at the origin of space. In such an 
inertial frame 

X o = (X2)~ = X!, Xl = x 2 = x 3 = 0, 

and the time component of the instantaneous 4-
velocity of the test particle is 

UO = ye. 
Therefore 

xl'ul' = yc(x2)1, 

which gives a Lorentz-invariant expression for the 
quantity y. Now 

and 

so that 

As T -->- + 00, it follows from (17) since y ~ I, that 
X -->- + 00 and hence from (20), that y -->- 1. The 
stability of the model is therefore proved. 

4. REDSHIFTS IN RADIATION FROM 
FUNDAMENTAL PARTICLES 

The preceding argument used for a massive test 
particle cannot be applied directly to the motion of a 
photon, because 4-force is not a meaningful concept 
for a particle of zero mass. However, we can rewrite 
the equation of motion (15) for a massive particle in 
the differential form 

dpl' = - tKB (X2)-~{pl' d(tx2
) - xl'p), dx),}, (21) 

where 
dxl' 

pl'= mul'= m-
dT 

whence 

dX - = 2x ul' 
dT 1" 

(16) is the 4-momentum of the particle. The differential 
equation of motion (21) still makes sense when m = 0 
and may be used to determine the motion of a photon 

(17) in the Birkhoff gravitational potential (14). Now, for 
a photon of frequency v, we have 

(18) 

Contracting both sides of the equation of motion (15) 
with 2xl' and substituting from (16) and (18), we 
obtain 

Putting 
dX 
-=w 
dT ' 

we may rewrite (19) in the form 

w dw + ...LKBX-~W2 = 2e2{1 + lKBX-i} dX 12 6' 

Multiplying both sides by the integrating factor 

exp (-iKBX-i ), 
we find that 

(~:)2 = w2 = 4e2X + A exp (!KBX-i), 

where A is a constant. It follows from (17) that 

y = [1 + (A/4c2X) exp (iKBX-!)]i. 

(19) 

(20) 

dx)' = e\hv)-lpA dt 

and 

Consequently, 

and 

whence 
pI' exp (-iKBX-i) = const. 

In particular, the frequency of the photon in any 
given inertial frame will decrease as time proceeds 
since 

v exp ( - iKBX-i) = const. (22) 

We shall now consider the light seen by an observer 
attached to a fundamental particle, and shall use an 
inertial frame in which this observer is permanently 
at rest at the origin of space. Suppose that at time to 
he observes light which originated at time to - ric in 
a galaxy whose distance from him at the instant of 
emission of the light was r. At that instant the galaxy 
was receding from him at speed r(to - r(c)-I. Suppose 
that the light emitted by the galaxy has frequency v 
in an inertial frame in which the galaxy is at rest. The 
frequency 11 of this same light in the rest frame of the 
observer is given by the Doppler formula 

(23) 
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It follows from (22) that the frequency y' of the light 
actually seen by the observer is related to v by \ 

cosmology. This factor differs significantly from 
unity only when r is close to tcto, i.e., only for light 
from a galaxy close to the edge of the visible universe. 
Normally the gravitational correction is quite 
negligible. 

y' exp (-KB/6clo) = vexp {-tKB[(cto - r)2 - r2]--~}. 

Substituting for v from (23), we finally obtain 

v' = Y(l - ~r)!exp {- !5!i..[(1 - 2r)-~_ I]}, 
cto 6cto cto 

in which the exponential factor gives the gravitational 
correction to the usual redshift formula of the Milne 
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Recently several authors have proposed a universal symmetry group and demonstrated the classical 
validity of the concept. Supposedly, an SU(n) symmetry group could be constructed for whatsoever 
system of n degrees of freedom. The claim is assuredly valid for all classically degenerate systems, but is 
in contradiction with most of the well-known and widely accepted solutions of Schrodinger's equation. 
We examine the reasons for this discrepancy on the quantum-mechanical level. The construction of the 
universal symmetry group requires ladder operators, which in most cases are the ladder operators of Infeld 
and Hill. Complications which owe their origin entirely to numerical relationships imposed by quantiza
tion prevent these operators from forming a von Neumann algebra and, in turn, an SU(n) group of 
constants of the motion. Two important effects are those imposed by anisotropy, wherein not all quanta 
have the same size, and by non-Cartesian coordinates, wherein quanta in some dimensions are restricted 
in size by those in other dimensions. These effects can be seen quite clearly in two-dimensional systems: 
anisotropy in the Cartesian anisotropic harmonic oscillator, and conflict between dimensions in the 
polar form of the isotropic oscillator. Further complications arise when the two effects are combined, 
as in the harmonic oscillator or hydrogen atom with "excess" angular momentum. Enough residue of 
the universal symmetry concept remains that many similarities between the hydrogen atom and 
harmonic oscillator may be understood, including the fact that some levels of the hydrogen atom, which 
ordinarily transform according to an orthogonal group, may form irreducible representations of the 
unitary group. 

I. INTRODUCTION 

Shortly after Pock'sl remarkable analysis of the 
symmetries and degeneracies of the quantum
mechanical hydrogen atom, similar methods were 
applied to the study of the isotropic harmonic oscil
lator, a second quantum-mechanical system of major 
importance. In both cases, the apparent symmetry of 
the problem was spherical, due to the central forces 
present, for which group-theoretical reasoning pre
dicted a degeneracy in the z component of the angular 
momentum. While it is true that such a degeneracy is 
always present in the solutions of central force prob
lems, the degeneracy occurring in the hydrogeIol atom 
and the harmonic oscillator was far greater. Such 
additional degeneracies, which are observed to 

occur in a few other situations as well, had 
been widely considered to have been "accidental," 
since their occurrence was not foreseen from group
theoretical reasoning based on the ostensible spherical 
symmetry. They had to be accepted on the grounds 
that amongst all possible potentials there were 
certainly some for which the energies of wave functions 
belonging to different symmetry types might just 
happen to coincide. 

Thus there was a certain satisfaction when Fock 
showed that certain potentials might possess "hidden" 
symmetries, which is to say, symmetries arising from 
regularities in the phase space of Hamiltonian 
dynamics which were not immediately apparent from 
an inspection of the geometric symmetries of the 
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cosmology. This factor differs significantly from 
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Shortly after Pock'sl remarkable analysis of the 
symmetries and degeneracies of the quantum
mechanical hydrogen atom, similar methods were 
applied to the study of the isotropic harmonic oscil
lator, a second quantum-mechanical system of major 
importance. In both cases, the apparent symmetry of 
the problem was spherical, due to the central forces 
present, for which group-theoretical reasoning pre
dicted a degeneracy in the z component of the angular 
momentum. While it is true that such a degeneracy is 
always present in the solutions of central force prob
lems, the degeneracy occurring in the hydrogeIol atom 
and the harmonic oscillator was far greater. Such 
additional degeneracies, which are observed to 

occur in a few other situations as well, had 
been widely considered to have been "accidental," 
since their occurrence was not foreseen from group
theoretical reasoning based on the ostensible spherical 
symmetry. They had to be accepted on the grounds 
that amongst all possible potentials there were 
certainly some for which the energies of wave functions 
belonging to different symmetry types might just 
happen to coincide. 

Thus there was a certain satisfaction when Fock 
showed that certain potentials might possess "hidden" 
symmetries, which is to say, symmetries arising from 
regularities in the phase space of Hamiltonian 
dynamics which were not immediately apparent from 
an inspection of the geometric symmetries of the 
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force field itself. That such an accounting could be 
given for the degeneracies of the harmonic oscillator 
was demonstrated by Jauch and Hill,2 and in the 
course of time has been elaborated by other authors. 
The isotropic harmonic oscillator with n degrees of 
freedom was found to have the symmetry group 
SU(n), whose symmetric tensor representations gave 
an accounting for all the degeneracy observed in the 
oscillator. Such groups are generated by a collection 
of tensor constants of the motion, much as the 0(4) 
group of Fock was generated by the components of 
two vector constants of the motion for the hydrogen 
atom. 

Interest has centered on the isotropic harmonic 
oscillator, in great part because it has lately found 
favor in modelling collective motions in nuclear 
theory, but no doubt also because results for the 
anisotropic harmonic oscillator have been somewhat 
inconclusive. It was already noticed by Jauch and 
Hill that the anisotropic oscillator possessed an 
accidental degeneracy when its decomposition into 
one-dimensional eigenoscillators produced compo
nents with commensurable frequencies. Only very 
recently did Demkov3 begin a systematic study of the 
quantum-mechanical symmetry operators for such 
oscillators. 

Again the symmetry group was found to be SU(n), 
but its generators could not be given so simply as the 
components of a tensor, and there did not appear to 
be any way to treat the incommensurable case. Most 
of the analyses were made for the classical version of 
the system. Once classical constants of the motion 
were found, they were transcribed into quantum
mechanical terms by the usual device of replacing the 
canonical coordinates by coordinate multipliers, and 
their conjugate momenta by derivatives with respect 
to the coordinates. There was little difficulty in 
effecting such a procedure if the operators were 
lin~ar functions of the canonical coordinates and 
momenta, quadratic functions which could be sym
metrized, functions of constants of the motion, or 
algebraic combinations of the foregoing. 

More recently, Dulock4 succeeded in constructing 
classical constants of the motion for the anisotropic 
oscillator with arbitrary, and in particular, possibly 
incommensurable eigenfrequencies. The constants 
so constructed were transcendental functions in 
the most general case, and anyway there was a 
multiple valuedness present in the definitions of the 
operators which seemed to preclude the formation 
of any quantum-mechanical analogs of his constants 
of the motion. However, the fact that his operators 
also generated a symmetry group of the type 

SU(n) was quite disturbing, since one can so 
easily determine the spectrum of the oscillator with 
general frequencies and see that when they were 
incommensurable there would be no degeneracy 
whatsoever, a result apparently incompatible with 
the occurrence of an SU(n) group. There was some 
consolation in thinking that the multiple valuedness 
of the functions determining the constants would 
somehow prevent the formation of quantum-mechan
ical operators. 

He applied his methods to the analysis of the 
problem of the cyclotron motion of a charged particle 
in a uniform magnetic field. 5 This problem involves an 
essentially quadratic Hamiltonian and is mathemati
cally identical to the problem of the harmonic 
oscillator. There was therefore no loss in generality to 
consider a superimposed isotropic harmonic oscillator 
potential, altogether, the Zeeman effect for a har
monic osciIlator. Again it was found that there would 
be an SU(3) symmetry group, whatever combinations 
of magnetic field strength and oscillator constants 
were used, save in the limiting case where the oscillator 
potential was zero. In this latter case, one obtained a 
limiting case of the SU(3) group, whose generators 
obeyed the commutation rules of ladder operators. 6 

However, when the problem is solved quantum 
mechanically, it is found that degeneracy actually 
exists only for certain combinations of field strength 
and oscillator frequencies. These are the same combi
nations which produce closed orbits in the classical 
version. 

From these historical precedents, it appears that 
there are actually two effects to be dealt with. One 
is the effect of anisotropy, which is to say that after 
the reduction of the problem to action-angle variables, 
it is found that the Hamiltonian is a linear combi
nation of the action variables in which the coefficients 
are not necessarily equal, or even commensurable. 
The second effect arises from the transformation to 
action-angle variables, in which classical functions 
may arise which cannot be realized in terms of the 
noncommuting quantum-mechanical operators. Or, 
what will be more relevant to our present interests, 
the particular commutation rules of the quantum
mechanical operators may produce some slight 
discrepancies. negligible in the limit of large quantum 
numbers, but adequate to alter substantially the 
apparent symmetry. 

The second effect derives its importance from the 
fact that there has been a general realization that a 
very large class of problems is somehow equivalent 
to an appropriate harmonic oscillator. I n celestial 
mechanics there has long existed a transformation 
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connecting the Kepler problem and harmonic oscil
lator, whose quantum-mechanical residue may be 
perceived in the similarities in the wavefunctions and 
degeneracy patterns of the two systems. In Hamil
tonian mechanics such relationships are readily 
perceived in terms of action-angle variables, to the 
extent that several authors7•8 •9 have recently shown 
how one may construct a classical SU(n) symmetry 
group whenever the requisite action-angle variables 
may be formed. Such a viewpoint is considerably 
more general than the specific geometric constructions 
in phase space by which Fock, Laporte and Rainich,lo 
or Jauch and Hill exposed the hidden symmetry of 
the systems which they treated. 

We now undertake to clarify the role of SU(n) as 
a symmetry group of the anisotropic quantum 
oscillator by considering in detail the wavefunctions 
of the system and how they combine to form degener
ate energy levels. The general characteristics of the 
situation may be amply described in two dimensions, 
where one would expect to obtain an SU(2) group as 
the symmetry group for all two-dimensional oscillators. 

Among those problems for which a complete set of 
action-angle variables exist, there does not seem to 
be any inconsistency to the claim that SU(n) is a 
classical universal symmetry group, applicable to all 
systems with n degrees of freedom. Actually, there 
are several degrees to which one might wish to carry 
such a claim: for all spherical potentials, for all 
systems with separable Hamilton-Jacobi equation, or 
indeed for each and every classical system. It is 
certainly applicable to classically degenerate systems, 
since all the authors whom we have mentioned have 
exhibited the necessary operators. For the most part, 
this paper will be restricted to this first level. Most of 
our authors have speculated, and MukundaR has 
explicitly shown, how the claim could reach its 
utmost generality. 

The quantum-mechanical situation is anomalous in 
the respect that an SU(n) group is likewise predicted 
for all the classically degenerate problems, and the 
occurrence of a degeneracy in the energy levels 
induced by irreducible representations of an SU(n) 
is contrary both to the experimental evidence, and to 
the traditional and familiar solutions of Schrodinger's 
equations for these problems. 

In order to examine this anomaly in careful detail, 
we shall discuss the solution of two familiar problems 
in polar coordinates, again in two dimensions for 
simplicity. These problems are the hydrogen atom 
and the harmonic oscillator, the two standard 
examples of accidental degeneracy. In the first case the 
discrepancy between the predicted SU(2) and ob-

served 0(3) is slight, but is nevertheless fundamental. 
The mechanism for the discrepancies which we shall 
encounter is quite general, applying to the analogous 
problems in any number of dimensions. In the second 
case the predicted groups are the same, but when the 
ladder operators are carefully examined the same 
discrepancy is found as for the hydrogen atom, and 
the operators do not directly generate an SU(2) group, 
or for that matter a group of finite rank at all. 

The discrepancy to which we refer originates from 
the fact that the ladder operators which Dulock 
prescribes, although they satisfy the proper Poisson
bracket relations in classical mechanics to generate an 
SU(n) group, do not do so quantum mechanically. 
It is stilI true that one can form a pair of ladder 
operators, each of which is an eigenfunction of the 
Hamiltonian, and such that the members of the pair 
have eigenvalues which are negatives of one another. 
These pairs of ladder operators belong to supposedly 
independent canonical coordinates, and so members 
of different pairs should commute with one another. 
However, it is found that when applied to wave
functions with extreme eigenvalues, the commutation 
is no longer valid, and that bilinear products ofladder 
operators no longer generate the Lie algebra of an 
SU(n) group. In particular, they may allow more 
levels to be degenerate than called for by SU(n) 
symmetry, and in the case of the hydrogen atom the 
resultant degeneracy is actually appropriate to the 
orthogonal group O(n + I). 

One might think that the failure to form a canonical 
set of ladder operators is a fault of Dulock's prescrip
tion, and that there might conceivably exist a set of 
operators chosen differently which would correspond 
to the SU(n) group. In part the supposition must be 
correct, since another transformation given by 
Dulock will actually map the misbehaving operators 
into generators of a symmetry group. In the case of the 
harmonic oscillator written in polar coordinates, they 
yield the legitimate unitary group, and in the case of 
the hydrogen atom in polar coordinates, they yield 
the Runge vector and the angular-momentum opera
tors generating the orthogonal group responsible for 
the accidental degeneracy. However, as Susskind and 
Glogowerll have shown, there may already occur 
difficulties in trying to define quantum-mechanical 
action-angle variables. Fortunately, even though the 
cyclic angle variables and their conjugate action 
variables may not be able to correspond to a pair of 
operators satisfying the commutation rules of a co
ordinate-momentum pair, it seems that it may still be 
possible to form usable ladder operators from such 
quantities. Such was certainly true for the specific 



                                                                                                                                    

SEARCH FOR UNIVERSAL SYMMETRY G ROUP IN TWO DIMENSIONS 873 

case they studied, because even though one cannot 
form a phase operator for a unidimensional harmonic 
oscillator, its ladder operators are in no way deficient. 
For such a ladder always to be infinite in extent is 
another matter. 

In the restricted class of problems which we treat 
in this paper, namely those whose Hamilton-Jacobi 
equation is separable, and which moreover are classi
cally degenerate, the commutation difficulties with 
the ladder operators in different coordinates have 
a much more prosaic origin. The ladder operators 
are defined in terms of the action-angle variables, 
which we will actually express in terms of polar 
coordinates and their associated momenta. Even 
in higher dimensions, the separation process is such 
that one momentum is first discovered to be a con
stant of the motion, say the azimuthal angular 
momentum. With this knowledge, another constant 
may be separated, say the total angular momentum. 
Thus there will arise a chain of constants, each de
pending upon the previous one, as well as the co
ordinates and momenta. 

We might refer to this process as a "cumulative" 
separation. It results in a cumulative dependence of 
the angle variables in the opposite direction. For in
stance, in three dimensions with a symmetrical 
potential, the radial angle variable depends only on 
r, Pr' and constants of the motion. However, the 
theta angular variable depends ori r, (), Pr' Pe, and 
constants of the motion, while the c/> angle variable is 
by no means c/> itself, but depends upon all the 
canonical variables, combined as constants of the 
motion and otherwise. 

The result is that when the Schrodinger equation is 
separated in polar coordinates, the r-ladder operators 
will modify only the radial quantum number. How
ever, the O-Iadder operators will modify simultane
ously the principal quantum number n arising from 
the radial equation, and the angular momentum I, 
which is the quantum number depending on the 
theta coordinate. Finally, the c/> ladder will modify 
both these quantum numbers, and the azimuthal 
quantum number m as well. There are also restrictions 
on the ranges of these quantum numbers which make 
them interdependent, Iml SiS n. The commutation 
failures which we encounter all arise from conflicts 
among these restrictions. 

The two effects which we have mentioned (the 
pattern of degeneracy appropriate to anisotropy, 
and the complications due to cumulative separation 
in non-Cartesian coordinates) occur simultaneously 
for Hamiltonians of the form 

H = tp2 + VCr) + t5L212r2, 

because their separation in polar coordinates produces 

H = H({JJr + rxJe) 

when VCr) is either -l/r or r2/2. This is the same 
functional dependence as for the anisotropic oscillator 
in Cartesian coordinates. Such Hamiltonians came 
to our attention in a four-dimensional form because 
they arise from trying to treat the magnetic monopole 
in quaternionic coordinates; nevertheless) the two
dimensional version is quite instructive and illustrates 
the principles involved. 

Newton's theorem of revolving orbits12 explains 
how to interpret such Hamiltonians. The effect of a 
centrifugal potential proportional to the square of the 
angular momentum is to make the motion a function 
of Oly rather than 0, where y is a factor depending 
upon b, while the angular momentum has to be 
multiplied by the same factor. This is a canonical 
transformation which causes precession of the 
orbits. It is not the same as a transformation to 
rotating coordinates, because in that case the differ
ence between the real and apparent angle is a quantity 
which increases linearly with time, while in this case, 
independently of the time, the angle is multiplied by a 
factor. 

The precession is particularly interesting in two 
cases. First, for the harmonic oscillator when the 
factor a is 3, in which case an elliptical orbit with 
center at the origin is transformed into an oval with 
focus at the origin. Second, for the Kepler problem 
when the constant is -!, in which case the opposite 
transformation takes place. It is interesting that, in 
these two examples, the symmetry group which is 
appropriate for the one problem· shifts into that 
appropriate for the other, just as does the form of the 
orbits. Again the result is applicable to higher
dimensional . problems, and gives an interesting 
relationship between unitary and orthogonal groups. 
Actually the transformation between the harmonic 
oscillator and the Kepler problem is slightly more 
complicated than this, because a change in the 
functional form of the Hamiltonian is also necessary. 
Nevertheless,it shows that there is a very close relation 
between the two systems, to which we have already 
alluded. 

The objective of this paper is to determine, at least 
in two dimensions, to what extent the expectation that 
SU(n) might be a universal symmetry group for all 
degenerate systems might be realized. Even without 
going beyond the classically degenerate systems, we 
see that quantization imposes numerical relationships 
governing the size of quanta that cannot be met by 
ladder operators which in effect require arbitrary 
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subdivisions of the quanta. To the extent that the 
generators of the unitary groups are based on ladder 
operators,13 their quantum-mechanical occurrence is 
precluded. At the same time, the results are not 
entirely negative, since there remains an operator 
calculus of ladder operators which is very versatile and 
effective in explaining the degeneracies, energy levels, 
wavefunctions, and symmetries which are actually 
observed to exist. One might hope that such results 
might be extended to systems which are not classi
cally degenerate, and that the whole theory might be 
applied to relativistic quantum mechanics and field 
theory. 

II. DEGENERACY OF THE ANISOTROPIC 
HARMONIC OSCILLATOR 

The Hamiltonian for the two-dimensional harmonic 
oscillator in its most general form, wherein the 
potential is not assumed to be isotropic, is 

H = (p; + p; + 1X-
2
X

2 + P-2l)/2. (1) 

Units have been chosen which will avoid inconvenient 
scale factors; the anisotropy is reflected by the two 
constants IX and (J. The corresponding Schrodinger 
equation is 

(2) 

whose solutions14 are expressible in terms of the 
Hermite polynomials H n , 

m = e-(a.-l.,O+P-Vl/2Hnt(lX-ix)Hn.(p-iy) 
Tnl,no ii ,(3) 

(2n t +n2n1 ! n2! 7T(IX{J) ) 

and whose energy eigenvalues are represented in 
terms of the quantum numbers n1 and n2 by the 
formula 

IX{J(E - Eo) = {Jnl + IXn2 , 

Eo = (IX + {J)/21X{J, nl' n2 = 0, 1,2, . . .. (4) 

Determination of the degeneracies is then a matter 
of ascertaining the number of ways that the same 
value of N = (E - Eo)ocfJ can be formed from the 
two individual quantum numbers. In the case that 
ex: = fJ = I, one finds the isotropic oscillator, in 
which the level N is (N + I)-fold degenerate, since n1 

may range from 0 to N, thereby completely fixing n2 • 

Therefore, every positive integer represents a possible 
multiplicity of a degenerate state, and each such 
multiplicity occurs only once in the spectrum. 

Matters are slightly different when ex: = 2, fJ = I, 
for which the frequency ratio is 2: 1, and the energy 
formula now takes the form N = nl + 2n2 • Again a 

degeneracy prevails, which is now according to the 
number of ways that a given integer may be written 
as the sum of two nonnegative integers, one of which 
is even. Considering the levels one by one, we see that 
the level for N = 0 can only be realized by the wave
function with quantum numbers (0, 0), while N = 1 
can only be realized in the state (l, 0). Thus, unlike the 
isotropic case, we find that the one-dimensional 
representation occurs twice. Moreover, the value 
N = 2 can be realized by either of the states (2, 0) 
or (0, 1), while N = 3 can be realized by either (1, 1) 
or (3,0). In general, every n-fold degenerate set of 
states will occur twice, once for an even value of N 
and once for an odd value. These results were already 
obtained by Demkov, but allow us to fix a particular 
example in our mind. 

One can express the general situation with the 
help of a triangle diagram.15 Starting with the single 
integer 0, one writes lines of integers. The kth line 
commences with kfJ, while (ex: - fJ) is to be added to 
obtain successive integers in the line, until kex: is 
reached. Each line is offset by a half space to center 
it with the line above. One may read the possible 
values of N from the body of the table, while to deter
mine the values of nl and n2 to which they correspond 
one may number the diagonals. Taking as examples 
IX = 2 and fJ = 1, IX = 4 and fJ = 1, ex: = 5 and fJ = 2, 
we obtain the diagrams of Fig. l. 

The general aspect of the pattern of mUltiplicities is 
that the least common multiple of the two frequencies 
will determine the first degenerate energy level. Hence, 
the less commensurable two frequencies, as measured 
by their least common multiple, the more groups of 
states with a given multiplicity there will be, and the 
higher the energy of the first degenerate state. The 
lower-energy states will generally have lesser degener
acy, although the energy is not strictly ordered 
according to the degeneracy. 

o 

o 
P=1 1 2 1X=2 

234 
345 6 

4 5 678 
5 6 7 8 9 10 

(1) 

o 
P=1 1 4 1X=4 f3 = 2 2 5 IX = 5 

4 7 10 258 
3 6 9 12 

4 7 10 13 16 
5 8 11 14 17 20 

(2) 

6 9 12 15 
8 11 14 17 20 

10 13 16 19 22 25 
(3) 

FIG. I. Triangle diagram of energies for anisotropic harmonic 
oscillator: (I) E = nl + 2n., (2) E = n, + 4n., (3) E = 2nl + 5n •. 
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In the "limit" as the frequencies become more and 
more incompatible while their ratio remains nearly 
fixed, the number of nondegenerate states increases 
and the energy gap to the first degenerate state 
becomes greater and greater. Consequently, if we 
approximate an irrational frequency ratio by rational 
fractions with greater and greater numerator and 
denominator, we will find that we approach a situa
tion in which all the finite energy levels are non
degenerate and that there is an infinite gap to what 
would have been the more highly degenerate states. 

In order to explain such patterns of degeneracy by 
means of a symmetry group, we apply the techniques 
of Dulock, which are similar to the method of Fradkin, 
Mukunda, and others. We have described the process 
in considerable detail in an earlier paper ,16 so that 
we will here only exhibit the principal quantities 
necessary to construct the ladder operators from 
which the constants of the motion and generators of 
the prospective symmetry group will eventually be 
formed. 

Supposing that we have a two-dimensional problem 
whose Hamiltonian-Jacobi is separable and for which 
there exist action-angle variables, we suppose that the 
Hamiltonian takes the form 

(5) 

where (1,. and {3 are numerical constants. If one then 
constructs the functions 

af = (J
1
/271'(1,.)te±21tiawt, 

4 = (J2/271'{3)~et21tiPW2, 

(6a) 

(6b) 

where WI and W2 are the angle variabl,ps, he may show 
that they satisfy the Poisson-bracket relations 

The principal function should be written in the form 
S(x, y) = Six) + SiY) to obtain separated equations 

(
aSx)2 X2 = 2E 
a + 2 x' X (1,. 

(lOa) 

(
aSu)2 + y2 = 2E 
ay {32 Y' 

(lOb) 

where E", + Ey = E. 
The action variables defined by J j = ~ pj dqj are 

obtained through the use of Eqs. (10) to yield 

J", = f (2E", - X2/(1,.2)~ dx = 271'(1,.Ex' (Ita) 

J y = f (2E y - l/(32)t dy = 271'flEy. (lIb) 

From the above result, the energy of the system can be 
written in terms of the action variables in the required 
form 

(12) 

Therefore, we proceed to the construction of the 
angle variables, which are 

(l3a) 

(Bb) 

(7) from which we finally find 

the remaining pairwise brackets vanish. 
From these functions one forms the constants of 

the motion 
(8) 

from which an SU(2) Poisson-bracket Lie algebra 
can be constructed. This construction is possible 
whether the system is classically degenerate or not, 
that is, whether the frequency ratio (1,./{J is a rational 
number or not. 

Writing the Hamilton-Jacobi equation of the two
dimensional anisotropic harmonic oscillator (I) in 
Cartesian coordinates, 

e±21tiWx = (2(1,.E",)-!«(1,.!p", ± i(1,.-tx ). 

e±21tiW. = (2{3Ey)-t({3! Py ± i{3-! y), 

and ultimately, the ladder operators of Eq. (6), 

a! = (J ",/2m:t.)!(~ie±21tiwxy 

(14a) 

(14b) 

= E~[(2(1,.E",)-!«(1,.-!x ~ i(1,.!Px)Y, (1 Sa) 

a~ = (J 11/2 71'(3)t(~ ie±21tiw.)P 

= Et[(2{3ES-i({3-iy ~ i{J~p1l)]fJ. (ISb) 

An appropriate phase factor, which does not change 
the commutation relations among the a's, has been 
included for convenience. 

To find the corresponding quantum-mechanical 



                                                                                                                                    

876 A. CISNEROS AND H. V. MciNTOSH 

operators, we note that the operators 

JC~ = (2nl + 2)-i (OC-iX - oc~ ~), (16a) ox 

JC-;; = (2nlt-~ (oc-~x + oc! :J, (16b) 

. Je;- = (2n2 + 2ri (,8-ly _,8k :), (16c) 

JC~- = (2n 2)-i(,8-ly +,8i :y) (t6d) 

are known to be normalized ladder operators for 
the wavefunctionsl7 of (3). In other words, 

.le!'¥' n"n, = '¥' n,tl,,,,, 

JC;'Y",,1l, = '¥' n""2±1' 

In the classical limit, we have 

Je~ ->- =f ie±2"i'«\ 

,re; ->- =f iet2"iw •. 

By observing the functions (15), we find that the 
quantum-mechanical construction which we seek will 
be possible only for integral oc and ,8. 

A slightly different normalization is necessary to 
make the ladder operators for more than a single step 
compatible, and to ensure that they will satisfy the 
commutation rules of the generators of SU(2): 

A~ = [(nl - k + oc)/oc]!(Je:)", , 
A-;;; = [(nl - k)/ocP{Je:)", 

At = [(n2 - j + ,8)/,8]!(Je~)P, 
A; = [(n2 - })j,8]!(Je;)fI. 

(17a) 

(t 7b) 

(17c) 

(17d) 

In these definitions, k = nl (mod oc), and j = n2 

(mod ,8). 
Routine verification establishes that the operators 

(17) satisfy the commutation relations, 

[A-;;;, A~] = I, 

[A;, A;-] = 1, 

all other commutator pairs being zero. 

(18a) 

(lSb) 

The numbers k and j have been included in the 
definition of the operators (17) so that the commuta
tion relations (18) would be satisfied for all eigen
functions of our Hamiltonian. This may be verified 
explicitly by applying the commutator (18a) to an 
eigenfunction: 

[A- A+]'Y = (nl - k + oc _ n1 - k),¥ 
x' x 1l1,n2 nhn2. oc oc 

(19) 

For nl ~ oc both terms in parentheses in Eq. (19) 

appear, so that we have the identity operator, and the 
value of k makes no difference in this case. Never
theless,for states such that nl < oc, the second term 
in the parentheses does not appear because A; 
applied to such a state vanishes; the result is 
[(nl -k+oc)/oc]'¥'n"n2' since in this case k=nl' 
and once again we obtain the identity operator . 

By the introduction of the indices j and k, we are 
able to apply one and the same set of operators to all 
of the wavefunctions. This choice may be compared 
with the results of Demkov,3 who obtains two 
families of operators as well as the two complete sets 
of representations of SU(2) in his treatment of the 
harmonic oscillator with a 2: 1 frequency ratio. These 
family indices allow a unified treatment of the opera
tors and become insignificant in the classical limit, 
but cannot be expressed simply in terms of coordinates 
and momentum operators. 

Choosing the following bilinear combinations of 
the ladder operators, one obtains the constants of the 
motion, the first of which is a function of the 
Hamiltonian; the remainder generate a Lie algebra 
for SU(2): A-A+ + A-A- A+A- + A-A+ iA+A--

x x Y v' x Y x 11' x Y 

i A; At, A~ A; - At A;. These constants of the motion 
are the well-known components of the tensor constant 
of the motion for the isotropic harmonic oscillator 
when oc = ,8 = 1. 

Although the derivation of an SU(2) group is only 
possible when the frequency ratio is rational, an 
irrational frequency ratio may be approximated 
arbitrarily well by some nearby rational number. To 
the extent that this may be regarded as a perturbation 
in the Hamiltonian, we may obtain approximate 
symmetry groups for any anisotropic oscillator. We 
have already reconciled ourselves to the total lack of 
any degeneracy for incommensurable ratios on 
account of the frequency of appearence of one
dimensional and hence nondegenerate representations 
when the frequencies are not very commensurable. 
However, there is also an interesting complementary 
effect, that when an irrational ratio is close to a 
rational ratio, the nondegenerate states will cluster 
into nearly degenerate muItiplets. Again if a slight 
perturbation is made, they will coalesce into a single 
degenerate state for the oscillator whose ratio is 
rational. 

Figure 2 illustrates this effect for two examples. In 
Fig. 2(a), we compare the isotropic oscillator with an 
oscillator in which the frequency ratio is 10: 11 , 
while in Fig. 2(b), the comparison is made between 
the ratios 1: 2 and 11: 20. In both cases it is easy to 
identify the multiplets and the corresponding degener
ate states. When the approximations are poor, and 
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\I (E- Eo): 

(lON
I
+ II~)/IO 

2.2 (0,2) 
2.1 (I, I) 
2.0 l2Pl 

1.1 0,1) 
I. (1,0) 

(a) 

, (2,OHl,IHO,2) 

2.75 
2.65 
2.55 

2.2 
2.1 
2.0 

1.65 
1.55 

1.1 
1.0 

0.55 

II(E-Eo): 

(20N, +II~)/'O 

(0,5) 
(1,3) 
\2,1 ) 2.5 (2,1)(1,3)(0,5) 

(0,4) 
1,2) 

(2P) 

1.5 (\,IHO,3l 

1.0 1,0)(0,2) 

0,1) 0.5 (0,1) 

( b) 

° (0,0) -----.1(0,0) ---------'(0,0)-----""(0,0) ---

FIG. 2. Multiplet structure of the anisotropic oscillator with frequency ratio: (a) 11: 10, compared with 1: 1, and (b) 1 :20, 
compared with 1 :2. 

hence the gap between multiplets is small, it is possible 
for levels between different multiplets to coincide. 
This corresponds to the occurrence of common 
divisors in the two frequencies. We should also not 
lose sight of the fact that even while the nondegenerate 
states are forming multiplets, there are still degenerate 
levels at higher energies, so that for very large energies, 
multiplets may be formed from degenerate as well as 
nondegenerate states. Since there is only a finite 
number of states with any given multiplicity of 
degeneracy, it is inevitable that the multiplets will 
eventually be formed from highly degenerate states. 
We should also note that the lower, singly degenerate 
levels, which appear to result from a broken symmetry 
are actually members of distinct families of states of 
degeneracy 1,2,3, ... , each of whose families form 
bases for the irreducible representations of SU(2). 

We have assumed the numbers r:t. and fi appearing 
in the Hamiltonian (I) to have been integers, in 
order that one could define the operators (17). If 
the frequency ratio is rational this is always possible, 
because we can always absorb a common factor by 
our choice of units in defining the Hamiltonian. 
However, we should take care to ensure in so doing 
that r:t. and fi are relatively prime and not merely 
integers. If this is not done,we will not get the most 
fundamental ladder operators possible, and it will not 
always be possible to reach from a given state to all the 

others degenerate to it by the use of constants of the 
motion formed from the operators of Eq. (17). To 
illustrate the point, consider the isotropic harmonic 
oscillator in which we have chosen oc = fi = 2. We will 
then obtain ladder operators which change the 
quantum numbers by two units; hence no combination 
of raising and lowering operators will be able to pass 
between the degenerate states (0, n) and (l, n - 1). 
Indeed, there would be no way to change the parity of 
the individual quantum numbers. 

III. POLAR CREATION AND ANNIHILATION 
OPERATORS FOR THE HARMONIC 

OSCILLATOR 

Both the Hamilton-Jacobi and Schrodinger equa
tions for the isotropic harmonic oscillator are separ
able in rectangular Cartesian coordinates as well as 
polar coordinates. We have seen in the last section 
that Dulock's procedure applied to the action-angle 
variables after separation in the Cartesian coordinates 
produces the well-known ladder operators for the 
harmonic oscillator, which in turn leads to the iden
tification of SU(n) as the symmetry group of the 
n-dimensional harmonic oscillator and the explana
tion of the observed degeneracies in the spectrum of 
the harmonic oscillator. 

If Dulock's procedure is applied to the action
angle variables arising from the separation of the 
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Hamiltonian-Jacobi equation in polar coordinates, 
one obtains a collection of ladder operators for 
radial and angular quanta. Dulock did not discuss 
such operators, although it is clear from the general 
treatment that they could be formed and would have 
the desired properties. We will form them as a 
prelude to our attempt to construct quantum
mechanical operators with analogous properties. 
Again the study of two-dimensional problems is 
adequately representative of the general case, so we 
may thereby avoid the complications in the angular 
operators which arise in higher dimensions. 

The Hamiltonian for the isotropic harmonic 
oscillator in two-dimensional polar coordinates is 

H = (p; + r2 + pi/r2)/2. (20) 

The corresponding Hamiltonian-Jacobi equation 
can be separated by writing the principal function in 
the form S = Sr(r) + S6«()' Since () does not appear 
explicitly in the Hamiltonian, we have S6 = fl8 where 
fl is a constant. Sr is given by 

Sr = f (2E - r2 - //r2)1 dr. (21) 

The action variables are calculated using the 
separated Hamilton-Jacobi equations; the result is 

Jr = f Pr dr = -TTfl + TTE, (22a) 

J6 = f Po de = 2TTfl, (22b) 

from which the energy is given in terms of the action 
variables 

(23) 

According to the procedure described in the 
preceding section, we will now construct "a" functions 
which satisfy commutators (7); in this problem they 
are given by 

a; = =Fi(Jr/2TT)le±21Tiwr, (24a) 

ai = _(J6/4TT)le±471iWo. (24b) 

The angle variables Wj = oS/oJj , written in terms 
of polar coordinates and their conjugate momenta, are 

Wr = -; J(2Er2 - fl2 - r4r1r dr, 

W = - - - (2Er - fl - r) - + - . Wr fl J 2 2 4 -l dr () 
8 2 2TT r 2TT 

A straightforward evaluation of the integrals yields 

1 . r2 - E 
W r = - arc Sln l , 

2TT (E2 - fl2y: 

Wr 1 . Er2
-fl2 () 

W6 = - - - arc sm 1 + - . 
2 4TT r2(E2 - fl2) 2TT 

When this result is inserted in (24) and momenta 
are substituted according to the separated Hamilton
Jacobi equations, we have 

a; = [(E - fl)/2]1[(E2 - fl2r~(r2 - E =t= irPr)] , 

(2Sa) 

ai = [=Fie±2/riWr]fli [2(E2 - fl2)]-l 

X [I:!:. - §. =F i l!!J e±i28. (25b) 
r2 fl r 

The quantities 

N = a;-a: + a;at, (26a) 

L = a;-a: - a;at, (26b) 

K = -ialia; + ia;:at, (26c) 

D = -a;:at - alia; (26d) 

are constants of the motion. N commutes with the 
rest and is one-half the Hamiltonian; the other three 
satisfy an SU(2) Poisson-bracket Lie algebra: 

{K, L} = -2D, {L, D} = -2K, {D, K} = -2L. 

If these quantities were to be written out explicitly 
in Cartesian coordinates, they would be fairly compli
cated with no apparent simple geometric or algebraic 
interpretation. Their form is nevertheless reminiscent 
of similar results which Dulock obtained in treating 
the hydrogen atom, for in both cases one can pick out 
the customary constants amongst some additional 
terms. He was able to prescribe a transformation 
which preserved the Poisson-bracket relations, and 
which reduced the constants of the motion obtained 
from the action-angle variable ladder operators to the 
components of the Runge vector and the angular 
momentum. 

Dulock's transformation consisted in defining new 
constants as follows: 

L' = N - L, (27a) 

K' = K[2 + (N + L)/(N - L)]l, (27b) 

D' = D(2 + (N + L)/(N - L)]l. (27c) 

The result of his transformation applied to the 
constants is 

C=~, ~~ 

K' = Po[; Pr cos 2() + sin 2{) (~ - ~:) J. (28b) 

D' = p{ - ; Pr sin 2{) + cos 2e(:6 - ~:) 1 (l8c) 
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The new constants are more easily recognized when 
written in Cartesian coordinates, 

z.; = Xpy - yp"" 

K' = xy + P",P y , 

D' = (X 2 - l + p! - p;)/2, 

(29a) 

(29b) 

(29c) 

being nothing but the components of the well-known 
tensor constant of the motion. 

We now turn to the quantum-mechanical treatment. 
The Schrodinger equation in polar coordinates is 

- + - - + - - - r2 + 2E 'Y = 0. (30) 
( 

a2 1 a 1 a
2 

) 
ar2 r or r2 a02 

Its normalized solutions are given by1s 

'Yn,m = R n,lml(r)0m(O), (31a) 

R r _ ( 2[(n - Iml)/2]! )! 
n,lml( ) - [r«n + Iml + 2)/2)]3 

Iml -r'/2r lml ()2 (31b) x r e L(n+lmp/2 r , 

0 m(O) = eim9/(21T)!, (31c) 

where L is the associated Laguerre polynomial; the 
quantum numbers can take the values n = 0, 1,2, ... , 
m = 0, ± 1, ±2, ... , with the restriction n - Iml = 
0, 2, 4, .... Energy eigenvalues are given by 

E=n+l. (32) 

The derivation of ladder operators from their 
classical version is likely to be somewhat inconclusive 
when the classical form is a complicated function of 
noncommuting coordinate and momentum operators. 
Although the expressions are still relatively simple for 
the harmonic oscillator, we will content ourselves with 
obtaining them from other sources, and demonstrat
ing that they approach in the classical limit the ladder 
operators obtained from the action-angle variables. 

Accordingly, we note the recurrence relation given 
by Schrodinger19 connecting the radial wavefunctions 
of the hydrogen atom belonging to different total 
quantum numbers. If we replace r by r2, we get a 
recurrence relation connecting the radial wavefunc
tions for the present problem. These considerations, 
after including an appropriate normalizing factor, 
give us the operators 

Je;- = [en + 2)2 - m2]-![r2 - (n + 2) - r :r} 

(33a) 

Je; = [n
2 

- m2r![r2 - n + r :r 1 (33b) 

They are normalized ladder operators for the radial 
wavefunctions 

and hence are also ladder operators for the complete 
wavefunctions since the angular part does not 
depend on n; 

Infeld and Hu1l20 gave an operator that changes the 
orbital quantum number in the radial wavefunction 
for the hydrogen atom. We again replace r by r2 to 
get a ladder operator that changes Iml in the radial 
wavefunctions of the isotropic harmonic oscillator. 
After including appropriate normalizing factors, we 
get the operators 

Je± _ Iml - 1 
8 - [en _ Iml + 2)(n + 1m!)]! 

X [Iml - 1 _ n + 1 1= 1 ~J (34) 
r2 Iml-l rar 

which are normalized m-changing ladder operators 
for the radial wavefunctions 

JetrRn,lml-2 = rRn,lml ' 

Je;rRn,lml = rRn,lml-2' 

Using the operators obtained, we define 

A; = [en - m)/2 + l]!Je~, (35a) 

A; = [en - m)/2]-!Je;, (35b) 

.-t;t = [em - t)/2 + l]iJetJe~ei28, m ~ ° , 
At = [em - t)/2 + 1]!Je~Je;ei29, m < 0, (35c) 

.it; = [em - 1)/2]-!Je;Je;e-i29
, 

A; = [em - t)/2]iJetJe;e-i28
, 

In the classical limit we have 

m > 0, 

m ~ 0. (35d) 

We will now see whether the commutators corre
sponding to (7) are satisfied for the A's. The first 
failure one notices is that A8" and .it~ do not commute. 
It is easy to verify that AilA;'Yn.m and A;Ail'Yn.m are 
equal if one excludes states such that m = - (n - 2). 
For these particular states, we have that AilA;- applied 
to 'Y n.-(n-2) is a constant times 'Y n.-n' whereas 
A;-Ail'Yn ._(n_2) is zero, since AiJ annihilates the state 
before A;- gets a chance to operate on anything. This 
effect is illustrated in the diagram of states given in 
Fig. 3. 
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FIG. 3. Noncommutation of the operators ,4;8' .-Io~ and .-loB' .-1:; 
when applied to states such that 11 = -m and 11 = -(n - 2), 
respectively. 

Similar considerations apply to the commutator of 
At and A;:-; these commute when applied to states 
other than those for which m = -n (n > 0). For 
such states, we find that A;:-At applied to 'F n.-n is 
a constant times 'F n.-( n-2) , whereas At A;:-'Y n,-n is 
zero. This is also illustrated in Fig. 3. 

The commutator [A;:-, A~] is found to be the 
identity operator except when applied to wavefunc
tions such that m = -n (n > 0), for which the 
commutator is different from the identity. The com
mutator [A8', At] fails to be the identity operator for 
states such that m = -n and m = -en - 2). But 
one finds that A~ and At do commute. 

The result is that the supposedly universal proce
dure for obtaining constants of the motion satisfying 
SU(2) Lie algebra commutation relations cannot be 
carried into quantum mechanics. At this point we 
have only seen that our ladder operators do not form 
the von Neumann algebra upon which we usually rely 
to form SU(2). Our ladder operators nevertheless 
still form valid constants of the motion among their 
bilinear products. 

In analogy to the classical constants (26) we define 

I: = A;:-A~ - AilAt, (36a) 

,'j{, = -iA8'A~ + iA;:-At, (36b) 

~ = -Ail A~ - A;:-At. (36c) 

We find that 
[J{" C] = -2i~, (37a) 

[I:, ~] = -2iJ{" (37b) 

even though the A's do not satisfy the proper commu
tation relations, but 

[~, J{,] ~ -2il:. (37c) 

By this final failure, we have to abandon the 
expectation that there will be a universal unitary 

symmetry group constructed from ladder operators in 
analogy to the classical universal groups. It is clear 
that the fault lies in the use of ladder operators, and 
not in any of the possible ambiguities which might 
exist in establishing them as the quantum analog 
of classical operators. More precisely, it appears that 
the difficulties arise from the states on the lower left 
boundary in the diagram of Fig. 3, where the expected 
commutation rules of our operators fail. Geometri
cally, we can attribute the difficulty to the fact that the 
ladder operators do not move states parallel to the 
boundaries of the region of acceptable wavefunctions. 
Thus a parallelogram representing the commutator 
of two operators may have one corner inside the 
region and the other outside. This nonclosure 
may in turn be traced to the fact that some ladder 
operators simultaneously change more than one 
quantum number, as well as that one quantum num
ber may limit the values of another. 

Although the construction of the universal unitary 
symmetry group has failed, we know that the har
monic oscillator does in fact have a unitary symmetry. 
We may disclose it by using a quantum version of 
Dulock's transformation (17), by which the tensor 
constants of the motion were recovered from those 
constructed from the polar ladder operators: 

[J{,/, 1:' ] = 2i~/, 

[1: ' , ~/] = 2iJ{,/, 

[~I ,J{,/] = 2il: /. 

(39a) 

(39b) 

(39c) 

To complete the analogy with the classical results, 
one may verify the operator identities, 

(40a) 

(40b) 

(40c) 
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By writing the right-hand side in polar coordinates 
and applying the operators to a wavefunction, it will 
be found that the left-hand operator produces the 
same result. 

A final detail that should be noticed is that although 
the isotropic harmonic oscillator written in polar 
coordinates has an energy expression 

E = (2fr + Jo)/27r 

appropriate to an anisotropy of 2: I, only one family 
of SU(2) representations occurs. Two such families 
occur for this anisotropy in Cartesian coordinates. 
That the polar oscillator exhibits only one family 
is due to the interdependence of the angular and 
radial quantum numbers. For example, singly degen
erate states should arise from (n, m) quantum
number pairs (0, 0) and (0, 1). The restriction that 
n ~ Iml prohibits the second state. 

IV. THE HARMONIC OSCILLATOR WITH 
EXCESS ANGULAR MOMENTUM 

We have now seen to what extent a transition is 
possible from classical to quantum mechanics in the 
case of the anisotropic harmonic oscillator. Classically, 
it is supposed that such oscillators always have a SU(n) 
symmetry group, although the constants of the motion 
are in general transcendental and become algebraic 
only in the case where there are commensurable 
frequencies among the normal coordinate oscillators. 

Even in the commensurable case, the assertion that 
SU(n) is the quantum-mechanical symmetry group 
has to be treated with caution. The folklore of acci
dental degeneracy holds that when one has found the 
"hidden symmetry" of a system, the irreducible 
representations of the "true" symmetry group will 
occur once each. Only in this way do the symmetry
adapted wavefunctions uniquely diagonalize the 
Hamiltonian. No such thing applies to the anisotropic 
harmonic oscillator, and in fact the one-dimensional 
representation of SU(n) occurs several times, as do 
also those of higher dimension. The different repre
sentations which occur, occur with the same multi
plicity, forming families of SU(n) representations. 

Nevertheless, as we have already seen, the high 
incidence of one-dimensional representations allows 
us to reconcile the universal occurrence of SU(n) as a 
symmetry group for harmonic oscillators with the 
lack of degeneracy which is observed for incom
mensurable frequency ratios. 

Such was the state of affairs for a simple two
dimensional harmonic oscillator in Cartesian co
ordinates. However, as we know, the supposed 
universality of SU(n) is not confined to harmonic 

oscillators in Cartesian coordinates. Rather, it 
extends at least to those systems which are classically 
degenerate. In the last section we examined in detail 
one such case, that of an isotropic harmonic oscillator 
written in polar coordinates. In terms of the radial 
and angular action-angle variables, it behaved rather 
much as an anisotropic harmonic oscillator with a 
2: 1 frequency ratio. The presence of non-Cartesian 
coordinates implies a constraint on the quantum 
numbers which was not present in the Cartesian case, 
and these constraints in turn influence the pattern of 
degeneracies and the commutation rules of the ladder 
operators. While the accustomed commutation rules 
may fail, we have seen that transformations might 
exist which would repair the failure. 

The combination of the two effects-anisotropy 
and non-Cartesian coordinates-can be produced in 
a series of somewhat artificial Hamiltonians by con
sidering an isotropic harmonic oscillator in which the 
moving particle is possessed of "excessive" angular 
momentum. The modification is wrought by adding 
a term proportional to U/r 2 to the harmonic oscillator 
Hamiltonian, where L is the angular momentum 
vector. The Cartesian Hamiltonian, 

has the form 

2H=p;+r2+y2p:/r2, y=(1 + b)! , (42) 

in polar coordinates. Thus its interpretation is that it 
describes a particle for which, due to some anomaly, 
the angular momentum is y times that computed from 
the classical formula r x p. The restriction <5 ~ -1 
ensures that y is real. For example, with the factor 
y = i, such a Hamiltonian arises in studying the 
magnetic monopole. 

The Hamilton-Jacobi equation corresponding to 
the Hamiltonian (41), 

is separated by writing the principal function in the 
form S = Sr(r) + So«(j). We have immediately So = 
ft(), where ft is a constant, since () does not appear 
explicitly in the Hamiltonian. The resulting equation 
can than be solved for Sr: 

Sr = J (2E - r2 - y2fl2jr2)! dr. 

The action variables J j = ~ Pi dqj are found by 
use of the relation Pi = OSjOqi and the separated 
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Hamilton-Jacobi equations 

Jr = 7T(E - yp), (44a) 

(44b) 

The energy can then be expressed in terms of the 
action variables, 

(45) 

an expression from which the "anisotropy" of the 
radial and angular action is evident. 

Following the pattern of development to which we 
are now accustomed, we determine the classical ladder 
operators a;: and af. Foreseeing the requirements to 
be imposed by the quantum-mechanical construction 
to be possible, the powers to which one has to raise 
exp (27Tiw) have to be integral, which will require that 
y be rational. Hence we set y = 1X//3, in which IX and /3 
are relatively prime integers. Since the factor of 2 
multiplying the radial action will complicate this 
relationship, we prefer to write the Hamiltonian as 
a function of (/3'Jr + IX'JO) in which IX' and /3' are rela
tively prime. When IX and /3 are in least terms, we 
define /3' = 2/3, IX' = IX when IX is odd, and /3' = /3, 
IX' = 1X/2 when IX is even. Nevertheless,for the purposes 
of the classical construction IX' and /3' need not be 
restricted to integer values. 

Our choice of the "a" functions will then be 

a: = (Jr/27T1X')~(=r W'e±bia.'lIJr, (46a) 

at = (Je/27T/3')!( _ly'e±biP'wo. (46b) 

The angle variables wi = i)S/i)Jj are evaluated 
using the separated Hamilton-Jacobi equations 

hence, 

=f ie±2uiwr = (E2 - y2,u2)-!(r2 - E =f irPr), 

x [ y,u (Y,u _ E i Pr)]I1.'IP'e±iO 
(E2 - y2,u2)! r2 yp =f r 

from which we find 

! 

(!i _ ,u) [(E2 _ y2p2)-!(r2 - E =f irPr)]a.', 
21X' /3' 

(47a) 

at = C=fW'e±2Uia.'Wr [;,r 
X [ y,u (yp - ~ =fi l!!:) ] ""e±iP'e. 

(£2 _ y2,u2)! r2 yp r 

(47b) 

The constants of the motion may then be given 
explicitly as bilinear combinations of the ladder 
operators, 

L = a;a:- - a;at, (48a) 

K = (-i)""a;a: + (i)""a;at, (48b) 

D = (-i)"'+1a;a: + (i)"'+la;at. (48c) 

One can apply Dulock's transformation (27) to 
the constants given above, since the fact that the new 
constants also satisfy SU(2) commutation relations 
only depends on the commutators among the a's; but 
only in the case of a pure harmonic oscillator potential 
do the constants have a simple interpretation, as 
considered in Sec. II. 

The Schrodinger equation for the problem in polar 
coordinates is 

whose normalized solutions are 

'Yu.m = Ru.lml(r)0m(f), (50a) 

(2eU - y Iml)!)t,y Im1e-ri"2v Iml(r2) 
[r(u + l)r u' 

(SOb) 

(50c) 

The quantum numbers can take the values m = 
0, ±I, ±I,' .. and u - y Iml = 0, 1,2,···. Energy 
eigenvalues are given by the relation 

(E - I + y Iml)/2 = u 

and hence we have 

(E - 1) - Y Iml = 0, 2, 4, .... (51) 

There will be no more than twofold degeneracy 
when y is irrational, for the change in y Iml for 
different values of Iml will not be integral and hence 
there will not be two values of Iml such that (E - 1) -
Y Iml is an even integer for fixed E. Accidental 
degeneracy arises only for rational y = IX/ /3 (written 
in least terms); in this case the energy eigenvalues 
have the form E - 1 = nl/3, where n is a positive 
integer which obeys (n - IX ImJ)//3 = 0,2,4, .... 
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FIG. 4. Diagram of states for the harmonic oscillator with excess 

angular momentum showing ladder operators: (a) ~ = 2, fl = I; 
two families of SU(2) degeneracy interleave forming a family with 
0(3) degeneracy. (b) ~ = 3, f1 = 1; there are three independent 
families of SU(2) degeneracy. (c) ~ = 1, f1 = 2; uneven spacing of 
m for levels n = I + 4p or 3 + 4p (p an integer) precludes the 
existence of an SU(2) or 0(3) symmetry group. 

Diagrams of states are given in Fig. 4 for several 
values of ex and fJ. It will be convenient to give the 
wavefunctions in terms of the quantum numbers n 
and m for the case of rational y: 

'Y n,m = Rn,/ m/(r) 0 m(O), (S2a) 

R r _ ( 2[(n - ex ImD/2fJ]! )t 
n,lml( ) - W[(n + ex Iml + 2fJ)/2fJ]]3 

X r«/m/IPe-r2/2L(~~Jj~i>/2p(r2), (S2b) 

The procedure for obtaining ladder operators is 
the same as that used in the preceding section; we 
find that the operators 

are normalized ladder operators for the total quantum 
number 

Je:Rn,lml = Rn+2P,lm/ 

and the operators 

Je;= (ex~ml + l)[C -;Iml)(n +;,m
'
+ 2)rt 

x [ex Iml + fJ _ n + fJ -! ~J, (S4a) 
fJr2 ex Iml + fJ r 8r 

Je; = (OC ~ml_ 1) [(n -; Iml + 2) C +; Iml) r! 
X roc Iml- fJ _ n + fJ + !~J, (S4b) 

fJr2 oc Iml - fJ r 8r 

which effect the following change in the radial wave
functions: 

JetrRn,/m/ = rRn,/ml±2Pla' 

Rn,/ml ± 2fJ/ex will not be the radial part of a wave
function unless ex = lor 2; otherwise (Je;)a or (Jei)"/2 
are the lowest powers of Je; that will change Iml by 
an integer for ex odd or even, respectively, and hence 
will be ladder operators for the angular quantum 
number. It is just these powers (ex') to which one 
raises the classical operators (47) according to the 
discussion preceding (46). 

With the operators already obtained at hand we 
define 

A; = [(en - j)/rf. - m)/fJ' + l]t(Je;Y', (SSa) 

A;:- = [(en - j)/rf. - m)jfJ']t(Je;:Y, (55b) 

At = [em - l)/fJ' + 1]~(Jet)"'(Je;)"'eiP'9\ m ~ 0 , 

At = [em - t)/fJ' + 1]t(Je;)IX'(Je;)"'eiP '6, m < 0 , 

(55c) 

m >0, A; = [em - t)/fJ']t(Je;:,)",(Je;yx'e-iP '9, 

A; = [em - !)/fJ']t(Jet)",(Je;:-)",e-iP
'8, m::;;O, 

(55d) 

where the value of j is determined from the values of n 
according to 

n j 

pex 
2fJ + pex 
4fJ + pex 

2rf.fJ + prf. 

for integer values of p. 

o 
2fJ 
4fJ 

o 
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These quantum-mechanical ladder operators ap
proach the classical ladder operators in the limit of 
large quantum numbers: 

On the other hand, we have the same failure of the 
expected commutation relations among the "A" 
operators that we have already seen in the more 
restricted problem of the isotropic harmonic oscillator 
expressed in polar coordinates,which we treated in the 
last section. The reasons for the failure are again just 
the same ones, which arise from the fact that some of 
the ladder operators may change two quantum 
numbers simultaneously. Consequently, some prod
ucts of ladder operators may allow us to pass limiting 
combinations of quantum numbers which cannot be 
done if they are applied in a different order. 

Setting aside for the moment the question of their 
mutual commutation rules, we can use the ladder 
operators to define three constants of the motion 
independent of the Hamiltonian, 

oX = (-i)"'A;A; + (iY'A;:At, 

~ = (-W'+1.fl;A;: + (i)"'+lA;:At. 

(56a) 

(56b) 

(56c) 

The operators oX and ~, when applied to the 
wavefunction with quantum numbers (n, m) gives a 
linear combination of those with quantum numbers 
(n, m - 13') and (m, m + fJ'). One can see that states 
with such quantum numbers do not exist for all n 
when fJ is greater than 1. For example, when (:J. = I, 
fJ = 2, A; At applied to (5, -1) gives a function 
which is not an acceptable eigenfunction, since there 
is no (5,3) state [see Fig. 4(c)]. The reason that the 
function produced by this ladder operator is not a 
solution of Schredinger's equation is because the corre
sponding radial function is not quadratically integ
rable. Infeld and Hull have noted that ladders may 
terminate in non integrable functions in certain 
circumstances. 

In fact, when the total quantum number n is of the 
form 1 + 4p or 3 + 4p, for tJ; = 1,13 = 2, there is no 
way to combine the degenerate states of positive 
angular momentum with those of negative angular 
momentum by means of the above constants of the 
motion, since in each case there is a gap near zero 
angular momentum where the eigenfunctions are 
promoted into functions which are not acceptable as 
solutions of Schrodinger's equation. The result is 
that although the constants shown account for part of 
the degeneracy, they do not account for all of it, in 

the cases for 13 > I. It seems that one must addition
ally make use of the reflective symmetry of the system 
to show that the negative angular momentum family 
is degenerate with the corresponding positive angular 
momentum family. It is also interesting to note that 
in those cases in which the given ladder operators 
generate the entire degenerate family, there may still 
appear several families of SU(2) or 0(3) degenerate 
levels, the former occurring when (:J. is odd, and the 
latter when (:J. is even, but only when f3 = 1. 

We see several effects at work in these spectra. 
From the anisotropy we find that there may be 
different groups of states with the same degeneracy 
belonging to different total quantum numbers. Thus 
we can expect to see several families of irreducible 
representations, if we succeed in finding a symmetry 
group. However, the effect of the non-Cartesian 
coordinates is to introduce constraints between 
different quantum numbers, which we have seen can 
interfere with the commutation relations of the ladder 
operators and prevent them from generating an 
SU(n) group. Finally we have seen a new effect, that 
the ladder operators may not cause transformations 
which lie entirely within the Hilbert space of quad
ratically integrable solutions of our SchrOdinger's 
equation. 

Thus we expect to be prevented, in the most general 
case, from forming a symmetry group whose genera
tors consist of products of our ladder operators. It is 
interesting to note that Dulock's regularization, 
which has previously served to correct the failure 
of the commutation rules on wavefunctions of ex
treme quantum numbers, is only applicable in the 
case of P = 1, since there is no way to overcome the 
unequal spacing of the angular momentum quantum 
numbers which occurs near zero angular momentum. 
But, when 13 = 1, the regularization produces 

C' = 2A;.flt - 2 + 1/2fJ', (57a) 

,X,' = (-i)~'.fl-A+[2 + A;A: - 1 - l/f3']! 
9 r A;At _ 1 

+ (i)~'A-A+[2 + A;A: - 2 - liP']! (57b) 
r 8~-A+ ' 

.n-9 8 

These operators may be verified to generate the Lie 
algebra of SU(2) or 0(3). We note that the constant 

j which was included in the definition of (55) was 
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required to ensure that these commutation rules 
would assume their proper form. 

V. THE HYDROGEN ATOM WITH EXCESS 
ANGULAR MOMENTUM 

The Hamiltonian for the hydrogen atom with 
excess angular momentum is given by 

222 
2H = P; + Y P8 __ 

r2 r 
(58) 

in polar coordinates. An entirely analogous procedure 
to that used in Secs. III and IV yields, after separation 
of the Hamiltonian-Jacobi equation, 

(59a) 

(59b) 

where fJ, is a separation constant. The action variables 
are given by 

Jr = 27r[( -2E)-i - YfJ,], (60a) 

10 = 27TfJ,) (60b) 

from which the energy is given in terms of the action 
variables 

(61) 

Again, the quantum-mechanical construction of 
ladder operators will only be possible for rational y. 
We set y = 11./(3 where 11. and (3 are relatively prime 
integers, the Hamiltonian is written as a function of 
«(3Jr + a.Jo)"; this allows construction of "a" opera
tors with integral powers of exp (27Tiw). Nevertheless, 
the classical construction does not depend on these 
considerations. 

Our choice of "a" functions will be 

a~ = (Jr/27Tel)!( =F iYe±2"i.Wr , 

ai = (Jo/27r(3)!( _1)"e±2"ipwo. 

For this problem we have 

y . r - yfJ, (J 
Wo = YWr - - arc sm L + - . 

27T r( 1 + 2Ey2f1-2)2 27T 
Hence, 

=f ie±2"iW,. = e:fi <-2F.l l rO,[( -2Er1 _ y2fJ,~]-t 

x [( _2£)tr - (-2£)-* =f irPr], 
_e±21TiWo = =f ie±21l+;u'r 

(62a) 

(62b) 

from which we find 

a; = [( -2:rt - ~r 
x {e'fi(-2E)~rpl[( - 2£r1 - y2fJ,2r~ 

x [(-2£)tr - (-2E)-* =F irPrW, (63a) 

~ 

ai = (=Fiye±2"i.wr(~r 

x [ YfJ, (YfJ, 1 =F' )Ja ±iP8 
(1 + 2Ey2fJ,2)~- -; - YfJ, , Pr e . 

(63b) 

One can construct the constants of the motion given 
by (48), setting el' = a.. After Dulock's transformation 
(27), one gets another set of constants also satisfying 
SU(2) commutation relations. The new constants have 
no simple interpretation for general Y, except in the 
case y = 1, that is, for a pure -l/r potential. The 
transformed constants are given by 

(64a) 

K' = 2(sin (J + PrPOcos (J - p:sin (J/r)/(-2E)t, 

(64b) 

D' = 2(cos (J - PrPo sin (J - p: cos (J/r)/( -2E)t; 

(64c) 

the quantities in parentheses in (64b) and (64c) are the 
y and x components, respectively, of the Runge vector. 
This result was given by Dulock. 

The Schr6dinger equation for the problem in 
polar coordinates is 

whose normalized solutions are 

'Yu•rn = R",lml(r)8 mC{;l), (66a) 

R _( 2 (U-ZYlml)!)t 
".Iml - (u _ y Iml + t)3 [r(fJ, + 1)]3 

x pV Irnle-pI2L;,j' Iml(p), (66b) 

The quantum numbers can take the values m = 0, 
±1, ±2, ± ... andu - 2y Iml = 0,1,2,'" . Energy 
eigenvalues are given by the relation 

(-2E)-! + y Iml - ! = u, 
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and we have 

(-2E)-! - y Iml - t = 0, 1,2,···. (67) 

The same argument given after (51) leads to the 
conclusion that there will be no more than twofold 
degeneracy for irrational y. For rational y = IX/(3 
there is accidental degeneracy, and in this case the 
energy eigenvalues have the form (-2E)-! = 
n/(3 + t, where n is a positive integer which obeys 
(n - IX Im/)/(3 = 0, 1,2, .. '. Diagrams of states are 
given in Fig. 5 for various values of IX and (3. It will 
be convenient to give the wavefunctions in terms of 
the quantum numbers nand m for the case of rational 
y: 

'¥n,m = Rn.jmj(r)0m(8), (68a) 

Rn,jmj = ( 
2 [en - IX Im/)/(3]! )! 

(n/(3 + t)3 [r«n + IX Iml + (3)/(3)]3 
X p~jmj!(ie-'J(2Lr~_;;:l:.fj)/p(p); (68b) 

8 m = eimo/(277i, p = 2r/(n/(3 + t). (68c) 

The ladder operators given by Schrodinger for the 
total quantum number of the three-dimensional 
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FIG. 5. Diagram of states for the hydrogen atom with excess 
angular momentum, showing ladder operators: (a) IX = 3, fJ = I; 
there are three families with 0(3) degeneracy. (b) IX = I, fJ = 2; 
there is one family with SU(2) degeneracy. (c) IX = I, fJ = 3; uneven 
spacing of m for level Il = I + 3p or 2 + 3p '(p an integer) pre
cludes the existence of 0(3) or SU(2) symmetry group. 

hydrogen atom can be adapted, by appropriate 
renaming of the indices and inclusion of an adequate 
normalizing factor, into operators appropriate for our 
two-dimensional case: 

:l 

W+ (I n + (3/2) 0 ( n + (3/2 )"-c1" - exp n p-
r - n + 3(3/2 op n + 3(3/2, 

X [G + 1 r -IX~72r![~ - ~ - 1 - p OOp} 

(69a) 

70- (I n + (3/2) ° (n + (3/2)! ""',. = exp n p-
n - (3/2 op n - (3/2 

[
n2 1X2m2J-1[p no] 

X --- ---+p-. 
(32 (32 2 (3 op 

(69b) 

These operators are normalized ladder operators for 
the total quantum number n of the radial wavefunc
tions of the problem in consideration; the exponential 
part is included to change the multiplier (n + (3/2)/(3 
in the argument p of the wavefunction to (n ± (3 + 
(3/2)/(3. We have 

The ladder operators given by Infeld and Hull, 
for the orbital quantum number of the three-dimen
sional hydrogen atom, can similarly be transformed 
to get the operators 

Je+ _ (n + (3/2)(1X Iml + (3/2) 

° - [en - IX Im/)(n + IX Iml + (3)]! 

(
IX Iml + (3{2 (3 0 ) 

X (3r - IX Iml + (3/2 - or' (70a) 

re- _ (n + (3{2)(1X Iml - (3/2) 
• 6 - [en _ IX Iml + (3)(n + IX 1m!)]! 

x (1XIm l - (3{2 _ (3 +~) 
(3r IX Iml - fJ/2 or' 

(70b) 

which effect the following change in the radial wave
function: 

Rn . jmj ± fJ/1X does not belong to a wavefunction, 
unless IX = I; otherwise (Je:)~ is the lowest power 
which will change from one wavefunction to another. 
This is the same power to which one raises the 
classical functions (63). 
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With these operators at hand we define 

.4; = {[en - j)JIX - mJ/fJ + l}!(Je;t, 
A:;- = {[en - j)/IX - mJ/p}!(.Je;-y, 
.4t = [em - t)/fJ + 1]~(Jet)"(Je;)"eifJ9, 
.4t = [em - mfJ + 1]!(Je;t(.JC;)"eifJ9

, 

(7la) 

(7Ib) 

m;;:::O, 

m <0, 
(7Ic) 

m > 0, .4; = [em - l)/fJ]~(Je;:-Y(Je;)"e-iP9, 
A; = [em - !)/p]t(Je~nJe;-)"e-ifJ9, m ~ 0, 

(71d) 

where the value of j is determined from the values of 
n according to 

n j 

pIX 0 
1'1 + pIX fJ 

2fJ + pIX 2fJ 

(IX - 1)1'1 + pIX (IX - 1)1'1. 

These ladder operators approach the classical "a" 
functions in the limit of large quantum numbers: 

.4:;~a;, 

Ai~ai· 

Again there is a failure of the expected commuta
tion relations among the A operators, for the same 
reasons as those considered in Sec. III. 

The quantum-mechanical constants of the motion 
are given by (56) after setting IX' = IX. In this problem 
we find that the constants do not account for all 
the degeneracy in the cases fJ > 2, where uneven 
angular momentum spacing is found for some degen
erate levels. In the cases where the constants do 
generate all of the degeneracy, we find that there may 
appear several families of 0(3) degeneracy, in the 
case fJ = 1; and several families of SU(2) degener
acy in the case fJ = 2. One expects from the 
classical Poisson-bracket relations that the constants 
J\" L, and j) should satisfy SU(2) commutation 
relations, but there is a failure of the commutator of 
J\, and j) as considered in Sec. III [Eqs.(7)]. In the 
case where the constants account for the degeneracy, 
we may apply a quantum-mechanical version of 
Dulock's transformation, 

\.:' = 2A:;At - 2 + liP, (72a) 
1 

:1\,' = (-i)aA;A;:(2 + A;:-A~ -/ + l/fJ)":! 
A9."1:0 - 1 

+ (i)aA;:-At(2 + A;:-A; - 2 + I/fJ)!, (72b) 
A;;At 

~)' = (_i)il+lk -.k +-(2 + A:;A:; - 1 + lIP)! 
9 r A:;A; _ 1 

1 

+ (i)"+lA;:At(2 + A:;:-.4:;- -= 2++ l/P):r, (72c) 
d:9A9 

to obtain constants satisfying SU(2) or 0(3) commu
tation relations. For a pure hydrogen-atom potential 
IX = 1'1 = n, we have the identities 

\.:' =~~ 
i ao' 

J\,' = 2 (cos e _ sin e ~ + cos 0 ~ 
2r oe 2 or 

+ sm - -- -- - ,,\.. -. e 0
2 + cos 0 (

2
)( 2 "IP)-* 

oroO r oe2 
' 

'D' 2(' e cosO 0 sine 0 . = sm +---+---2r oe 2 or 

(73a) 

(73b) 

_ cos e ~ + sin e (
2

)( -2Je)-~, (73c) 
oroe r oe2 

where Je is the Hamiltonian operator. 
They are easily verified by applying the operators to 

any wavefunction, when transformed to Cartesian 
coordinates: 

L' = ~ (x ~ - y ~) , 
i oy ax (74a) 

3(,' = 2 ( x + x ~ 
(x2 + l)~ ol 

- y - - - - (-2Je)-!, 02 
I 0) 

oxoy 2 ox (74b) 

(74c) 

they can be recognized to be the angular momentum 
operator and the x and y components of the quantum
mechanical version of the Runge vector, respectively. 

VI. THE RELATIONSHIP BETWEEN THE 
HYDROGEN ATOM AND THE HARMONIC 

OSCILLATOR 

Historically there has always been considered to 
have been a very close relationship between the 
harmonic oscillator and the Kepler problem, which 
has persisted in the comparison of the quantum
mechanical versions of the two systems. The relation 
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is particularly apparent when polar coordinates are 
used to describe the motion, since it seems that the 
orbit is naturally expressed in terms of the polar 
radius in the Kepler problem, and in terms of the 
square of the polar radius for the harmonic oscillator. 
Moreover, where the polar angle enters into the 
equation of the Kepler orbits, the double angle 
appears in the orbital equation of the harmonic 
oscillator. Otherwise the equations of the orbits are 
functionally practically identical. A relationship can 
also be seen, due to the double angle, in the fact that 
the Kepler orbit has one point of perihelion and one 
aphelion, while these numbers are doubled in the 
harmonic-oscillator orbits. In both instances we have 
ellipses, but for the Kepler problem the origin lies 
at the focus, while for the harmonic oscillator it lies 
at the center of symmetry of the ellipse. 

With such similarities it is hardly surprising that 
one might be able to transform one system into the 
other. However, the transformation cannot be made 
too directly, because one cannot simply substitute ,2 
for , and double the angular coordinates. Actually 
this simple substitution of ,2 for, is possible in the 
radial equation of the separated Hamilton-Jacobi 
equation. In fact, substituting reciprocals or powers 
is a standard technique for obtaining solutions of 
problems with one central-force power law in terms 
of those of another. However, the radial equation will 
contain various coefficients, some of which will be 
constant parameters of the problem, and especially 
in higher dimension, others which will be separation 
constants from the Hamilton-Jacobi equation. Al
though they are constants of the motion, they still 
have a functional dependence on the coordinates and 
momenta. Hence, when a change of variable such as 
we have proposed is made, the significance of various 
constants appearing in the equation may be altered; 
for instance, the role of the energy in one equation 
may be played by the angular momentum after the 
substitution. So it is that the relationship between 
coefficients may not remain intact when one tries to 
extend a substitution such as of one power of the 
radius for another to a canonical transformation 
involving all the variables of the system. 

Between the harmonic oscillator and the Kepler 
problem, the principal difficulty in trying to substitute 
,2 for, and 2() for () is that while it will transform the 
orbits, it will not transform the energy properly. An 
energy transformation implies a conjugate trans
formation in the time variable, which may be under
stood from the fact that although the substitution 
mentioned will transform the orbits it will not trans
form properly the particle velocity within the orbit. 

However, in the context of Lagrangian mechanics, 
Wintner21 has shown how, by introducing the 
eccentric anomaly of the Kepler problem as the new 
independent variable, the interchange of the two 
problems may be effected. It is also possible to interpret 
the use of parabolic coordinates, in which the Kepler 
problem is naturally expressed, as a means of realizing 
the square transformation, because the parabolic 
coordinates can be regarded as the real and imaginary 
parts of an analytic function and a canonical trans
formation based on the square of this function. 

Quantum mechanically it has also been noticed 
that the wavefunctions of the harmonic oscillator 
and those of the hydrogen atom are very similar. 22 
The angular wavefunctions are, of course, the same, 
so the only difference appears in the occurrence of ,2 
as a variable in the former functions and of , in a 
corresponding role in the latter. Except for the 
additional appearance of a scale factor, the func
tional form of the wavefunctions in the two cases are 
quite similar. Originally regarded as a mere curiosity, 
this relationship has been exploited as a means of 
solving the one equation in terms of the other, and 
continues to receive more attention as other similari
ties between the two problems have been noted. This 
is particularly true when the full Schrodinger equation 
is taken into account, and not the radial part alone. 
Traditionally, the symmetry group O(n + I) has 
been regarded as the exclusive province of the n
dimensional hydrogen atom, and SU(n) that of the 
harmonic oscillator. Consequently, when it was 
found that certain hydrogen-atom wavefunctions 
transform according to the representations of a 
unitary group,23 or while it was supposed that there 
existed universal symmetry groups, there was con
siderable interest in seeing what relation these two 
problems might have to one another. 

An interesting approach, reminiscent of the trans
formations of the radial equation in the classical 
Hamilton-Jacobi theory, is the nonunitary trans
formation proposed by Plebanski. 24 

We feel, however, that the most productive point of 
view is to regard both the harmonic oscillator and 
Kepler problem as variants of the theme of an aniso
tropic classically degenerate action-angle system com
plicated somewhat by the presence of non-Cartesian 
coordinates. In developing this viewpoint, we 
consider first the classical orbits. 

Given the radial principal functions of the two
dimensional harmonic oscillator and hydrogen atom, 
both with excess angular momentum [Eqs. (43) and 
(59b)], one obtains easily the equations of the orbits 
by a method described by Born. 25 The radial-angle 
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variable is given by 

f ( y2fl2 2)-l 
W = 2£ - - + - 'V dr 

r r2 r r 

for the hydrogen-atom potential, where 'Vr is the 
characteristic frequency in the radial direction. Since 
dW r = 1'r dt, we have 

dt = (2E _ y2fl2 + ~)-l dr. (76) 
r2 r 

Using the expression for the effective angular 
momentum, 

r2 de 
Yfl = --, 

Y dt 

to eliminate dt from (76), one gets the differential 
equation of the orbit. Integrating, one obtains the 

FIG. 6. Classical orbits for 
the harmonic oscillator with 
excess angular momentum. 

equation of the orbit 
y2,u 2 

(77) 

where the polar axis is oriented to simplify the initial 
conditions. 

Similarly for the harmonic oscillator one has 

2 y2fl2 

ro = E + (E2 _ y2fl2)l cos (2()/y) . 
(78) 

For y = 1, these two orbits are well known to be 
an ellipse with focus at the center of force, and an 
ellipse with center of symmetry at the center of force, 
respectively. 

One obtains an orbital precession when y:;6 1. 
Examples of orbits for the harmonic oscillator with 
excess angular momentum are plotted in Fig. 6 for a 
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few values of y. The orbits for the hydrogen atom are 
qualitatively the same if one considers that the value 
of y is half that given in the figure, and takes the 
square root in the radial direction. It is clear from 
inspection of the orbital equations that such a substi
tution transforms the functional form of one equation 
into that of the other. A complete transcription from 
one problem to the other is given by 

(-2EH}lrH = rt, (79a) 

(-2EH)-! = Eo, (79b) 

YH = Yo/2, (79c) 

I-tH = 2l-to· (79d) 

This transformation is valid for any number of 
dimensions if one considers (J to be the angular 
distance from the moving point to a fixed line in the 
plane of the motion. The angular components of the 
principal function contain the transformed variables 
in the combination yl-t and hence are unaltered by the 
transformation. When one considers the problem in 
Hamilton-Jacobi form, the energy for these systems 
is given in terms of the action variables by (45) and 
(61). One finds that there is a factor of 2 multiplying 
Jr in the case of the harmonic oscillator, which is due 
to the fact that one cycle of r is half a cycle of (); 
when one applies transformation (79), this factor is 
corrected by the substitution Yu = Yo/2. 

Another possible transcription would be 

(-2EIJ)!ru = r~, (80a) 

(-2Eu)-~=Eo, (80b) 

(80c) 

Its extension to more than two dimensions is slightly 
more complicated, for () is the angle measured in the 
plane of motion, and has to be properly described in 
terms of the angular variables in use in the particular 
system. 

Quite generally, the n-dimensional Schrodinger 
equation for a particle moving in a central potential 
V(r) , with excess angular momentum, expressed in 
polar coordinates, is 

(~ + N + 1!!... _ y
2
1(1 + N - 2) 

dr2 r dr r2 

+ 2(E - r»)'Y = 0. (81) 

Here L2, the square of the angular momentum 
operator, whose eigenfunctions are the n-dimensional 

hyperspherical harmonics Yiv has been replaced by 
its eigenvalue l(l + N - 2), l = 0, 1, 2, .... 

Equation (81) has solutions in terms of Laguerre 
polynomials for both the hydrogen-atom potential 
V = -I/r and the harmonic oscillator potential 
V = r2/2 in any number of dimensions. 

For the Coulomb potential V = -1/r, the solution 
is given by26 

( 

2N-l 
fiR -

u,/ - (u _ yl - (N _ 3)/2)N+l 

x (u - (2yl + N - 2»!)* Y!e-p /2L211+N-2( ) 
[r(u + 1)]3 P Il P , 

P = 2( -2E)*r. (82) 

The quantum numbers satisfy u - (2yl + N - 2) = 
0, I, 2, .. '. Energy eigenvalues are given by the 
relation (-2E)-* + (2yl + N - 3)/2 = u. Hence we 
have 

(-2E)-! - yl- (N - 1)/2 = 0, 1,2,···. (83) 

For the harmonic potential V = r2/2, the solution is 

OR = (2(U - yl - eN - 2)/2)!\1 
u,l [r(u + 1 )]3 J 

x r1Ie-r2/2Ly,:+(N-21/2(r2); (84) 

the quantum numbers satisfy u - yl - (N - 2)/2 = 
0, 1,2, .. '. Energy eigenvalues are given by the 
relation 2u == (E - N12) + (yl + N - 2). From this 
we have 

(E - N/2)/2 - yl12 = 0, I, 2, . . . . (85) 

Inspection of the relations (83) and (85) shows, that 
for the same number of dimensions, one can trans
form the degeneracy pattern of one problem into that 
of the other by simply choosing YH = Yo/2. Let us 
suppose that Su = (-2E)-! - (N - 1)/2 and So = 
(E - Nj2)/2. To find degeneracy above that given by 
the possible combinations of the remaining angular 
quantum numbers, one has to determine the various 
values of I which make SH - yHI or So - Yol/2 a 
positive integer; hence, if YH = Yo/2 we will find 
exactly the same degeneracy for the level SH = So. 

Now that we have refreshed our memory con
cerning the classical orbits, Schrodinger equations, 
wavefunctions, eigenvalues, and degeneracy patterns 
of these two problems, we may return to the question 
of the extent we may apply information pertaining 
to one of the systems to the other. In spite of their 
close similarities, one system is not a canonical trans
form of the other unless one wishes to tamper with 
the independent variable. Although such a trans
formation is feasible in classical mechanics, it is not 
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practical quantum mechanically. The closest reason
able canonical transformation, interchanging (-2E)tr 
with r2 and 0 with 20, transforms one Hamiltonian 
into a function of the other. However, in that manner 
one may still expect to find that the degeneracy 
patterns transform correctly, that there will be a 
functional relation between the eigenvalues of one 
problem and the transformed eigenvalues of the other, 
and that the symmetry group of the one system will 
pass over into the symmetry group of the other. It is 
also possible simply to interchange (-2E)tr with ,2, 
and instead of changing the angular coordinates, 
replace y by y/2. Effectively the anisotropy of the 
Hamiltonian has been changed, and will in turn 
influence the symmetry operators in the manner we 
have already seen. 

Ample opportunity accordingly exists for compar
ing the wavefunctions, degeneracies, and symmetry 
groups of harmonic oscillators and hydrogen atoms, 
even of different dimensions. Somewhat more care 
is needed in comparing the symmetry groups than 
the wavefunctions, because of the possibility that 
anisotropy may produce two interleaving families, 
or it may result in some states being omitted. 

It is in this way that one may more readily explain a 
recent paper of Ravenhall, Sharp and Pardee. 23 They 
were interested in a problem in solid state physics 
which involved solving the hydrogen atom with an 
impenetrable planar barrier passing through the 
nucleus. Such a system differs from an ordinary 
hydrogen atom in that all the states of even parity 
with respect to reflection in a plane are excluded. It 
was found that the remaining states showed the 
degeneracy patterns of, and transformed according 
to, the group SU(3), rather than the 0(4) appropriate 
to the unrestricted problem. Motivated by this 
observation, they went on to investigate the bisected 
harmonic oscillator, and found that curiously enough 
its wavefunctions transformed according to 0(4) 
rather than the SU(3) of the full oscillator. 

It is interesting to note how some of their results 
are related to anisotropy and how they can be ob
tained and slightly generalized by our treatment. 
Returning to the remark at the end of Sec. II, we will 
now deliberately choose the anisotropy factors IX and 
fJ of the harmonic oscillator as multiples of their 
least-term expression. For example, if we take 
IX = fJ = 2, we have the isotropic harmonic oscillator, 
but the ladder operators given by (17) will distinguish 
four families of states for the four possible combina
tions of the numbers k and j. Every family forms a 
basis for the irreducible representations of SU(2), 
since the fact that one can obtain generators from the 

ladder operators (17) does not depend on IX and f3 
being relatively prime. Two of the four families 
contain all the states whose first quantum number is 
even. Eliminating the other two families we get a 
system equivalent, from the point of view of the 
group generators, to an isotropic harmonic oscillator 
with 2: I frequency ratio. That this separation is 
possible is just the result given by Ravenhall, Sharp, 
and Pardee in Sec. A of their paper. Even more 
generally, if one chooses IX = f3 = m, the operators 
(17) will now distinguish m2 families of states, each 
forming a basis for the irreducible representations of 
the group SU(2). Moreover, if we select those states 
for which nl and n2 are multiples of a and b, respec
tively, where a and b are relatively prime integers, and 
form the generators of SU(2) for IX = f3 = ab we find 
that the resulting system is equivalent to an aniso
tropic harmonic oscillator with a: b frequency ratio. 
This means that such a separation of the isotropic 
harmonic-oscillator energy spectrum accounts for the 
degeneracy of every anisotropic harmonic oscillator 
with rational frequency relation. 

The analysis of Sec. II can easily be generalized to 
n dimensions. We find that the degeneracy of the 
anisotropic harmonic oscillator with commensurable 
frequencies can be accounted for by an SU(n) dynam
ical symmetry group. Each state will belong to one 
and only one of several families, each of which forms 
a basis for the symmetric tensor irreducible repre
sentations of SU(n). For n ~ 3 it may not be possible 
to define the operators (17) in such a way that all 
the states of a given energy level belong to one and 
the same family. Again,if we· consider the isotropic 
harmonic oscillator and choose IXI = IX2 = ... = 
IXn = m,we find that the n-dimensional version of the 
operators (17) distinguish mn families of states, each 
of which forms a basis for the symmetric tensor 
irreducible representations of SU(n). An interesting 
case is the three-dimensional anisotropic harmonic 
oscillator with I: I : 2 frequency relations, which is 
equivalent to choosing states from the isotropic 
harmonic oscillator one of whose quantum numbers 
is even. Ravenhall, Sharp, and Pardee considered 
such a system and showed that the states separated 
into two families forming a basis for the n2 and 
n(n + I)-dimensional irreducible representations of 
0(4). From the point of view of our treatment there 
appear four families of SU(3) degeneracy, the lowest 
energy levels of which are (0, 0, 0); (I, 0, 0); (0, I, 0); 
(1, I, 0). A state of one of these four families will 
differ in n1 and n2 by an even integer and in n3 by an 
integer from its corresponding lowest energy state. 

They also showed how one could separate a basis 
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for the irreducible representations of 0(3) into two 
families forming a basis for the irreducible representa
tions of SU(2). We obtain the same result by con
structing the operators (55) for y = t and choose 
rJ.' = 2 and ~' = 2, double their least-term expression. 
This will give ladder operators changing the quantum 
numbers by 2 units, so that the arrows representing 
the operators in Fig. 4(a) will have double length. It 
is clear that the operators will distinguish two 
families, whose degeneracies correspond to SU(2) 
irreducible representations, and for which one can 
get the two sets of generators by applying Dulock's 
transformation (57). 

VII. CONCLUSION 

With the consideration of a variety of examples 
we are able to understand more completely the 
limitations on the existence of a ufliversal symmetry 
group. Although we have confined our attention 
exclusively to two-dimensional examples, the con
clusions are quite generally applicable to a system 
with whatever number of degrees of freedom. To a 
certain extent, the limitations encountered depend 
upon the precise formulation of our concept of a 
"universal symmetry group." In its most restricted 
sense, one should think of a classically degenerate 
problem, which means that there exists some system 
of canonical coordinates in which the Hamilton
Jacobi equation is separable, action-angle variables 
can be introduced, and there exist rational relation
ships amongst the resulting frequencies. 

Given the restriction to classical degeneracy, the 
ladder operators introduced by Dulock and McIntosh9 

demonstrably lead to an SU(n) group formed from 
those constants of the motion which are bilinear 
combinations of the ladder operators. This group 
depends only on the number of degrees of freedom, 
and in that sense is universal for all such classical 
systems. Fradkin,? Mukunda,s and others have been 
more ambitious, claiming that operators very similar 
in appearance to those of Dulock and McIntosh 
should generate both SU(n) and O(n + I) groups 
for all potentials with spherical symmetry. Such 
arguments were based on the concept of vector or 
tensor constants of the motion. 

The spherically symmetric potentials will, by 
definition, have an orthogonal group of the appropri
ate dimension as a symmetry group. Since vectors or 
tensors are defined by their transformation properties 
with respect to an orthogonal group, it is then a 
simple matter to set down a differential equation 
imposed by these transformation properties under an 
infinitesimal rotation. Solutions can be shown to 

exist,27 involving generally some additional parameters 
which can be fixed by further considerations governing 
the nature of the orbits; for instance, the possible 
ex.istence of circular or linear orbits may further 
restrict the constants possible. The exceptional role 
played by the classically degenerate systems-the 
harmonic oscillator and the Kepler problem-has 
made itself apparent in these analyses by the fact that 
they are the only systems for which the vector or 
tensor solutions are single valued. Presumably this 
would also mean that they are the only systems for 
which the additional constants would be acceptable 
quantum-mechanical operators. 

This final and most extensive level of universality 
has never been carried out explicitly for any specific 
system, let us say for the two-center Coulomb prob
lem, for which the classical results are known, much 
less for a system of the generality claimed. Neverthe
less the theoretical arguments are sound; in principle 
any classical problem can be reduced to force-free 
motion in some appropriate space. The demonstra
tion of this theorem is the culmination of the tradi
tional classical mechanics course. However, two 
delicate points are generally left open. One relates to 
the topology of the force-free space, and indeed in 
the absence of forces, the topological nature of the 
space is of the utmost importance in determining the 
type of motion-whether it is bounded, periodic, and 
so on. The second, even more subtle, point concerns 
whether the required canonical mapping is a trans
cendental function or not, a point which has a 
bearing upon whether it could be realized by non
commuting quantum-mechanical operators. 

Once these preliminaries have been conceded, one 
might for example follow the technique of Mukunda,8 
in which it is shown how the generators of a Euclidean 
group may be combined to form generators of other 
groups, such as the unitary or orthogonal groups, in 
a manner not unlike the constructions of Dulock. 
When the translation operators of the Euclidean 
group are the coordinates and momenta of the space 
of force-free motion, one has achieved his universal 
symmetry group, in principle. 

So much, then, for the levels of universality which 
one could claim. Since the classical reasoning is valid, 
one has to seek an explanation of why one does not 
observe the degeneracy implied by the universal 
symmetry group in every quantum-mechanical system 
somewhere in the correspondence between quantum
mechanical and classical operators. 

In our present discussion, we have only con
sidered the first of these levels, treating systems 
which are classically degenerate. Difficulties which 
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are encountered on this level are bound to persist in 
the higher levels where more extensive universal 
groups are sought, and so their adequate understand
ing is a preliminary to any other investigation, even 
though the latter may unearth further obstacles to 
universal symmetry. 

There seem to be two kinds of effects at work which 
are complicated by quantization. One is anisotropy, 
while the other is the interference between non
Cartesian coordinates. Both seem to imply constraints 
on possible quantum numbers which are incompatible 
with the formation of symmetry groups. 

Anisotropy is conveniently studied, uncomplicated 
by other considerations, in the anisotropic plane 
harmonic oscillator. The degeneracy of the isotropic 
oscillator has been long known, and corresponds to 
the various possible ways by which a positive integer 
may be written as the sum of two others. Bilinear 
products of the ladder operators may be interpreted as 
transferring a quantum from one coordinate to the 
other. They generate the group 8U(2) on the one 
hand, and account for the degeneracy on the other. 

In the case of anisotropy, quanta in the two 
coordinates do not carry the same amount of energy, 
and so such a transfer can only be understood if 
several of the one quanta have the same energy as 
several of the other. This implies a rational frequency 
ratio, but once again the degeneracy can be explained 
and an 8U(2) group generated. Apparently further 
details of the symmetry have been overlooked. One 
of these is that the multiplicity of degeneracy depends 
upon the residue class of the least common multiple 
of the two frequencies. In particular, there may be 
several singly degenerate states. Group theory does 
not preclude matrix elements in the Hamiltonian 
between such states, and so we might think that the 
group accounting for the accidental degeneracy has 
been incompletely determined. However, it is clear that 
no product of ladder operators could ever make a 
transition between these states, even though they have 
the same symmetry type. 

In fact, if we think of the powers of the elementary 
ladder operators which produce the composite 
quantum corresponding to their least common 
multiple as forming derived ladder operators, it is 
these derived ladder operators which generate our 
8U(2) group. It is therefore apparent that there exist 
a number of parallel families of degenerate states, 
because certain of the bilinear products of the derived 
ladder operators are the ladder operators which 
produce the different irreducible representations of 
8U(2). It therefore makes sense to say that the 
wavefunctions of an anisotropic oscillator are grouped 

into k systems of irreducible representations of 8U(2) , 
where k is the least common multiple of the frequency 
ratio. 

Although we are unable to produce constants of the 
motion for an anisotropic harmonic oscillator with 
an incommensurable frequency ratio, we nevertheless 
can feel that there is a certain sort of "continuity" in 
the sense that the more and more discrepant the 
frequency ratio in an oscillator in which that ratio is 
rational, the more and more numerous the one
dimensional representations of 8U(n) become and 
the greater and greater becomes the energy gap to the 
first doubly degenerate state. If it is any reassurance, 
we may think that in the incommensurable case, the 
one-dimensional representation occurs with an infinite 
multiplicity, and that 8U(n) is still the symmetry 
group. 

A complementary sort of "continuity" is afforded 
by the clustering of the nondegenerate states when the 
frequency ratio differs but little from a rational ratio, 
but is still incommensurable, because of the closeness 
of the numbers involved, some combinations of 
ladder operators may approximately fulfil the com
mutation rules of a unitary group, and so we may 
also think in terms of an approximate symmetry group 
with approximate degeneracies. 

In any event it seems that ladder operators are a 
more fruitful concept than symmetry operators. They 
can be formed even when quantization conditions 
impose numerical constraints on the quantum 
numbers which make it difficult or impossible to form 
symmetry operators, and constants of the motion. 
Our first lesson is that when there is anisotropy, which 
means to say that we are forced to juggle quanta of 
different sizes, we must expect to find not one but 
several systems. of irreducible representations of the 
group SU(n), depending on the residue classes of the 
least compatible quantum. 

When one is dealing with non-Cartesian coordi
nates, an additional complication arises. This comes 
about because of the structure of the Hamilton-Jacobi 
equation. In polar coordinates, for example, one 
finds that the z component of the angular momentum 
is a constant, which is essentially the content of the cp 
component of the Hamilton-Jacobi equation. One 
then uses this fact to simplify the theta equation, in 
three dimensions. In higher dimensions, one can 
usually obtain a chain of angular equations, such 
that fixing the variable in one as constant allows the 
separation of the next, and so on. In two dimen
sions one arrives at once to the radial equation, 
whose solution depends on the constant of angular 
momentum. 
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This series of separation is paralleled in the separa
tion of the Schrodinger equation, with the result that 
the theta equation depends on the ~ quantum number, 
and the radial equation will depend upon the angular 
quantum number. As a result there may be con
straints on the value of one quantum number imposed 
by another. Moreover, and equally important, the 
ladder operator for one set of action-angle variables 
may involve more than one of the canonical coordi
nates, due to their involvement through the constants 
of the motion which allowed the separation. 

Again, the simplest instance of this phenomenon 
uncomplicated by extraneous considerations is to be 
seen in the separation of the Kepler problem or 
hydrogen atom in polar coordinates. Since the ladder 
operators depend on the angle variables, which in 
turn depend upon which action variables involve the 
constants of separation, we find that the radial ladder 
operator only involves the principal quantum number, 
the theta operator involves both n and I, while the phi 
ladder operator involves all three, n, I, and m. At 
least, such is the case in three dimensions, with suit
able modification for greater or lesser dimensionality. 
In our present case we have, for two dimensions, 

If we expect to use these ladder operators directly 
to form an SU(2) group, we must expect the radial 
ladder operators to commute with the angular ladder 
operators. However, we first have the restriction that 
Iml ::;; n, with a zero wavefunction for those index 
combinations in which Iml > n. Then, we find that 
AT changes n only, while Ao changes both nand m. 
Consequently, if we apply A;:-At to the state (n, -n), 
and then apply .kt A;:- we find respectively 

Consequently, our angular and radial ladder 
operators do not satisfy the commutation relations 
which their analogs do in classical mechanics, and 
thus there is no direct transcription of the SU(2) 
symmetry group of classical mechanics into an SU(2) 
quantum-mechanical group. The difficulty is a 
fundamental one, as can perhaps better be seen in the 
case of three dimensions, since the groups SU(3) 
and 0(4) are very much more different than SU(2) 
and 0(3) in two dimensions, and the patterns of 
degeneracies are also markedly different. 

It is worth emphasizing that in this case, the 
pattern of degeneracies produced by the ladder 
operators is quite correct, and that it is only the 
commutation rules of SU(2) which fail to be pre
served in the quantum-mechanical transition. More
over, in the classical limit, the commutation rules 
correspond, as the dimensions of the representations 
become larger and larger, and the effects at the edge 
of extreme quantum numbers become of lesser impor
tance. 

We have also seen that Dulock's nonlinear trans
formation, at least in two dimensions, will transform 
the ladder operators into a set which actually generate 
the orthogonal group instead of the unitary group. 

Once having seen the effects of anisotropy and 
interference between coordinates, it is only natural 
to consider their combination as well. The simplest 
instance is the planar isotropic harmonic oscillator 
separated in polar coordinates, where we have a 2: I 
frequency ratio between the radial and angular 
frequencies. The frequency ratio 2: I is one which 
enjoys a number of exceptional properties, and in 
fact is responsible for the very close association 
between the hydrogen atom and harmonic oscillator 
which has been noted throughout the history of both 
classical and quantum mechanics. Other frequency 
ratios can be contrived by introducing a centrifugal 
potential proportional to the square of the angular 
momentum, both for the Kepler problem and the 
harmonic oscillator. 

The first effect which we see is that there occur 
families of degenerate states characteristic of the 
anisotropy, so that even if a symmetry group were to 
appear, there would not be just a single assemblage 
of its irreducible representations. Then we discover 
that there is not just a single "key" state in the sense 
of Infeld and Hull, as would be characteristic of a 
spectrum belonging to SU(2) generated by ladder 
operators, but that all the states of "extreme" 
quantum numbers are key states. This situation is 
connected with the anomalous commutation rules of 
the ladder operators at the extreme states. However, 
yet another effect makes its appearance, which is 
that not all the lattice points which could be generated 
by the ladder operators are admissible. Formally, the 
corresponding functions exist, but they may be 
defective as solutions of Schrodinger's equation in 
some way-by not being square integrable, or by 
being multiple valued. 

The final results are rather unpredictable. Some
times, the pattern will be such that another group 
than the unitary unimodular group will be a symmetry 
group. In the case of the 2: 1 frequency ratio, the 
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degenerate families may interleave or separate in such 
an orderly manner, that one may discern representa
tions of SU(n) or O(n + 1); indeed in this way one 
may best understand the traditional relations between 
these groups, as well as some newly discovered 
relations. On other occasions, the pattern of degener
acies will be such that it appears to preclude any 
possible explanation in terms of symmetry groups. 

In this investigation, we have not undertaken to 
understand the fate of the universal symmetry group 
in those problems which are not classically degenerate, 
an important example of which is the motion of a 
particle in the field of two fixed Coulombian centers. 
On the other hand, we have seen that it can be 
distorted considerably by the process of quantization 
in the classically degenerate problems. The general 
conclusion which we reach is that we might still expect 
to preserve the construction of ladder operators, and 
in this way obtain an operator calculus which will 
account for the observed degeneracies, at least for the 
familiar separable potentials. However, it does not 
appear that we can hope to preserve the commutation 
rules of these ladder operators with one another in 
different coordinates. The result may be that we 
could obtain a different symmetry group than the 
unimodular unitary group which we expect, as was 
the case for the Kepler problem; or it may be that we 
could not obtain any finite Lie group at all. Such a 
conclusion is rather disturbing for those who hope to 
give a group-theoretical account of all degeneracy and 
symmetry, but much more so for those of us who had 
hoped that SU(n) would be that group. 

• Based in part upon a professional thesis submitted to the 
Escuela Superior de Fisica y Matematicas of the lnstituto Politecnico 
Nacional in partial fulfilment of the requirements for the title 
"Licenciado en Fisica y Matematicas." 
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The symmetry of the force field of a magnetic monopole is comparable in its simplicity to that of the 
hydrogen atom or a harmonic oscillator. Both these latter systems possess a "hidden" symmetry which 
leads to an "accidental" degeneracy in the energy spectrum of their Schrodinger equations. Since the 
monopole field is derived from a vector potential which is not symmetric, but undergoes a gauge trans
formation under rotation, the concepts of symmetry and constants of the motion must be expressed 
properly in the presence of velocity-dependent forces. It is found that neither the mechanical nor the 
canonical angular momentum is conserved in the presence of a monopole field, but rather a total angular 
momentum which incorporates angular momentum resident in the magnetic field. The total angular 
momentum defines a cone, on whose surface the motion takes place, whatever central electrostatic po
tential may exist. Neither the harmonic oscillator nor the hydrogen atom retain their accidental degeneracy 
when the nucleus possesses a magnetic charge, but if a repulsive centrifugal potential proportional to the 
square of the pole strength is added, accidentally degenerate systems with a higher symmetry result. The 
symmetry of such a harmonic oscillator is still somewhat obscure, but the "charged Coulombic mono
pole" has an 0(4) symmetry group generated by the total angular momentum together with a Runge 
vector constructed from the total angular momentum. The irreducible representations of 0(4) which 
occur are not the n2 representations of the hydrogen atom, but the rn . n (rn - n = 2E, twice the monopole 
charge) representations which cannot be realized by four-dimensional spherical harmonics. The magnetic 
pole strength must be quantized, if admissible solutions of Schrodinger's equation are to exist, and 
according to Schwinger's quantization (E = nhc/e) if the wavefunctions are to be single valued; in any 
event, the ground state will be degenerate. 

I. INTRODUCTION 

Problems involving the presence of accidental 
degeneracy are widely known and by now fairly well 
understood, insofar as it has always been possible 
to account for the additional degeneracy by "hidden 
symmetries." Thus we recognize that the generators of 
such symmetries form a larger dynamical group than 
the geometric symmetry group which was responsible 
for our belief that the degeneracy was accidental. 
Such considerations have always been of more cdn
cern quantum mechanically than classically because 
of the influence of a manifold of degenerate states on 
the appearance of the spectrum of a quantum
mechanical system, not to mention the complications 
which it produces in the perturbation treatment of 
degenerate systems. Moreover, as Stehle and Han l 

have shown, there is more to classical degeneracy than 
the simple existence of a manifold of orbits of equal 
energy, which is all that is implied by the existence of 
a symmetry group. It is additionally necessary to pay 
attention to quantization conditions as exemplified by 
the Bohr-Sommerfeld procedure in the old quantum 
mechanics. 

This difference has tempered several recent results 

degeneracy are VCr) = r 2/2 and VCr) = -I/r, corre
sponding, respectively, to an isotropic harmonic 
oscillator and motion in a Coulomb field of force. 
The degeneracy of the Coulomb, or Kepler, problem 
has been known since the 1935 work of Fock3 to be 
due to the symmetry group 0(4) for the bound 
orbits, and by the work of Jauch and Hill4 and others 
to be caused by the group SU(3) for the harmonic 
oscillator. 

These results are embodied in a theorem of 
Bertrand," whose proof is obtained by perturbing one 
of the circular orbits which may be found in all 
central-force problems, to see if there will be a nearby 
closed orbit. Its hypotheses are therefore somewhat 
restrictive from a physical point of view; in particular, 
the Lorentz force which is exerted on a moving 
charged particle is a noncentral velocity-dependent 
force, to which the theorem does not apply. 

The simplest spherically symmetric magnetic
field problem is doubtless that for a magnetic mono
pole which produces a radial B field whose magnitude 
diminishes with distance as the inverse square, that is, 

by diverse authors2 to the effect that both 0(4) and Not only is the investigation of this problem inter
SU(3) are classical symmetry groups for all single- esting on account of its violating the hypotheses of 
particle three-dimensional systems. Indeed they are, Bertrand's theorem, but there is also another aspect
but the traditional criterion remains that the only that it is necessary to take into account gauge 
degenerate systems are those for which all the bounded transformations in conjunction with the geometric 
orbits are closed. In the case of a central force law in symmetry operations whenever there are velocity
Euclidean space the only potentials showing such a dependent forces derived from a vector potential. 

896 
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The theory of the magnetic monopole has a vener
able history, perhaps the earliest published treatment 
being that of Poincare6 in 1896, who showed that the 
typical trajectory of an electron moving in a monopole 
field would be a geodesic on the surface of a circular 
cone whose vertex contained the monopole. However, 
because of its connection with the theory of the 
aurorae, most physical interest in magnetic problems 
of this type has centered on the motion of a charged 
particle in the field of a magnetic dipole, a very much 
more complicated problem which is not completely 
separable and which lacks the simple integrals 
possessed by motion in the monopole field. Neverthe
less there have been some recent treatments of the 
classical monopole problem,7.8 mostly from the point 
of view of vectorial or Lagrangian mechanics. 
Lehnert9 cites the monopole as an especially straight
forward instance of the magnetic mirror effect, in
cluding it in a recital of magnetic problems whose 
partial or complete solutions have been obtained 
analytically. 

Quantum-mechanical interest dates from 1931, the 
year of appearance of Dirac's paperlO speculating on 
the quantum-mechanical restrictions concerning the 
existence of monopoles, and the resultant necessity 
for the quantization of electric charge. The Schro
dinger equation for the motion of a charged particle in 
the field of an isolated unchanged monopole was 
studied in a concomitant paper of Tamm,ll published 
shortly thereafter. 

The quantum-mechanical literature concerning 
monopoles can conveniently be divided into three 
categories. The first group of papers,12-I6 generally 
older, consists of investigations of the solutions of 
Schrodinger's equation or Dirac's equation for the 
monopole, to determine their dependence on the 
singularity in the vector potential, to determine 
whether the lack of bound states can be altered by 
considering the magnetic moment of the electron, and 
to determine the nature of the solutions for a charged 
monopole. The second groupl7.18 is mostly experi
mental in nature, being concerned with attempts to 
discover monopoles in various surroundings-in 
meteorites, among cosmic rays, or produced by high
energy accelerators, of which all the results to date 
have been negative. Finally there is a more recent 
group of field-theoretic19 papers which either re
examine Dirac's original considerations, or which 
try to predict scattering and other data which may 
aid the experimental efforts toward detection. 

Since no bound states are expected for the electron
monopole system either classically or quantum 
mechanically, there has been little systematic discus-

sion of either degeneracy or constants of the motion, 
with the exception that Fierz13 has noticed that the 
mechanical angular momentum r x 7t is not conserved 
due to the presence of the magnetic field, and that 
instead, a more general quantity L - €rjr is conserved. 
This quantity is a "total" angular momentum whose 
components still obey the usual commutation rules, 
and in terms of whose square the Hamiltonian may be 
defined. The classical treatments have rarely been 
given in Hamiltonian terms; hence, while integrals of 
the motion are known, little attention has been paid 
to finding symmetry properties or infinitesimal trans
formations to which they might correspond. 

On the other hand, charged monopoles have been 
found to possess bound states.16 Their radial wave
functions are the same as for the ordinary Coulomb 
problem, with only the angular dependence on the 
quantum numbers being different with the result that 
the accidental degeneracy of the hydrogen atom is lost. 

Since we are interested in the occurrence of acciden
tal degeneracy, it is interesting to consider certain 
electrostatic potentials for a charged magnetic mono
pole which result in degeneracy, even if they might not 
correspond to a particularly realistic physical system. 
Two such potentials are 

V(r) = r2/2 + €2/2r2, 

V(r) = -l/r + €2/2r2, 

(I) 

(2) 

where € is the pole strength of the monopole. The 
corresponding Hamiltonians are closely related to the 
harmonic oscillator and Coulomb problems in four 
dimensions, and in turn to the spherical top whose 
connection to the monopole problem has already been 
noted by several authors. This relationship is estab
lished by introducing quaternionic coordinates for 
the Hamiltonian equations, which in turn allow a 
Hopf mapping to be made which incorporates the 
magnetic pole strength as a conserved canonical 
momentum which must accordingly be quantized to 
permit integrable eigenfunctions of the Schrodinger 
equation. One is thereby led in an alternative way to 
Dirac's conclusion that magnetic pole strength must 
be quantized. 

The most conspicuous feature of the motion of a 
particle in a monopole field is that as Poincare showed, 
it is confined to th~ surface of a cone whose half-angle 
diminishes from 7T/2 with increasing pole strength, and 
whose axis is defined by a vector which takes the place 
of the angular momentum. This remark applies equally 
well whether there is a central electrical force field 
present or not. If the cone is allowed to roll without 
slipping on a plane, the orbital point in contact with the 
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plane will trace out an orbit corresponding to zero 
pole strength. Unless there are certain values of the 
half angle of the cone which correspond to certain 
combinations of initial conditions and pole strengths, 
one will find that closed orbits on the cone do not 
correspond to closed orbits on the plane. Hence 
potentials showing accidental degeneracy and closed 
orbits in the absence of a magnetic charge may no 
longer do so in the presence of the charge, or may do 
so only for certain combinations of initial conditions 
and pole strengths. It is therefore seen that the 
supplementary term f2/2r 2 produces the proper en
vironment for those potentials which we study, since 
its effect as seen from Newton's theory of revolving 
orbits,20 is always to cause an orbital precession. 

We are mostly interested in the symmetries and 
degeneracies which occur in the presence of a magnetic 
monopole, so we shall confine our investigation to 
classical mechanics and nonrelativistic quantum me
chanics for which Schrodinger's equation will suffice. 
From a general point of view, we first study the mean
ing of symmetry in the presence of a vector potential, 
as is necessary for the study of any system in which 
magnetic fields occur. We find that infinitesimal 
generators of symmetry transformations in Hamil
tonian mechanics must be altered in such a way that 
they will regauge the potentials correctly when they 
produce displacements in the phase space. 

Many properties of the charged monopole can be 
seen quite clearly by means of ordinary vectorial 
mechanics, which we use to derive properties of the 
orbits and constants of the motion. We find that the 
general characteristic of all central force potentials in 
which a monopole is present is that the motion of a 
charged particle is confined to the surface ofPoincar6's 
cone, that Kepler's second law still holds, and that 
there is a vector constant of the motion, the "total" 
angular momentum, which defines the axis of the 
cone. The total angular momentum differs from the 
mechanical angular momentum, r x n, by just those 
terms needed to regauge the magnetic vector potential 
after a rotation. 

The two electrostatic potentials of most interest are 
the harmonic oscillator potential and the Coulomb 
potential. Their orbits are not closed, but if a supple
mental repulsive centrifugal potential is added, pro
portional to the square of the magnetic charge of the 
monopole, there result closed orbits. The charged 
monopole with an augmented COUlomb potential is 
particularly interesting, because the orbits are planar. 
Confined to the surface of a cone as well, they are conic 
sections, but the center of force is no longer at the 
focus, nor even in the plane of the orbits. However, a 

second vector constant of the motion entirely analogous 
to the Runge vector, with the exception that it is 
formed from the total angular momentum, can be 
exhibited. 

The orbits for a harmonic oscillator potential with 
a monopole present at the attracting center resemble 
precessing bent ellipses, and will also be closed when 
the repulsive centrifugal potential is included. A 
tensor constant of the motion can be constructed, but 
eventually its quantum-mechanical properties will be 
seen to be much less convenient than those of the 
Runge vector for the charged monopole. 

Once the vectorial treatment has made clear the 
nature of the classical orbits and the constants of the 
motion, we cast our problems in Hamiltonian form, 
verifying the relation of the constants of the motion 
to the requirements imposed by the vector potential. 
The principal advantage of the Hamiltonian formalism 
is the ease with which it allows us to formulate our 
problems in several important coordinate systems, 
namely polar and parabolic coordinates, ellipsoidal 
coordinates, and a particular kind of quaternionic 
coordinates. Since we are dealing with a classically 
degenerate problem, we can assuredly formulate the 
universal symmetry group of Dulock and McIntosh, 
Fradkin, and Mukunda in these coordinate systems, 
with the object of forming ladder operators to be used 
in their quantum-mechanical versions. 

Again, the most interesting system is the charged 
monopole, whose symmetry group we find to be 0(4), 
exactly as for the Coulomb problem. However, 
different families of irreducible representations appear, 
each with their characteristic multiplicity of degen
eracy, depending upon the magnitude of the magnetic 
pole strength, whose quantization was the result of 
Dirac's and Tamm's original investigation. None of 
these are representations realizable in terms of rota
tions of a hypersphere unless the magnetic charge is 
zero, so that Fock's stereographic transformation 
could no longer apply. Moreover, there is an absence 
of states oflow angular-momentum quantum number; 
exactly how many again depending upon the magnetic 
charge and reflecting the intrinsic angular momentum 
of the magnetic field. This lack has its influence both 
on the spectrum of such a system-the ground state 
will be degenerate, for example-as well as on its 
scattering properties. 

II. SYMMETRY IN THE PRESENCE OF A 
VECTOR POTENTIAL 

Symmetry in a mechanical system, as it is ordinarily 
understood, means that if the motion of the system 
is followed from certain initial conditions, one should 
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expect to see similar motion develop from any other 
initial conditions symmetrically situated with respect 
to the original conditions and for which the same 
configuration offorces is to be found. To rephrase this 
consideration in a more precise mathematical form, 
let us suppose that T is a transformation of phase 
space, that I is a set of initial conditions, and that 
0(/) is the solution to the equation of motion M with 
respect to these initial conditions. Symmetry prevails 
when O(T(/) = T(O(/» whenever T(M) = M. In 
more physical terms, symmetry prevails when image 
orbits proceed from image initial conditions, a result 
which we expect solely as a consequence of the in
variance of the equations of motion. Thus in a central 
force problem, if we rotate our starting point 90° about 
the z axis, its trajectory will be just the rotated orbit. 
But, if we project a charged particle against a uniform 
electrical field we are likely to see an orbit entirely 
different from the reflected orbit if we project it along 
the field, since a reflection perpendicular to its direction 
is not a symmetry of the electric field. 

In Hamiltonian mechanics, the kinetic energy ex
pressed in Cartesian coordinates is invariant with 
respect to quite general transformations,21 including 
translations and rotations. Therefore questions of 
symmetry depend upon the behavior of the potential 
energy with respect to various transformations. How
ever, in the case of velocity-dependent forces arising 
from a vector potential, care must be taken in judging 
symmetry, on account of the nonuniqueness of the 
vector potential. [n the case of the magnetic monopole, 
the B field is spherically symmetric, being radially 
directed inward or outward, according to the sign of 
the pole, with a magnitude proportional to l/r2. Such 
is not the case for its corresponding vector potential, 
which in spherical polar coordinates has an azimuthal 
component proportional to tan to, in one commonly 
used gauge. However, upon rotation the vector 
potential differs by only a gauge transformation, and 
as a consequence the force field remains unchanged. 

In the presence of a vector potential, the mechanical 
momentum 1t of a particle is related to its canonical 
momentum p by 

1t = P - A, (3) 

with vector potential A. We shall choose units for the 
electronic charge e, velocity of light c, and other 
physical constants which will allow us to avoid dis
tracting coefficients in our formulas. The Hamiltonian 
is then, using vectorial notation, 

H = Hp - A)2 + V(r). (4) 

In transforming configuration space, the vector 
potential A is affected in two ways. First, its com-

ponents are defined as functions of the coordinates 
and are therefore modified. Second, it itself is a vector 
and hence its components are subject to transforma
tion. Properly transformed A becomes T-l(A[T(r») = 
A'(r). We say that the magnetic field B = V x A is 
symmetric if there exists a gauge function 1> for which 

A - A' = V1>. (5) 

Once it is known that there exists such a function 1>, 
it is possible to define a generator of Goldstein's22 type 
F2(q, P, t) for a canonical transformation: 

n 

F2(q, P) = z T;(q)Pi + 1>. (6) 
i=1 

We then have 
(7) 

and 
n aT; a1> 

Pi = z-Pi + -. (8) 
i=lOqj oqj 

Supposing that V(T(r» = VCr) and that T is an 
orthogonal transformation 

H(q, p, t) 

= HT-l(P) + V1> - (T-IA(Q) + Vcfo)]2 + VCr) 

= H(Q, P, t). (9) 

Therefore, the Hamiltonian is functionally the same 
in the new coordinates as in the old, and one is 
assured both that he has carried out a symmetry 
transformation on the Hamiltonian and that he will 
see an image orbit in the image coordinates. 

The important conclusion to be drawn from this 
derivation is that the canonical momenta must be 
modified to compensate for the gauge transformation. 
The physical significance of this compensation is not 
hard to discern, because as one might say, the magnetic 
field also contains momentum and it is the combined 
momentum which has to be scrutinized in discussing 
symmetry. Or alternatively, it is not potentials but 
potential differences which are important, and unless 
the reference point is also taken into consideration one 
can hardly expect correct results from a mere change 
of coordinates. 

If we suppose that the transformation T, including 
the gauge transformation, is an infinitesimal trans
formation it may presumably be written in the form 
of a Poisson bracket transformation, and therefore 
there will be a corresponding constant of the motion. 
It will be the constant ordinarily associated with the 
transformation plus a function of the coordinates 
corresponding to the infinitesimal change of gauge 
resulting from the regular transformation. 
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To illustrate these remarks, let us consider the 
algebraically simpler example of a uniform magnetic 
field in the direction of the z axis,23 whose vector 
potential in the symmetric gauge is 

A = lB(-v, x, 0), 

yielding the Hamiltonian for a charged particle moving 
in this field, 

H = i(p - A)2. 

We expect translations in all three axial directions to 
be symmetries. An x translation ox causes a change in 
the y component of this vector potential equal to ox, 
and hence a gauge differential ofyox. To the generator 
p" of the x translation we must then add the infinitesi
mal gauge y, to produce the constant of the motion 
(p., + tBy). Likewise the generator of a y translation 
becomes (py - tBx), but the unchanged P. generates 
a z translation. With respect to rotation about the 
z axis, it may be seen that the change in the com
ponents of A is exactly balanced by the necessary 
mixing of components, so that L. = xP'V - yp." the 
z component of angular momentum is also a constant 
of the motion. No gauge transformation results from 
its usage. In considering the various constants of the 
motion which we have enumerated it should be borne 
in mind that the momenta which they contain are 
canonical momenta, which should be rewritten in 
terms of the mechanical momenta before comparing 
the Hamiltonian equations of motion with Lagrangian 
or vectorial equations. 

Not only does the presence of the magnetic field 
distort the ordinary constants of the motion, both by 
the addition of the infinitesimal gauge and the usage 
of the canonical rather than mechanical momentum, 
but one may very well find that the commutation 
relations satisfied by the constants in the presence of a 
field is different from the ones pertaining to the field
free case. For example, the x and y translations no 
longer commute in our present example of a uniform 
B field in the z direction. Rather, the commutation 
rule is 

[P", + tBy, Py - tBx] = B, 

which depends upon the field strength B. It is readily 
verified that such a relation is true for any magnetic 
field B. 

Quantum mechanically the complications intro
duced by the vector potential can be treated somewhat 
differently, for the change of gauge can be absorbed 
into the phase of the wavefunction. This consideration 
actually was the cornerstone of Dirac's original investi
gation of the magnetic monopole. Given a symmetry 

group, if the gauge transformation is made without 
the compensating change in the canonical momenta, 
there results a projective representation of the 
symmetry group due to the general unobservability 
of the phase of a wavefunction, and thus a some
what different situation from that which prevails 
classically. 

Yet, there is not really such a difference, because 
representing a coordinate q and its conjugate momen
tum pq by the operators q and -i%q, we may apply 
the transformed canonical momentum of Eq. (8) to a 
wavefunction'Y to find 

(
-i ~ _ O4»'Y. 

oq oq (10) 

If we simply apply the differential operator to 'Y 
whose phase has been modified by the gauge 4>, we 
obtain 

-/-e =e -/--- T 
. a -i<J>'Y -i<J> ( . 0 04»nf 
oq oq oq , (11) 

which amounts to the same thing. 
The foregoing program gives us a definitive plan of 

action by which we may find a constant of the motion 
for the Hamiltonian whenever we are given a symmetry 
of the fields present, inclusive of magnetic fields. Its 
essential feature is that the constant of the motion 
generating the usual symmetry operation must be 
modified to include the infinitesimal gauge trans
formation thereby produced, which will result in a 
suitable change of the canonical momenta to accom
modate the change in the vector potential. 

These general precepts may be found in the litera
ture, although not always so explicitly stated. For 
example, Fierz13 is quite definite that his conserved 
angular momentum for the magnetic monopole 
consists of two parts, one mechanical and the other 
belonging to the field which he explicitly calculates 
from the Poynting vector. However, Goldhaber19 is 
more inclined to treat the field angular momentum 
as an independent quantity, and seems to be unsure 
that the classical problem necessarily possesses a 
conserved total angular momentum. On the other 
extreme, Wilson12 once proposed that the angular 
momentum of the field be arbitrarily quantized, in 
what would appear to be total disregard of the matter 
to which the field was coupled. However, the existence 
of a conserved angular-momentum vector remains a 
consequence of the spherical symmetry of the system 
to which it pertains, even though in the presence of 
magnetic fields it will consist of a mechanical and a 
gauge part, and not a mechanical part alone. 
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III. CLASSICAL TREATMENT OF THE 
MONOPOLE 

One may use vectorial methods to obtain a very 
quick and direct understanding of the motion of a 
charged particle in the field of a monopole, which 
will considerably facilitate his understanding of the 
eventual Hamiltonian formulation of the problem. 
The constants of the motion can be obtained from 
vector identities, and in the case of the angular momen
tum will be the same as that derived from the sym
metry of the Hamiltonian by the methods discussed in 
the last section. It only requires a slight adaptation of 
the methods applicable to an uncharged monopole 
to treat the charged monopole, or for that matter, one 
for which there is any kind of additional central force. 

Constants of the monopole were determined already 
by Poincare,6 but we find it convenient to paraphrase 
Nadeau's8 derivation in vectorial notation. The first 
constant is the total angular momentum, which we 
shall see may be found in the presence of whatever 
central force to which has been added the Lorentz 
force of the monopole field. We begin by writing the 
equation of motion in vector form 

d2r dr r 
- = €- X - - VV(r), (12) 
dt 2 dt r3 

where € is the monopole strength. Noting that 

VV(r) = aV i 
ar 

for unit radial vector i, and forming the cross product 
off with both members of the equation of motion (12), 
we obtain 

r x d
2

r = €f x [dr x !.] 
dt 2 dt r 3

' 

and by expanding the triple cross product, we find that 

d2r di 
r x - = € - • (13) 

dt 2 dt 

In arriving at this stage we see that, on account of the 
cross product, a central force has no influence 
whatsoever on the subsequent derivation. 

Now rewriting slightly the derivative of the cross 
product, we obtain 

dr ~ D r x - = €r + 
dt ' 

(14) 

in which D is a vector constant, but is not equal to the 
angular momentum on account of the term €r. 
Nevertheless, 

D·r=-€, (15) 

which shows that the position vector r always makes 

a constant angle with the vector D, which means that 
the orbit lies on the surface of a right-circular cone. 
When the pole strength is zero, L becomes the 
angular momentum, and the cone, whose half angle 
becomes 7T!2, has degenerated into a plane. Thus, we 
have as a limiting case the familiar orbits of ordinary 
central-force problems. 

By means of the two purely vectorial identities 

D = (D. i)i + r x (D x i) 
and 

dr 2A di 
rx-=rrx-, 

dt dt 

we can rewrite the defining equation (15) for D in the 
form 

~ [di D A] 0 IX ---xr = , 
dt r2 

which implies that 

di D A 

- = - x r. 
dt r2 

(16) 

Since this is the formula describing the rate of change 
of a vector subject to rotation, we conclude that the 
orbital point rotates about the axis of its cone with an 
angular velocity IDI!r2, which depends upon the 
constant magnitude of D and varies inversely as the 
square of the radius. This is thus a version of Kepler's 
second law which applies in the presence of a mono
pole field, and reduces to the traditional result for 
zero monopole strength. 

Since one has, setting L = r x 7t, the mechanical 
angular momentum 

L = €i + D, D· i = -€, 

he finds 
(17) 

which is a further general result for the monopole 
field, that the magnitude of the mechanical angular 
momentum is constant, and only its direction changes. 

A further constant of the uncharged monopole, the 
magnitude of the particle velocity, is no longer a 
constant in the presence of electrical forces, its con
stancy having been due to the fact that the Lorentz 
force is always perpendicular to the velocity. 

Further results may be obtained when one knows 
the specific form of the radial forces present; two 
cases will interest us, that of the charged monopole 
for which there is a Coulomb electric field, and that 
of a monopole with a harmonic potential. To these 
potentials it is convenient to add an inverse square 
potential, not because we know of any plausible 
physical origin for such a term, but because it provides 
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a system with closed orbits and hence one which is 
relevant to the study of accidental degeneracy. 
Mathematically we see that this term combines with 
the Lorentz force in the equation of motion to add a 
term €D/r 3 to the remaining force; it therefore repre
sents a contribution having a constant direction. 
Thus let us write VCr) = VCr) + €2/2r2. Including it 
in the equation of motion produces 

d2r dr r 2 r 
- = € - X - + € - - VU(r), (18) 
dt 2 dt r3 r3 

and finally, making the combination which we have 
mentioned, 

d2r €I> ' 
- = - - - VU(r). 
dt2 r3 

(19) 

Let us first investigate in detail the Coulomb case, 
with VCr) = -l/r. The equation of motion is then 

(20) 

Were it not for the presence of the magnetic charge, it 
is known that the Coulomb potential has in addition 
to the angular momentum a second vector constant of 
the motion, the Runge vector 

R D 
dr A 

= X - + r. 
dt 

(21) 

We might surmise that there would be a similar 
constant even in the presence of a magnetic charge, 
but that the angular momentum entering into its 
definition would be the total rather than the mechanical 
angular momentum. To verify this supposition, we 
calculate 

~(D x dr) 
dt dt 

into which we substitute the equation of motion to 
find, after using (16), 

!!:. (D x dr) = _ dr 
dt dt cit 

and thus finally to conclude that 

~[D x dr + rJ = 0, 
dt dt 

(22) 

which leaves us with the Runge vector as a constant 
of the motion when it is defined in terms of the total 
angular momentum. 

We may obtain further insight into the motion of a 
charged particle in this field by computing (dr/dt) x 
(d2r/dt 2), which is proportional to the binormal. to the 

particle trajectory. We have 

dr d2r € dr 1 dr A 

- X - = - - - x D - - - x r. 
dt dt2 

r3 dt r2 dt 

The two terms on the right each lack the same multiple 
of r to correspond to the constants Rand D, respec
tively, whereupon we write 

dr d2r D + €R 
-x-=---
dt dt2 

r3 
(23) 

It therefore appears that the binormal has a constant 
direction, which shows that the orbit is confined to a 
plane, although it is not a plane which contains the 
monopole itself. Nevertheless it appears that the orbit 
is always a conic section, whatever the monopole 
strength. 

If we compute the inner product D . R, we obtain 
the result - € which reduces to zero only in the case 
€ = 0 or e = O. Only in those two extreme cases will 
the Runge vect9r be perpendicular to the total 
angular momentum. 

Although the plane formed by the total angular 
momentum and the Runge vector contains many 
vectors of interest, such as the focal point of the orbit, 
the vector to the perihelion, and so on, we have not 
found that any of these quantities has a simple alge
braic expression in terms of the constants. 

Now we turn our attention to the harmonic
oscillator-like case, in which we take VCr) = ir2. Our 
equation of motion becomes 

d2r €D 
- = - - - r. (24) 
dt 2 r3 

In the absence of the monopole field, the harmonic 
oscillator possesses a "tensor" constant of the motion 
which can readily be expressed in dyadic form. With 
€ = 0, the equation of motion of the harmonic oscil
lator is 

(25) 

We multiply this equation first by dr/dt on the left, and 
then on the right, to obtain 

dr d 2r dr 
-- - --r 
dt dt 2 - dt' 

d2r dr dr 
--= -r-. 
dt 2 dt dt 

Recognition of the derivative of a dyadic product 
means that if we add these two equations we obtain 

d (dr dr ) 
dt dt dt + rr = 0, (26) 
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which states that the dyadic 

dr dr + rr 
dt dt 

is a constant. Moreover, it is easily seen that 

IV. THE MONOPOLE PROBLEM IN HAMIL
TONIAN FORM 

In order to apply Hamiltonian mechanics to 
problems involving the field of a magnetic monopole, 
it is necessary to find a vector potential A from which 
its magnetic field B may be derived through the rela-

i (r dr _ dr r) = 0 
dt dt dt 

(27) tion B = V x A. For this purpose, the vector po
tential, 

since the components of this antisymmetric dyadic are 
just the components of angular momentum. As a 
result these two dyadic constants of the motion can be 
combined to form a single complex constant of the 
motion, 

(~: + ir) e: -ir) = K, (28) 

whose nine components include the total energy and 
the generators of the group SU(3) which is the known 
symmetry group of the isotropic harmonic oscillator. 

An attempt to repeat the derivation when the 
magnetic charge is not zero fails on account of the 
unsymmetrical position which the term ED/r3 occupies 
in the derivation. Nevertheless the constancy ofD may 
be exploited to obtain a dyadic constant of the motion, 
since the equation of motion may be projected onto 
a plane perpendicular to D. The equation of motion 
in this perpendicular plane is precisely that of a two
dimensional harmonic oscillator, and may be solved 
accordingly. This solution determines a unique 
trajectory on the surface of the cone to which the 
orbit is confined by counterprojection along the axis 
of the cone. 

The simplest operator to be used for this purpose 
(which is a combination of a projection and a 90° 

rotation about the projection axis) is the dyadic 
corresponding to the vector product with respect to D: 

d 2 

-Dxr=-Dxr 
dt 2 ' 

(29) 

where u = D x r. We may then apply our previous 
derivation to the vector u in place of the vector r, to 
obtain a dyadic constant of the motion 

(
dU + . ) (dU .) - /0 --/0. 
dt dt 

(30) 

These vectorial methods are somewhat more con
venient for obtaining constants of the motion, since 
they are free from the complications imposed by the 
use of a vector potential and its accompanying gauge 
transformations. With this preparation, we may now 
formulate the Hamiltonian version of the theory, in 
order to then obtain the Schrodinger equation for the 
quantum-mechanical versions of the problem. 

( 
yz XZ) 

A = E (x 2 + l)r ' - (x2 + y2)r ' 0 , 
(3\ ) 

is convenient, although it differs by the gauge 
E arc tan (y/x) = Eo/ from the one most often used in 
the literature, 

A' = E ( - Y , x , 0) . 
r(r + z) r(r + z) 

This latter, in spherical polar coordinates, assumes 
the form 

A~ = 0, A8 = 0, A~ = (E/r) tan teo 

If we write the Hamiltonian in its customary form 

H = Hp - A)2 + V(r) (32) 

and select the vector potential A above, it becomes 

H = ! [(p _ EXZ )2 
2 x (x 2 + l)r 

( 
EYZ)2 ] + Py + (2 2 + p~ + VCr) 

x + y)r 
or, on expansion, 

2 

H=P....- €Z ( -x) 
2 ( 2 2) yp" Py 

X + yr. 
E

2
Z

2 

+ 2 2 2 + VCr). (33) 
2(x + y )r 

This latter form suggests the introduction of polar 
coordinates. The required transformation equations 
are 

x = r sin e cos 0/, 
y = r sin e sin 0/, 
Z = r cos e, 

(34) 

. cos e cos 0/ sin 0/ 
Px = sm e cos o/Pr + Po - -.- P.p, 

r r SIll e 
.. cos fj sin 0/ cos 0/ 

Pu = SIll () SIll o/Pr + Po + -.- P.p, 
r r SIll e 

sin e 
pz = cos ePr - -- Po· 

r 
(35) 

Under this substitution the Hamiltonian becomes 

H = ! (p; + P: + (P.p + ~ cos W) + VCr). (36) 
2 r2 r2 SIll2 e 
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Even though this Hamiltonian is not spherically 
symmetrical, as can be seen mos~ easily by. examining 
its form in rectangular CartesIan coordmates, the 
force field from which it arises possesses such sym
metry. We must therefore apply the procedures 
discussed in the second section. Knowing that the 
vector potential changes by a gauge transfor~ation 
upon rotation, which cannot affect the equatIOns of 
motion, the proper procedure is to add to the constant 
of the motion generating an infinitesimal rotation. the 
infinitesimal gauge change produced by the rotatIOn. 
The resulting 'generator will define a canonical tr~ns
formation with an increment in the new canonical 
momentum just adequate to absorb the change in the 
vector potential due to the change in the gauge. 

If that procedure is applied in the present instance, 
we first take the canonical angular-momentum com
ponents as the generators of infinitesimal rotations 
about the various coordinate axes. These components 
are then adjusted by adding a function whose gradient 
is the ensuing change in the vector potential. Calcu
lation then produces the following constants of the 
motion: 

D., = I., - exrl(x2 + y2), (37a) 

Dv = tIl - eyrl(x2 + y2), (37b) 

D. = I., (37c) 

where Ii is a component of the nonconserved canonical 
angular momentum. 

It may be verified by explicit calculation that these 
three constants likewise obey the Poisson-bracket 
relations satisfied by the angular-momentum com
ponents: {D." D y } = D., and so on, cyclically. They 
may legitimately be regarded as components of the 
total angular momentum, which is neither the sam~ as 
the mechanical angular momentum nor the canonical 
angular momentum. Nevertheless, it is related to these 
quantities; if we recall the relationship between .the 
mechanical linear momentum 1t and the canonical 
linear momentum p, which is 

7T., = p., - eyz/(x2 + y2)r, (38a) 

7T1/ = Pv + exzl(x2 + y2)r, (38b) 

7T. = Pz, (38c) 

it is again a matter of calculation to verify that 

D", = L., - exlr, 

D'II = L1/ - eylr, 

D. = L., 

(39a) 

(39b) 

(39c) 

which is precisely the definition of the total angu~ar 
momentum which we obtained from our vectorIal 
analysis of the monopole problem. 

Expressed in spherical coordinates, the components 
of the total angular momentum become 

Do; = -sin 4>po - cos 4>(Po cot () + e/sin (), (40a) 

DlI = cos 4>po - sin 4>(Pq, cot () + e/sin (), (40b) 

(40c) 

The Hamiltonian itself may be expressed in terms of the 
total angular momentum, the result being 

H = !p; + (D2 - e2)/2r2 + VCr). (41) 

Once again it appears to be convenient to write the 
potential energy in the form VCr) = U(r) + e2/2r2, 
giving the Hamiltonian the form 

2H = p; + D21r2 + 2U(r). (42) 

In addition to the general spherical symmetry 
of all potentials of the form V(r) in the presence of the 
monopole field, and to which the constancy of the 
total angular momentum is due, we are interested in 
the particular cases for which U(r) = -1/r and 
U(r) = r2/2. We have already seen that the Runge 
vector based on the total angular momentum in the 
case of the "Coulombic" potential -llr, 

R = D x 1t + r, (43) 

is a constant of the motion; but we need to express it 
in terms of the canonical coordinates and momenta. 
In those terms it becomes 

R = D x (p - A) + r. (44) 

With respect to the Poisson- bracket operation, the 
components of the vector D and R satisfy the com
mutation rules for the generators of the group 0(4), 
just as they do in the absence of a magnetic field, and 
hence we may conclude that we stilI have the same 
0(4) group of symmetries even in the presence of the 
monopole field with repulsive centrifugal potential. 

Turning to the harmonic-oscillator potential r2/2, 
we have seen that the dyadic 

(
dU + iU) (dU _ iU), whereu = (1 _ DD).r 
dt dt D· D 

(45) 

is a constant of the motion, and that we may even 
verify that its factors, 

dU i . 
-±IU· 
dt ' 

are eigenfunctions of the Hamiltonian, with respect to 
the operation of forming the Poisson bracket. Un
fortunately the components of these vectors fail to 
satisfy the commutation rules of SU(3), even when 
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E = O. The difficulty is due to the presence of the 
projection operator in the definition of u, whose 
functional dependence on the canonical coordinates 
complicates the Poisson brackets among the various 
vector or dyadic components. As it turns out, the 
analysis of the symmetry of the harmonic monopole is 
much more complex than that for the Coulombic 
monopole. 

The monopole Hamiltonian written in spherical 
coordinates bears a very strong resemblance to the 
Hamiltonian of the spherical top, and suggests the 
introduction of quaternionic (or Euler-angle) co
ordinates. These are defined by24 

~ = r sin te cos H1> - 1p), 

'Y) = r sin te sin H1> - 1p), 

~ = r cos te sin iC1> + 1p), 

), = r cos te cos H1> + 1p) 

with the corresponding momenta 

. 8 1> - 1p 2po 8 1> - 1p 
P = sm - cos -- P + -- cos - cos --

; 2 2 r r 2 2 

+ 
(PIj! - p",) . 1> - 1p 

sm--
r sin 8/2 2' 

. 8 . 1> - 1p 2po 8. 1> - 1p 
P = sm - Sill -- P + - cos - sm --
~ 22 r r 22 

(PIj! - p",) 1> - 1p 
- cos--

r sin 812 2' 

e . 1> + 1p 2Pe. e . 1> + 1p 
P~ = cos - sm -- P - - sm - sm --

2 2 r r 2 2 

+ (PIj! + p",) 1> + 1p 
cos--

r cos e/2 2' 

P;. = cos~cos 1> + 1p P _ 2p6sin~cos 1> + 'If 
2 2 r r 2 2 

(P v' + p",) . 1> + 'If 
- sm--. 

r cos ()12 2 

(46) 

(47) 

Given these coordinates, which are appropriate to 
a four-dimensional space, and the Hamiltonian 

H' = t(pi + p~ + p~ + pD + U(r), (48) 

we find that this Hamiltonian becomes, after sub
stitution of the three-dimensional coordinates and 
momenta, 

+ 4(p", - PIj! cos ()2 + 4P!) + U(r). (49) 
r2 sin 2 () r2 

Unfortunately, a discrepancy appears in the form 
of a factor of 4 multiplying that part of the Hamiltonian 
involving the angular coordinates and momenta but 
not the radial part, when this Hamiltonian is compared 
to that of the monopole problem. There is no clear way 
to remove this factor by means of a canonical trans
formation, and consequently the use of quaternionic 
coordinates is helpful only in treating the angular part 
of the Hamiltonian. The psi-momentum takes the 
place of the monopole charge, and becomes an 
argument in the quantum-mechanical treatment of the 
problem in favor of the quantization of the magnetic 
pole strength. 

In the case of the spherical top, one imposes the 
constraint of constant radius, and so the factor of 4 
in the angular parts of the three- or four-dimensional 
Hamiltonians causes no problem. However, in the 
present case the mapping between the two systems is a 
Hopf mapping, in which the 1p coordinate is lost, and 
the 1p momentum remains as a constant in the reduced 
Hamiltonian. This discrepancy is unfortunate, be
cause we thereby lose the constants of the motion of 
the four-dimensional systems which do not depend on 
purely angular variables. This is even true if we try to 
select those constants (which are abundant since the 
four-dimensional systems of most interest to us are, 
respectively, those of force-free motion, the Kepler 
problem, or the harmonic oscillator) which commute 
in the Poisson-bracket sense with both the Hamiltonian 
and the 'If momentum. 

In fact, the Hamiltonian in quaternionic coordinates 
to which the monopole problems correspond is 

1 ( 3 L2) H = 2' p2 - 4: r2 + VCr), (50) 

where 2_ 2+ 2+ 2+ 2 P - P;. P'I Pr; PA' 
,2 = $2 + 'Y)2 + ~2 + ),2, (51) 

L2 = l(pd - ipy, i,) = $,'Y),~,),. 
i*; 

The appropriate four-dimensional problem to con
sider is then one with the same central force which 
interests us in three dimensions, but with "excess" 
angular momentum. Such systems differ from those 
with the conventional angular momentum in that the 
orbits precess in the plane of the angular momentum 
(which is a tensor in higher dimensions) at a rate 
depending on the angular-momentum surplus. We 
have discussed this' effect at some length in an earlier 
paper.25 From this vantage point we can already 
predict that the Coulombic monopole problem will 
possess a tractable symmetry group, but that the 
symmetry of the harmonic monopole will remain 
rather obscure. 
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The Coulombic monopole is so similar to the 
hydrogen atom, that it is worthwhile to exhibit its 
Hamiltonian in two more coordinate systems, in 
which it, as well as the hydrogen atom, is separable. 
These are parabolic and ellipsoidal coordinates. 
Treating first parabolic coordinates, we introduce 
their definitions26 : 

x = (,uv)! cos ~, 

Y = (,uv)! sin ~, (52) 

z = (,u - v)/2. 

Since we again deal with a canonical point trans
formation, the momenta may be readily obtained 
from a generating function of Goldstein's type F2,22 
and are 

2(,uv)! cos ~ 2(,uv)! cos ~ sin ~ 
Px = + PI' + + Pv - (-)! P"" ,u V It V ,uv 

2(,uv>,' sin ~ 2(,uv)! sin ~ cos ~ 
py = P,t + + Pv + (-)! P"" 

,u + v ,u v ,uv 

2ft 2v 
P. = -+ PI' -, -+ Pv' 

,u v ,u v 
(53) 

Substituting the parabolic coordinates and momenta, 
the Hamiltonian in parabolic coordinates is readily 
found to be 

H = [4,up! + 4vp; + (p! + €2)(,u + v)/,uv 

+ 2€p,i,u - v)!,uv - 4]!2(,u + v). (54) 

It can be rearranged in a form convenient for separa
tion of the variables, 

[4,up! + (p", - €)2/,u - 2,uH] 

= -[4vp; + (Pt/> + €)2/V - 21JH] + 4. (55) 

It is rather interesting to notice that the only trace of 
the magnetic pole strength in this Hamiltonian is in the 
constant added to the z component of the angular 
momentum. 

Prolate ellipsoidal coordinates are the natural 
coordinate system to use in treating a two-center 
problem, because the two attracting centers may 
occupy the foci of the coordinate ellipses and hyper
bolas. In this way we can treat the problem of the 
motion of a charged particle in the field of two charged 
magnetic monopoles. Again, to obtain a separable 
problem, it is necessary to include the repulsive 
centrifugal potential along with the attractive Coulomb 
potential. Since the vector potential is additive in the 
same manner as scalar potentials, we may introduce 
two vector potentials, one for each of two charged 
monopoles situated at the foci of an ellipsoidal 
coordinate system. We shall take the foci to be the 

points (0, 0, d) and (0, 0, -d), so that the internuclear 
separation is 2d along the z axis. We then have 

A1=€1( y(z+d) , -x(~+d) ,0), 
(x2 + y2) Ir + dl (x2 + y2) Ir + dl 

(56a) 

A - ( y( z - d) - x( z - d) 0) 
2 - €2 (x2 + y2) Ir _ dl ' (x2 + y2) Ir _ dl ' . 

(56b) 

The ellipsoidal coordinates are defined by27 

~ = (rl + r2)/2d, r1 = (X2 + y2 + (z + d)2)!, 

'YJ = (rl - r2)/2d, r2 = (X2 + y2 + (z - d)2)t, 

~ = arc tany/x. (57) 

The kinetic energy expressed in ellipsoidal coordi
nates is 

1 2 -p =-----
2m 2md2e + 'YJ2 

1 1 

X [(e - 1)p; + (1 - 'YJ 2)p; 

+ (e ~ 1 + 1 ~'YJ2)Jp:. (58) 

The two vector potentials in ellipsoidal coordinates 
are given by 

A - E ( Y d(~'YJ + 1) 
1 - 1 d2(e _ 1)(1 - r/) d(~ + 'YJ) , 

-x d(~'f} + 1) 0) (59a) 
d2(e - 1)(1 - 'YJ2) da + 'fj) , , 

A _ € ( Y d(~'YJ - 1) 
2 - 2 d2(e _ 1)(1 - 'fj2) d(~ - 'YJ) , 

-x d(~'YJ - 1) 0) (59b) 
d2(e - 1)(1 - 'YJ2) da - 'YJ) , . 

Calculating p • A first in Cartesian coordinates and 
then passing to ellipsoidal coordinates, we find that 

P4>[ ) 'YJ 
p. A = d2 (E1 + €2 (1 _ 'YJ2)(~2 _ 'YJ2) 

+ (E1 - E2) (e _ l)~e _ 'YJ2)J (60) 

Finally, we have for A2, 

A 2 = - [€; + e~J 
ri r~ 

(E; + E~)(e - 'YJ2) + 2E1E2(~2'YJ2 - 1) 

+ d\e - 1)(1 - 'fj2)(e - 'YJ2) . 
(61) 
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The contribution of the two repulsive centrifugal 
potentials is 

(62) 

and the Coulomb potential is 

V 
Zle Z2e 

= +--~--
d(~ + 1') d(~ - 1') 

1 1 
2m d2 ~2 - r;2 

X [;2m de(Zl + Z2) + 1]2m de(Z2 - ZI)]' (63) 

Finally, combining all these terms according to the 
formula 

H = J... p2 _ _ e_ p • A + L A2 + V, (64) 
2m 2mc 2mc2 

we obtain the Hamiltonian for a pair of charged 
Coulombic monopoles in ellipsoidal coordinates: 

H =_1 ___ 1_ 
2m d2 e - 1]2 

X [(~2 _ 1) 2 + (1 _ 2) 2 + (p~ + C~)2 
P~ 'YJ P~ ;2 _ 1 

+ (PI/> + €~1])2 + Z+; - Z-1] + kJ. (65) 
1 - 1] 

It can be rearranged in a form convenient for separa
tion of the variables: 

We have used the abbreviations 

and 

h = 2md2H, 

€+ = e(€l + €2)/C, 

€_ = e(€l - €2)/C, 

Z+ = 2m de(Zl + Z2), 

Z_ = 2m de(Zl - Z2), 

v. THE HAMILTON-JACOBI EQUATION, 
LADDER OPERATORS, AND SYMMETRY 

GROUPS 

(66) 

(67) 

For those problems which are classically degenerate, 
there is a straightforward procedure by which ladder 
operators for the energy may be constructed. Due to 
the symplectic nature of the Hamiltonian equations of 

motion, these ladder operators will be Poisson-bracket 
eigenfunctions of the Hamiltonian belonging to neg
ative pairs of eigenvalues. Accordingly, constants 
of the motion can be formed from products of 
pairs belonging to opposite eigenvalues, and because 
of the classical degeneracy, there will be many linearly 
independent such products to be formed. One may 
generate an SU(3) classical symmetry group for 
systems such as the monopole with the central forces 
which we are studying. However, we generally find 
that only the ladder operators will carryover into 
quantum mechanics, and that the commutation rules 
of their bilinear products will not quite obey the 
commutation rules of an SU(3) group, although in the 
case of the Coulombic systems, one can generally use 
the ladder operators to generate an 0(4) symmetry 
group. In previous papers, we have discussed both the 
technique to form the ladder operators and the 
"universal" symmetry group,28 as well as the modi
fications which the universal symmetry group suffers 
in various typical circumstances.25 A more extensive 
discussion of various details is found in these papers. 

The technique is to solve the Hamilton-Jacobi 
equation in order to write the Hamiltonian in terms 
of the action-angle variables. Once the Hamiltonian 
has the functional form 

H = H(I IXi
I
];), 

in which the]i are the action variables, and the IXi are 
integers, ladder operators may immediately be defined 
as follows: 

where the Wi are the conjugate angle variables. 
Although we have shown in the last section that the 

Coulombic monopole problem is separable in a great 
variety of coordinate systems-polar coordinates, 
parabolic coordinates, ellipsoidal coordinates, and 
quaternionic coordinates, we shall carry out the ladder
operator construction only in polar coordinates, both 
for the Coulombic and the harmonic monopole. The 
other coordinate systems give rise to some character
istic anomalies of their own, but the polar ladder 
operators will be entirely adequate for studying the 
degeneracy and symmetry of the quantum-mechanical 
monopoles. 

The Hamilton-Jacobi equation corresponding to 
the Hamiltonian (36), 
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is separated by writing the principal function in the 
form S = Sr(r) + So«() + S",(rp). We have immedi
ately S,p(rp) = {3rp, where (3 is a constant, since rp does 
not appear explicitly in the Hamiltonian. The other 
components of the principal function are 

Sr = J [2(E - U) - (C(2 + €2)/r2]! dr, (69a) 

So = J [()(2 - ({3 + € cos ()2/sin2 ()j! d(), (69b) 

where ()( is a separation constant. 
The action variables Ji = f Pi dqi are found by use 

of the relation Pi = oS/oq and the separated Hamil
ton-Jacobi equations 

J iP = f P", drp = 27T{3, (70a) 

Jo = f Po d() = 27T[«()(2 + €2)! - (/], (70b) 

J r = f Pr dr = 27T[( -2E)-! - «()(2 + (2)!], 

U = -1/r, (70c) 

= 7T[E _ «()(2 + €2)t], 

U = r2/2. (70d) 

The energy can then be expressed in terms of the 
action variables 

E = -27T2(Jr + Jo + J",)-2, U = -I/r, (7Ia) 

E = (2Jr + Jo + J",)/27T, U = r2/2. (7Ib) 

Considering for the moment just the Kepler po
tential, we find that the form of the expression for the 
energy given above guarantees that bilinear com
binations of the form a-a+, constructed from 

a; = =fi(Jr/27T)te±21TiWr, (72a) 

a'i = =fi(Jo/27T)!e±21TiWO, (72b) 

a: = _(J",/27T)le±21Tiw"" (72c) 

are constants of the motion. The a-functions satisfy 
the Poisson-bracket relations 

{ + -} . ao, ao = I, 

{ + -} . a"" a", = I; 

(73a) 

(73b) 

(73c) 

operators that belong to different coordinates com
mute. 

The a functions will be given explicitly in terms of 
polar coordinates and momenta. The angle variables 
are evaluated using the separated Hamilton-Jacobi 

equations 

(-2E)t 1 -2Er - 1 
wr = - -- rp + - arc sin ---=--=-

27T r 27T [1 + 2E«()(2 + €2)l~ , 
1 r _ (C(2 _ €2) 

Wo = wr - - arc sin ----'---~-
27T r[l + 2E«()(2 + (2)]t 

1 . «()(2+€2)COS()+{3€ - - arc sm _...o.-~_~~~-..!:..-=--_ 
27T [{32€2 + (C(2 + €2)(C(2 _ (32)]!' 

1 . - € - (3 cos () ). 
w",=we--arcsm +L 

27T «()(2 - €2 - {32i sin () 27T 

from which the functions (72) are constructed: 

a; = [( -2Er! _ «()(2 + (2)!]! 

X [e±iHE)trpr« -2E)-1 _ (C(2 + (2»-t 

X « -2E)tr - (-2E)-! 1= irPr)], (74a) 

a'i = [(a2 + €2)! _ {3]!(1= ie±2triWr) (C(2 + €2)! 
[1 + 2E«()(2 + (2)]t 

X (-1 (a
2 + (2)t .) 

«()(2 + €2)! + r 1= IPr 

(oc2 + €2)! 
X ---~~-~----

[{32€2 + «()(2 + (2)(OC 2 _ (32)]t 

X (-.-€ - + {3 cot () 1= i po) e±iiP. (7 4c) 
sm e 

Similarly, for the harmonic-oscillator potential the 
form of the energy expression (7 .1 b) guarantees that 
bilinear combinations of the functions, 

a; = 1=i(JrI2'TTie±21TiWr, (75a) 

a'i = (JeI47T)te±41Tiwe, (75b) 

a: = (JiPI47T)te±41TiW"" (75c) 

are constants of the motion. Poisson-bracket relations 
(73) are also satisfied among the functions given above. 

The angle variables are given in this case by 

1 . r2 - E 
W = -arcsm 

r 27T [E2 _ «()(2 + (2)]! ' 

wr 1 . Er2 - (C(2 + €2) 
We = - - -arcsm 

2 47T r2[E2 _ (C(2 + €2)]1 

1 . ( ()( 2 + (2) COS () + {3€ 
- -arcsm 

27T [,82€2 + (oc2 + (2)«()(2 _ ,82)]1 ' 

1 . -€ - {3 cos e cp 
wI/> = We - - arc sm +-

27T (C(2 - €2 - ,82)1 sin () 27T 
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4 = (~t (e±4triW8) 

X { 1 t [_1£- + P cot 0 1= i P6] riq,}2. 
(oc2 + €2 _ (J2) sin It 

(76c) 

If one chooses the constants of the motion to be 

Mij = QiPj - QjPi , 

N ij = QjQj - PiPj , 

where 
Qi = (at + ai)/2t , 
Pi = (at - a;)/2t , 

we find that M iJ and Nij satisfy the commutation 
relations of SU(3); this is valid for the two cases we 
have considered, since the conclusion depends only 
on the commutators (73) among the a's. 

Dulock2 gave a mapping from a set of functions 
satisfying SU(3) Poisson-bracket relations to a new 
set satisfying the commutation relations of 0(4). This 
means that we should also have 0(4) as a dynamical 
symmetry for the two problems considered here, the 
generators given explicitly by using the "a" functions 
(74) for U(r) = -Ilr or those given by (76) for 
U(r) = r2/2. Dulock's transformation is 

Li = -1C'b :e 2e'e)\e'b + b'e), (77a) 

L2 = _1-(b'b + 2C'C)t(C'b - b'c), (77 b) 
2 C'c 

L; = c'e, (77c) 

-(a'a + 2b' b' + 2c'c,)t 
P 1 = ---'~---'---:----':"'--'-

4b'b(c,c)t(b'b + C'C) 

X [(b'a + a'b)(c'b + b'c)c'c 

+ (b'a - a'b)(c'b - b'c)(b'b + c'c)], (77d) 

-i(a'a + 2b'b + 2e'e)t 
P'2 = --"---~-----'-

4h'b(c'c}t(b'b + c'c) 

X [(b'a + a'b)(c'b - b'c)c'c 

+ (b'a - a'b)(e'b + b'c)(b'b + e'c)], (77 e) 

[(a'a + 2b'b + 2c'c)(b'b + 2c'c)]t 
P---"-'------'---.:.-'----'-''-

a - 2(b'b + c'c) 

X [b'a + a'b], (77f) 

h h t +' - b + b' -were we ave se a = ar ' a = ar ' = all , = all ' 
...+' -C = UJ" C = a",. 

If the a's satisfy (73), L' and P satisfy 

(78a) 

(78b) 

(78c) 

Only ir. the case of hydrogen-atom potential do the 
generators of 0(4) have a simple interpretation as 
constants of the motion, the result of the transforma
tion applied to (74) being 

L'=D, (79a) 

where D is the total angular momentum and R is the 
Runge vector. One finds that L' . P = 0; a quantum
mechanical version of these operators would predict 
energy levels in contradiction to those obtained by the 
solution of Schrodinger's equation. The difficulty is 
that the commutation relations among the L"s and 
P's are not preserved quantum mechanically. One can 
modify Dulock's transformation to get the vectors D 
and R which will be found to be the correct generators 
of the dynamical symmetry group for hydrogen-atom 
potential. 

VI. THE SCHRODINGER EQUATION FOR 
THE MONOPOLE 

Just as the Hamilton-Jacobi equation for the mono
pole in a central force field is separable in spherical 
polar coordinates, so are the corresponding Schro
dinger equations. Making the usual substitutions for 
the kinetic energy operator in terms of the Laplacian 
in spherical polar coordinates, the Schrodinger equa
tion for a charged particle in a magnetic field 

[t( -iV - A)2 + VJ'F = E'F, (80) 
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becomes 

l[i r2 i + _1_ .i (Sin 0 i) 
r2 or or sin 0 00 00 

__ l_(_i ~ + €Cos 0)2 
sin20 01> 

- €2 + 2r2(E - U)]'Y = 0 (81) 

for the vector potential (31) and the scalar potential 
given by VCr) = V(r) + €2/2r2. To separate the vari
ables, we assume that the wavefunction 0/ has the 
form 

'Y(r, 0, 1» = R(r)e(O)e imtP• (82) 

Under this assumption, we obtain the separated 
equations for the radial and colatitudinal variables, 

l(! r2 OR) + 2(E _ U)R _ ~2 + €2 R = 0, (83) 
r2 or or r2 

[~2 + _1_ !(sin o.i) _ (m + € cos O)2]e = O. 
sin 000 00 sin2 0 

(84) 

The second equation is well known to be the 
SchrOdinger equation for the spherical top24.29 when 
m and € are positive or negative integers. Without 
imposing any conditions on m and €, Fierzl3 showed 
that the equation may have physically acceptable 
solutions only for m and E simultaneously integral or 
half integral, thus giving an alternative indicated in 
these special circumstances, of the correctness of 
Dirac'slo conclusions regarding the quantization of the 
magnetic monopole strength. We will exclude half
integral values of pole strength, since it leads to half
integral values of orbital angular momentum. Reasons 
for rejecting such solutions of Schrodinger's equation 
have been extensively discussed in the literature.3o 

The normalized eigenfunctions of Eq. (84) are31 

[
(1- E)' (I + m),]t (21 + 1)*Z-I-t e - (_1)1+< . . 

l.m- (l+€)!(l-m)! (21)! 

X (1 - t)-(m+E)/2(1 + t)(f-m)/2 

dl- m dH< 
x -- (1 - t)l+< - (1 + t)21, 

dt l - m dt l+f 

with t = cos 0, (85) 
and eigenvalues given by 

0(2 + €2 = l(l + I), I = 0, 1,2, ... , 

m = 0, ±I, ±2,' .. , ±l, (86) 

I ~ I€I. 
As we see, these restrictions are identical to the 

usual quantization rules for angular momentum. 

E n 2 3 4 5 6 7 
0 4 9 16 25 36 49 n2 

(a) ±l 3 8 15 24 35 48 n2 
- 1 

±2 5 12 21 32 45 n2 
- 4 

±3 7 16 27 40 n2 
- 9 

€ n 0 1 2 3 4 5 6 
0 1 3 6 10 15 21 28 

(b) ±1 3 5 10 14 21 27 
±2 5 7 14 18 27 
±3 7 9 18 22 

FIG. 1. Table of degeneracies of the magnetic monopole, with 
supplemental centrifugal potential: (a) hydrogen atom, (b) harmonic 
oscillator. 

However, we find the interesting effect that the lowest 
value of orbital angular momentum is limited by the 
magnetic pole ~trength; this means that for E = ± 1 
there will be no s states and the lowest level will be 
degenerate; for € = ±2 there will be no sand p states, 
etc. In general, the lowest level will be at least 
(ZIEI + I)-fold degenerate. It is clear that this result 
is independent of the potential V, as long as it depends 
only on the radius. 

After substitution of the eigenvalue ~2 in the radial 
equation, we find it is identical to that of a particle 
with orbital angular momentum t moving in the central 
potential V(r); the solutions of this equation for 
VCr) = -l/r and r2/2 are well known, the only 
difference being that solutions for I < lEI will not be 
present, and hence the over-all degeneracy pattern 
will be changed. 

The radial wavefunctions for -l/r potential are32 

HR = [~ (n - t - l)!J* e-P/ 2 'L2t+1() (87) 
n.t n4 [en + t)!f P nH P, 

with energy eigenvalues given by 

E = (2n2)-1, n = 1 + 1, 1 + 2, . . . . (88) 

The degeneracies of the first energy levels for the 
first few values of magnetic monopole strength are 
given in Fig. lea). 

In general the degeneracy of the level n, correspond
ing to pole strength ± E, is given by 

n-l 

.2 (21 + 1) = n 2 
- 1e1 2

• (89) 
1=/_/ 

As will be seen in the next section, this degeneracy 
is accounted for by an 0(4) dynamical symmetry 
group. 

The radial wavefunctions for r 2/2 potential are 
given bi~3 

OR _ [ 2«n - 1)/2)! J*e-r2/2r!L!+i (r2) 
n.l - [r«n + 1 + 3)/2)]3 (n+l+l)/2 

n = 1, 1 + 2, 1 + 4, .. " (90) 
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with energy eigenvalues 

E= n + i. (91) 

The degeneracies of the first energy levels for the 
first few values of magnetic pole strength are given in 
Fig. 1 (b). 

Ladder operators for the wavefunctions (85) and 
(87) can be found in the literature. Musto34 gives the 
operator 

HJe; = eOnll / lI±l)p ~(_n_)2(n(n ± 1) - t(l + 1)r! 
op n + 1 

x (E - n ± 1 =f p~), (92) 
2 op 

which is a normalized ladder operator for the total 
quantum number of the radial wavefunction 

HJe± HR - HR 
r n.l - n±I.Z· 

Infeld and Hu1l35 give the operators 

HRJei = nl(n2 - 12r~(1 - ~ =f ~) (93) 
, I 0, 

which are normalized ladder operators for the orbital 
quantum number of the radial wavefunction: 

HRw+ HR - HR ""'0' 71.1-1 -, n.I' 

HRw- HR - HR ""'I)r n,l -, n.l-l· 

Burkhard36 gives the operators 

9Je+ - i...±...!. [ (21 + 1)(21 + 3) J! 
I) - 21 + 1 [(I + 1)2 _ m2][(1 + 1)2 _ «;2] 

x [(1 + 1) cos f) + ~ + sin f) i.], (94a) 
I + 1 of) 

9Je- __ 1_[ (21- 1)(21 + 3) J! 
I) - 21 + 1 W _ m2][12 _ «;2] 

x [I cos f) + m«; - sin f) i.], (94b) 
1 ao 

which are normalized ladder operators for the orbital 
quantum number of the angular wavefunction, 

Infeld and Hu1l35 give the operators 

Je: = (I ± m + 1)(1 ± m)]-t 

x [em - !) cot 0 + ~ =f .!Je±it/>, (95) 
8m f) of) 

which are normalized ladder operators for the mag
netic quantum number of the angular wavefunctions, 

Je~sin* f)0 z•m<Pm = sin! 00t •m±1<Pm±1' 

In the limit of large quantum numbers we have 

HJe; --+ =f ie±21TiW" (96a) 

HRJei0Jei --+ e±21Ti(WO-Wrl, (96b) 

Je~ --+ =f ie±21Ti(Wt/>-Wo); (96c) 

this is seen by comparing the ladder operators with 
(74). 

With the ladder operators given, one can construct 
the quantum-mechanical version of the functions "a" 
given by (74) for Kepler potential. We would expect 
to find an SU(3) dynamical symmetry group in the 
quantum-mechanical problem also. Nevertheless, the 
operators fail to satisfy the expected commutation 
relations when applied to 0 states having extreme 
quantum numbers, as found in the simpler two
dimensional case8.28 

We now turn to the harmonic-oscillator potential; 
the recurrence relation given by Schrodinger37 con
necting radial wavefunctions of different total quantum 
number, for the hydrogen atom, can be adapted by 
changing r into r2 to get ladder operators for the 
total quantum number of the wavefunction (90). 
After inclusion of a proper normalizing factor we have 

0Je;: = [en + oV2-(I+Wrl [r2 - (n + 3) -, :,} 

(97a) 

0Je; = [en + !)2 - (l + !)2]-![r2 - n + , :r]; 
(97b) 

0Je:; °R n •t = °Rn±2.1' 

The same transformation used above can be applied 
to the operator (93); after adjusting the normalizing 
factor we find 

1- 1 oRJe± _ 2 
8 - [en _ 1 + 2)(n + I + 1)]* 

x [1 - ! _ n + l =f ! ~] ; (98) 
r2 1- ! r,o 

oUJe+r! OR = ,! OR 
8 n.I-2 11./' 

oRw- ! OR ! OR 
""'0' n.l = , n.I-2· 

Ladder operators for the angular wavefunctions are 
the same [(94) and (95)] as those given for hydrogen
atom potential. We find that in the limit of large 
quantum numbers, 

0Je; --+ =f ie±2lTiW" (99a) 

ORJei(9Jei)2 --+ ±ie±47Ti(W/I-wr/2), (99b) 

(Je~)2 --+ _e±47ri(Wt/>-Ws). (99c) 

In this case we also find that an attempt to construct 
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the operators corresponding to (76) leads to a failure 
of the expected commutators. 

It is instructive to examine the actual wavefunctions 
for the degenerate ground state of the monopole. If we 
consider Schwinger'sI9 monopole, with the quantized 
magnetic charge equal to one, we find that the half 
angle of the orbital cone in a state of zero mechanical 
angular momentum is y = arc cos (t!), or 45°. Due to 
the mixture of repulsive centrifugal potential and 
attractive Coulomb potential, the classical orbits in 
such a case will consist of straight lines in which the 
particle oscillates back and forth in a radial direction 
on the surface of the cone. Generally speaking, how
ever, there will be two orbits possible for each com
bination of energy and mechanical angular momentum, 
one lying on the upper branch of the cone and circu
lating, if at ail, in one direction, while the other lies on 
the lower branch and circulates in the opposite 
direction. 

When we think of the quantum-mechanical wave
function, we have to remember that the probability 
distribution will be spread out in the general region of 
the classical orbit, and that the orientation of the orbit 
will not be entirely definite. There is another aspect to 
be considered. Classically, the conserved total angular 
momentum and the mechanical angular momentum 
are related by the formula 0 = L - Erlr and their 
lengths by the formula 0 2 = V + E2. Consequently, 
when € = I and 0 2 = I, the mechanical angular 
momentum is necessarily zero, and only the states of 
radial oscillation are admissible. However, the 
quantum-mechanical "length" of 0 2 is of the form 
/(l + I), which means that the corresponding quan
tum-mechanical formula is 

£2 + €2 = 1(1 + 1), 

and this in turn implies that £2 has eigenvalue 1. 
However £. ~ is a conserved constant, so that the 
component of the mechanical angular momentum 
along the axis of the orbital cone is a constant, which 
can take one of the three values + 1, 0, or -1. Hence, 
a circulation of the particle is admissible in the ground 
state, something which would not be possible classi
cally. If the circulation is clockwise, the particle will 
favor the upper branch of the cone, when it is counter
clockwise it will favor the lower branch, and when it is 
zero, presumably the particle may divide its time 
equally between the two branches, but still avoid the 
axis of the cone. Hence we may understand the wave
functions shown in the sketch of Fig. 2. The de
generacy of the ground state then seems to be a con
sequence of the fact that the particle, by being confined 
to the surface of a cone and not to a plane, never 

I 

o 
I 

m=O 
FIG. 2. Angular wavefunctions of the degenerate ground state for 

the first-level magnetic monopole charge. 

occupies a spherically symmetrical probability distri
bution, and so singly degenerate s states can never 
occur. 

VII. SYMMETRY OF THE MONOPOLE 

In this section we show that the quantum-mechani
cal symmetry group of the monopole problem with the 
potential €2/2r2 - l/r is the rotation group in four 
dimensions; its generators are given by the quantum
mechanical operators corresponding to the vectors 
o and R considered in the preceding sections. The 
total angular momentum operator is given by 

~ = r x 7t - Erlr, (100) 

where 7t is the mechanical momentum operator; 
substituting 7t = (-iV - A), where A is the vector 
potential (31), we find 

where 

:Dx = I:x - arl(x2 + yZ), 

:Dy = I:y - qrl(x2 + y2), 

:Dz = I:z , 

£ = -ir x V. 

(lOla) 

(lOlb) 

(lOlc) 

(102) 

The Runge vector operator is given by 

:R = H!D x 7t - 7t X ~) + rlr (103) 

after symmetrization of the noncommuting operators 
~ and 7t. Its Cartesian components are 

:R", = 7Tz:Dy - :D.7T1I + x/r, 

:RII = 7T",:Dz - :D",7Tz + ylr, 

(l04a) 

(104b) 

:Rz = 1TlI:Dx - 'Dy1T x + z/r. (104c) 

The operators ~ and :R,' = (-2Je)-i:R, commute 
with the Hamiltonian Je and satisfy the commutation 
relations of 0(4): 

[:Di , 'D j] = ieijk'Dk , 

[:R;, :R~] = ieijk'Dk , 

[:R;, ']) j] = ieijk:R,~. 

(105a) 

(105b) 

(lOSe) 
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We will now apply Pauli's38 derivation of the formula 
for the energy levels of the hydrogen atom to this 
problem. By doing so, the degeneracy given by (89) 
will be accounted for completely. We define the 
operators IJ = (~ + at')/2, 

2J = (~ - at')/2. 
(106a) 

(106b) 

As a direct consequence of the commutators (l05), 
we have 

[2J i , 2J;] = iei;k 2Jk, 

[IJ i , 2J;] = 0, 

A straightforward calculation yields 

at12 = _ (~2 _ €2 + 1) + (-2Je)-\ 

~·at=at.~=-€, 

which are used to obtain the relations, 

(107a) 

(l07b) 

(107c) 

(108) 

(109) 

IJ2 = [( -2Je)-! - € - 1)][( -2Je)-! - € + 1]/4, 

(110a) 

2J2 = [(-2Je)-! + € - 1)][(-2Je)-! + € + 1]/4. 

(llOb) 

IJ2, 2J2, and Je can be diagonalized simultaneously, 
since they commute. From the commutation relation 
(107a), satisfied by the components of IJ, we conclude 
that IJ2 has eigenvalues given by i(i + 1), where 
i = 0, t. 1, t, .... The dimension of the representa
tion is 2i + 1 = s, and hence i(i + 1) = (s - 1) x 
(s + 1)/4. Comparing with (110a) we find that the 
energy level E. is given by 

E. = -Hs + €)2. (111) 

The eigenvalues of 2J2 are given by k(k + 1), 
where k is integer or half-integer. The dimension of the 
representation is 2k + 1 = q and hence k(k + 1) = 
(q - 1 )(q + 1)/4. From (111) and (11 Ob) we see that 
for the representation corresponding to the energy 
level E., the eigenvalue of 2J2 is (s + 2€ - 1) x 
(s + 2€ + 1)/2, and we have q = s + 2€. The dimen
sionalities of the representations of IJ and 2J differ 
by 2€. This originates from the fact that ~ • at is -€ 
and is not zero as in the case of the hydrogen atom. 
The degeneracy of the level s is simply the product of 
the dimensions of the representations of IJ and 2J 
which is given by s(s + 2€), and which is the same as 
formula (89) since S = n - €. It is also clear that the 
lowest level will be degenerate. Since sand q differ by 
2€, we will not have simultaneous one-dimensional 
representations of IJ and 2J, as for the hydrogen 
atom. The lowest degeneracy is given by 21€1 + 1. 

One gets the quantization of magnetic pole strength 

from these considerations. 2€ is integral simply be
cause it is the difference of the dimensions of two 
representations. Nevertheless, this derivation is not as 
general as that of Dirac, since it depends on a partic
ular potential. 

It is interesting to note the role played by the 
identity ~. at = - € in the determination of the 
symmetry of the Coulombic monopole, since it is 
responsible for the fact that one does not obtain the 
usual representations of 0(4) of dimension n2 , but 
rather those of dimension mn, where m - n = 2€. 

Bacry, Ruegg, and Souriau,39 in a recent paper in
vestigating the possible vector constants of the motion 
which might exist for a problem with a spherically 
symmetrical potential, found that such a requirement 
neither fixed the angle between the angular momentum 
and the second vector constant, nor their relative 
magnitudes. The familiar relationship L . R = 0 which 
holds for the ordinary Coulomb potential, stating 
that the Runge vector lies in the plane of the orbit 
and is consequently perpendicular to the angular 
momentum, is a consequence of the existence of linear 
orbits passing through the origin. These orbits carry 
zero angular momentum and allow the evaluation of 
L . R, which is otherwise only known to be a constant. 
However, in the case of the monopole, the total 
angular momentum always has a minimum value due 
to the angular momentum resident in the field and 
distinct from the mechanical angular momentum. 
Thus the linear orbits fix the value of D • R at this 
minimum value, -€. 

The other relationship, £2 + R2 = (-2E)-\ was 
determined from the possible circular orbits, and 
yields similar results for the monopole. 

The failure of Dulock's mapping from the classical 
generators of SU(3) to the generators of 0(4) as 
applied to the quantum-mechanical ladder operators 
of the monopole problem is evidenced by the fore
going discussion. However, we have not investigated 
the possibility that other transformations of a similar 
nature might not exist, and allow a successful con
struction of the generators of the symmetry group. 

The question of the symmetry of the harmonic 
oscillator is considerably more complicated than for 
the Coulombic monopole, and we have not yet 
succeeded in relating the observed pattern of de
generacies to a symmetry group, even though the 
degenerate multiplicities strongly suggest the existence 
of a SU(2) x 0(3) symmetry group. 

VIII. CONCLUSION 

Perhaps the most important point which we have 
investigated is the discussion of the proper formulation 
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in Hamiltonian mechanics of the treatment of geo
metrical symmetry operations in the presence of a 
magnetic field. We have seen that the important con
cept is the symmetry of the field, or more generally the 
force system present in a mechanical problem. The 
potentials describing a symmetrical force field will not 
necessarily show the same symmetry, but rather will 
be invariant up to a gauge transformation when the 
symmetry operation is performed. As a consequence, 
the generators of the symmetry transformation which 
would be conserved quantities in the absence of 
magnetic forces must be modified to incorporate the 
necessary gauge transformations to compensate, in the 
definition of the canonical momentum, the change 
which takes place in the vector potential. The con
served quantities in the presence of a magnetic field 
will then be somewhat different from the familiar 
constants of the motion when there are purely electro
static forces, or generally forces derived from a scalar 
potential alone. 

A case in point is the conservation of angular 
momentum in the presence of a spherically symmetric 
magnetic field, of which the simplest example is the 
field due to a point magnetic monopole. It is not the 
angular momentum L = r x 7t which is conserved, 
but rather a "total angular momentum" D, 

dr A 

D = r x - - €r. 
dt 

Although D is also a vector constant of the motion, it 
does not satisfy the same algebraic identities as L, 
and in particular, we have D· r = -Er rather than 
D • r = o. Instead of being confined to a plane 
perpendicular to the vector D, the radius vector 
always lies in the surface of a cone whose axis is 
defined by D. As the magnetic pole strength becomes 
weaker, we find that in the limit of zero pole strength, 
D becomes equal to L, and the half angle of the orbital 
cone becomes 17/2. Nevertheless, the law of equal 
areas in equal times, the second law of Kepler, still 
retains its validity, even though the area is swept out 
on the surface of the cone. 

Accidental degeneracies fare somewhat differently 
in the presence of the magnetic field, and we have seen 
that both the harmonic oscillator and the Kepler 
problem lose their degeneracies when a monopole 
is located at their attraction centers. In their place 
other potentials become more degenerate, particularly 
these same two potentials when they are supplemented 
by the centrifugal potential €2j2r2. There are probably 
no such potentials occurring in nature, but their study 
is nevertheless instructive. The behavior of a particle in 
their presence can be understood qualitatively if we 

understand that when the particle motion is warped 
onto the surface of a cone by the monopole field, the 
circumference of a circle is less than 217r and therefore 
a closed planar orbit will precess when it is transferred 
to the conical surface. 

Taking account of this effect, we have seen that there 
is a modified Runge vector which is a constant of the 
motion for the charged monopole, and a dyadic 
constant of the motion for the harmonic monopole. 
Moreover, both problems possess the same energy 
formula which they have in the absence of the mono
pole, and in fact the only difference in the pertinent 
Schrodinger equations is that there are somewhat 
different theta functions composing the separated 
wavefunctions and certain restrictions on the range of 
the quantum numbers: otherwise both the solutions 
and spectra are identical. 

These restrictions, at first sight innocuous, in fact 
radically change the pattern of degeneracies. In the 
case of the Coulomb monopole, the symmetry group 
is still 0(4). However, instead of the irreducible repre
sentations of dimension n2 which are typical of orbital 
angular momentum problems, we find that the repre
sentations which occur are of type mn, in which 
m - n = 2€ i.e., twice the quantized magnetic pole 
strength. The alteration in the degeneracy pattern of 
the harmonic monopole is even more profound, since 
the resulting degeneracies correspond to no possible 
irreducible representation of SU(3), although it is not 
precluded that some other symmetry group might 
serve to account for the degeneracies. 

Yet another byproduct of the modifications is the 
fact that the ground states of neither problem are any 
longer singly degenerate; the actual degeneracy 
occurring depending on the quantized monopole 
strength, and hence on the residual angular momen
tum of the magnetic field of the monopole. 

It was known since the earliest work of Dirac10 

and Tammll that the monopole strength had to be 
quantized if one was to obtain a solution for the 
Schrodinger equation of the monopole. However, it 
seems to have escaped notice that assuming Dirac's 
quantization would in fact lead to double-valued 
wavefunctions. Dirac's treatment was based entirely 
on arguments of phase change resulting from gauge 
transformations, and so did not encounter problems 
with the actual wavefunctions. Tamm used a gauge 
which obscured the single or double-valued nature of 
his solutions. Fierz13 used the same gauge while Ban
deret14 only treated scattering solutions of the Schro
dinger equation. Eliezer and Roy16 apparently abused 
an absolute value sign, and missed the multiple 
degeneracy of the ground state, which was implicit in 
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the restrictions of the range of the quantum numbers 
mentioned in the other papers. However, only Eliezer 
and Roy treated the charged monopole, which in 
contrast to the uncharged monopole possesses bound 
states in which the multiple degeneracy would be 
obvious, and for which doubly degenerate ground state 
would have a readily apparent double valuedness. 
Malkus,18 who also treated a charged monopole, did 
so in the framework of Dirac's equation, where spin 
also plays a role. As Peres40 has recently confirmed, 
one must use Schwinger'sl9 quantization, double that 
of Dirac, if wavefunctions which are single valued 
under spatial rotations are to result. 

The charged monopole with repulsive centrifugal 
potential shares with the hydrogen atom separability 
in a variety of coordinate systems, including para
bolic and ellipsoidal coordinates. In fact, the latter 
admit the more general problem of two such mono
poles with arbitrary electric and magnetic charges. It is 
unfortunate that the limit in which two opposite 
magnetic poles move into coincidence does not pro
duce the magnetic dipole as a limiting case. The 
obstacle is the fact that the repulsive potential neces
sary to render the system separable depends on the 
square of the pole strength and thus does not pass 
over into a derivative in the limit as do the pole 
strengths. In fact, the repulsive potential is so strong 
that there are no particle trajectories in which the 
particle spirals around a line of magnetic force, as is 
characteristic of the magnetic dipole problem.41 

We have not elaborated the solution of the mono
pole problem in these coordinate systems, but it is 
perhaps interesting to note a remark of Schweiger42 

in his monumental treatment of the ordinary Kepler 
problem in parabolic coordinates, that the confine
ment of the attracting center to the orbital plane was 
only a consequence of the fact that the same constant 
PiP appeared in both separated parts of the Hamilton
Jacobi equation. In the presence of the monopole, the 
constants which appear are (PiP + 10) and (PiP - 10), 
and as we have seen, the orbital plane moves away 
from the origin. 

One coordinate system which is of especial utility, 
however, is formed by the quaternionic coordinates. 
Although these are four-dimensional coordinates, 
the magnetic pole strength enters naturally as a con
strained coordinate; it is the constant momentum 
conjugate to one of the angular quaternionic coordi
nates. The angular part of the equation reduces immedi
ately to the Schrodinger equation for the spherical 
top, and it is in fact this interpretation which leads 
most naturally to the quantization of magnetic pole 
strength in such problems. However, there is an 

anomalous factor of 4 multiplying the angular 
momentum which prevents the monopole with a 
certain electrostatic potential in three-dimensional 
space from passing over directly into the analogous 
problem in four dimensions, and so one obtains the 
analog with "excess angular momentum." The result 
is that the symmetry of the Coulombic monopole can 
be extracted from the four-dimensional symmetry, 
whereas that of the harmonic monopole cannot be 
extracted from a symmetry group even though a 
calculus of ladder operators exists accounting for the 
degeneracy. 

The monopole with a Coulombic charge, even 
though the repulsive centrifugal potential provides it 
with the symmetry group 0(4), contrasts in another 
interesting way with the ordinary hydrogen atom. 
Fock's explanation of the accidental degeneracy in
volved a stereo graphic projection which reduced the 
problem to that of force-free motion on the surface 
of a hypersphere. It was this simple geometric version 
of the problem which gave the concept of "hidden 
symmetry" its strong intuitive appeal. However, it is 
known that only the family of irreducible representa
tions of 0(4) of dimension n2 may be realized by 
transformations of spherical harmonics over a geo
metrical sphere. Since it is the family mn with m - n = 
210 which occurs among the wavefunctions of the 
monopole problem, we must conclude that there is no 
mapping of Fock's type to the surface of a hypersphere 
which will provide us with a simple geometrically 
symmetric version of the monopole problem. 
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Thi~ pape~ is con~e~ned -:vith con~uction o.f he.at ~nd the related problem of propagation of thermal 
waves m statIOnary nwd s~hds. SpecIal a~tentlonls gIven to rat~-de~ndent response and the ensuing 
condltlOn~ of propaga~lOn In the condu~tIng ~edIUm. The case In whIch the response of the medium is 
characterIzed by functIOns that are nonlInear In temperature and temperature gradient but are linear in 
the rate of temperature is studied in detail. The conclusions reached are also discussed in the context of 
the infinitesimal theory. 

1. INTRODUCTION 

This paper is concerned with heat conduction and 
propagation of thermal waves in rigid solids. Our 
approach and point of view is that of recent develop
ments in continuum thermodynamics. We employ the 
balance of energy and the (Clausius-Duhem) entropy
production inequality as well as constitutive assump
tions characterizing the local thermal behavior of the 
material. For example, if temperature, temperature 
gradient, and rate of temperature are taken as inde
pendent variables, then the thermal variables such 
as specific energy, specific entropy, and heat flux are 
determined by constitutive equations. When the 
constitutive assumptions include rate of temperature 
as an independent variable, there arises a local 
production of entropy [see Eq. (2.2»), in addition to 
the entropy production caused by conduction, which 
is inherent in the usual rate-independent response. The 
rate-dependent thermal response studied here and the 
corresponding generalization of the nonlinear heat 
conduction equation leads to a prediction of finite
speed thermal waves, as well as to other novel 
phenomena associated with local thermal dissipation. 

Before describing the scope of the paper in detail, 
it is desirable to recall for background information 
certain other developments which bear on conduction 
of heat in rigid solids. Within the framework of 
modern developments in continuum physics, attention 
was largely confined until recently to purely mechani
cal constitutive equations. Arguments for obtaining 
necessary and sufficient conditions for the validity of 
the entropy production inequality, limited to non
linear elastic materials with heat conduction and 
viscosity, were given by Coleman and NolF In a 
paper by Coleman and Mizel2 there is a more extensive 
discussion of generalizations of the classical theory of 
linearly viscous fluids with linear heat conduction, in 
which the independent thermodynamic variables are 
temperature and temperature gradient. Among sub
sequent developments, we mention Coleman's3 work 

on thermodynamics of materials with fading memory, 
in which the thermomechanical constitutive equations 
are assumed to be functionals over the time histories 
of the chosen independent variables. Similar con
stitutive assumptions are utilized by Coleman and 
Gurtin4 in their investigation of the thermal behavior 
of rigid heat conductors. 

Certain types of well-known mechanical behavior
typical of materials of rate type-such as that for 
linear (Newtonian) viscous fluids are appropriately 
characterized by rate-dependent functions rather than 
by memory functionals. 5 Likewise, we may expect 
certain thermal behavior of rigid conductors to be 
best described by rate-dependent functions, and this 
is the underlying premise of the generalization of the 
classical heat-conduction equation sought here. 

That a generalization of the classical heat conduc
tion equation for solids is desirable has been recog
nized for several years. This view is based primarily 
on the fact that the classical equation is parabolic 
and does not admit the possibility of finite speeds of 
propagation of thermal pulses. Most of the previous 
attempts to alter the heat conduction equation so as 
to predict thermal waves, often referred to in the 
literature as "second sound," have been based on an 
ad hoc generalization of Fourier's heat conduction 
law; see, for example, Chester6 and Ulbrich.7 This 
generalization, referred to by Ulbrich7 as Vernotte's 
hypothesis,S appears as 

q + Tq = k grad () (1.1) 

for rigid conductors, where q, q, () represent the heat 
flux, the time rate of heat flux, and temperature, 
while T, k are material constants. With reference to 
(1.1) Ulbrich state~7: "Although Vernotte's proposed 
revision of Fourier's hypothesis adequately circum
vents the paradox of infinite velocity, no apparent 
physical justification can be offered for the addition 
of the second term .... " 

A different approach from that based on (Ll), but 

917 



                                                                                                                                    

918 D. B. BOGY AND P. M. NAGHDI 

with the same objective, is taken by Kaliski.9 He 
starts with the assumption that the heat conduction 
equation should be a second-order hyperbolic equa
tion, and then generalizes Onsager's reciprocal 
relations and the associated form of the entropy 
inequality so as to accommodate this assumption. 

We also draw attention to a very recent paper by 
Gurtin and Pipkin,lo whose work is motivated by (1.1). 
They develop a nonlinear theory for rigid heat con
ductors in which the constitutive assumptions are in 
the form of functionals over the temperature history. 
They show that an equation of the form of (1.1) is a 
special case of their linearized constitutive equation 
for the heat flux q. Their associated generalized heat
conduction equation in the linear theory is given by 

cO(x, t) + (J(O)(}(x, t) + 1"'{J'(S)(}(X, t - s) ds 

= a(O)M:I(x, t) + I'" a'(s)M:I(x, t - s) ds + f(x, t), 

(1.2) 

where a(s) and (J(s) are called the heat-flux relaxation 
function and the energy relaxation function. This 
equation is in a form that predicts finite speeds of 
propagation of thermal waves. An unusual feature 
of (1.2), however, is the presence of f (rather than r) 
which, evidently, is due to the fact that (1.2) is 
obtained from the first time derivative of the energy 
equation rather than from the energy equation itself. 

In the present paper, which is concerned with rigid 
stationary conductors, we use, in general, direct 
(coordinate-free) notation. Thus, vectors and points 
in 3 -dimensional Euclidean space are denoted by 
boldface Latin lower case letters, while boldface 
Latin capital letters are used to designate tensors of 
order two; also, Greek lower case letters are used 
(although not exclusively) for scalar thermodynamic 
variables. An exception to the above notation occurs 
when we write the energy equation as a partial 
differential equation in the temperature. Then, for 
ease of comparison and analysis, all quantities in the 
energy equation are expressed in terms of their 
Cartesian components. 

In Sec. 2, following some preliminaries, we include, 
for clarity and later comparison, a discussion of 
nonlinear constitutive equations for rate-independent 
response,11 when temperature and temperature grad
ient are taken as independent variables. A generaliza
tion, in which the independent variables include the 
rate of temperature, is introduced and developed in 
Sec. 3. This leads to a local thermal dissipation of 
energy and to the possibility of temperature changes 
without heat flow. The appropriate "heat-conduction 

equation" is then derived and is used in Sec. 4 to 
investigate the existence of finite speeds or propaga
tion of second-order discontinuities in the temperature. 

In order to arrive at more explicit conclusions, we 
specialize in Sec. 5 the results of Sec. 3 by assuming 
that the dependence on the temperature rate is linear. 
We then re-examine the energy equation for the case 
of isotropic materials with a center of symmetry and, 
in particular, make certain observations regarding 
the speed of propagation of thermal waves in one 
space dimension. Of special significance is the result 
in Sec. 5 that real wave speeds are possible only if 
there is a sufficiently large temperature rate present 
in the medium through which the wave is to propagate. 

Finally, motivated partially by the results of Sec. 
5, we discuss in Sec. 6 the possibility of wave propaga
tion in an infinitesimal theory, as well as a theory 
governing infinitesimal time-dependent temperature 
variations superposed on a finite (nonuniform) 
equilibrium temperature change from the reference 
temperature. We show that the entropy production 
inequality precludes the possibility of thermal waves 
in such linearized theories which are obtained by 
systematic linearization of the results of Sec. 5. 

2. PRELIMINARIES: RATE-INDEPENDENT 
RESPONSE 

Let x be the (3-dimensional) position vector 
relative to a fixed rectangular Cartesian coordinate 
system, and let t denote time. Since we shall be con
cerned only with rigid stationary conductors, no 
distinction between material particles and their 
positions in space is necessary. Let E, 1], 0, and q 
denote the internal energy per unit mass, the entropy 
per unit mass, the temperature (assumed positive), 
and the heat-flux vector, all functions of x, t in a 
prescribed domain. These quantities, together with the 
heat supply per unit mass r, must satisfy for each x, t 
the energy equation12 

-div q + pr = pE, (2.1) 

and the entropy production inequality which, for 
later convenience, we write as 

Y = Yloe + Yeon ~ 0, 

PYloe = pij + 0-1 div q - pr()-l, 

PYeon = -O-2q • g, 

(2.2a) 

(2.2b) 

(2.2c) 

where Yloe and Y con represent the local entropy 
production and the production of entropy due to 
conduction, the abbreviation g = grad () stands for 
the temperature gradient, a superposed dot denotes 
partial differentiation with respect to t, and p is the 
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mass density, a function of x only for rigid stationary 
bodies. Combining (2.1) and (2.2), we obtain the 
inequality 

- pE + pOij - O-lq • g ~ O. (2.3) 

In terms of the free energy function 1p, defined by 

1p = If - 'Y}O, (2.4) 

the energy equation (2.1) and the inequality (2.3) can 
be expressed in the alternative forms 

-div q + pr = p('Ij! + 'Y}fJ + ijO) (2.5) 
and 

-p'lj! - P'Y}fJ - O-lq. g ~ O. (2.6) 

Suppose 0 and g are taken as independent variables. 
Then, the rate-independent response of a rigid con
d uctor is characterized by constitutive assumptions of 
the form13 

1p = 1p(O, g), 

'Y} = 'Y}«(), g), 

q = q(O, g). 

(2.7a) 

(2.7b) 

(2.7c) 

From (2.7) and the inequality (2.6), it can be shown 
that 1p must be independent of g and that14 

tp = 1p(O), 

otp 
'Y} = - 00 = 'Y}(O), 

_O-lq. g 2 o. 

(2.8a) 

(2.8b) 

(2.8c) 

Thus, the entropy is determined by the free energy, a 
function of temperature only, and, according to 
(2.8c), heat cannot flow in a direction of increasing 
temperature. 

Let the symmetry group of the material be defined 
by the set of all time-dependent orthogonal second
order tensors A. Then, under a change of reference 
frame characterized by A, the scalars If, 'Y}, 0, 1p are 
unaffected, but the vectors q, g transform according 
to 

It follows that if q is a continuous function of g at 
g = 0, then 

q(O,O) = 0, (2.12) 

i.e., there can be no heat flow in the absence of a 
temperature gradient,l5 

From the energy equation (2.5), with (2.7) and (2.8), 
there follows in component form 

(
Oqk) [j (Oqk) (021p) . Ogl V.lk + ae O.k - pO 002 e = pr, (2.13) 

where qk, gl (= O.l), are the Cartesian components of 
q, g, a comma preceding an index denotes partial 
differentiation with respect to rectangular Cartesian 
coordinates X k , k = 1, 2, 3, and the usual summation 
is implied by repeated indices. When q and tp in (2.7c) 
and (2.8a) are given explicit representations in terms 
of 0 and g, (2.13) provides a quasilinear partial 
differential equation to be satisfied by O. From (2.13), 
together with (2.12), it follows that when the heat 
supply r vanishes in rigid conductors having the rate
independent-type thermal response (2.7), there can be 
no time dependence in the temperature field without 
a corresponding spatial dependence,16 i.e., there can 
be no change in temperature except that resulting 
from the flow of heat. Correspondingly, in view of 
(2.8c) and (2.2c), the entropy production is caused by 
conduction alone, and there is no local entropy 
production. 

The residual energy equation (2.13) is second order 
in its spatial derivatives and only first order in its time 
derivative and, therefore, cl~arly cannot predict 
thermal waves (propagating second-order discontinu
ities) with real finite wave speeds. This will be elabor
ated upon in Secs. 4-6. 

We close this section by noting that the classical 
linear Fourier heat conduction equation results from 
the linearization of (2.13), when (2.7c) takes the 
special form represented by the Fourier law 

q(O, g) = -K(O)g (2.14) 

q --+ Aq, g --+ Ag. (2.9) and tp(O) in (2.8a) is assumed to be polynomial. 

The constitutive equations (2.7) are invariant under 
such a change of frame if and only if, for each A and 
all values of q and g, 

Aq(O, g) = q(O, Ag). (2.10) 

If, in particular, the material has a center of symmetry, 
the identity (2.10) must be satisfied also for A = -1, 
where 1 is the unit tensor, so that 

-q(e, g) = q(O, -g). (2.11) 

3. DEPENDENCE ON TEMPERATURE RATE 

We consider here a generalization of the constitutive 
assumptions (2.7) by including the first time derivative 
of temperature, as well as the temperature and its 
gradient, as independent variables. Thus, instead of 
(2.7), we now assume that 

1p = 1p(O, g, (J), 

'YJ = 'Y}(O, g, fJ), 

q = q(O, g, fJ). 

(3.1a) 

(3.1b) 

(3.le) 
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so that the inequality (2.6) becomes 

-p(~; + ~)6 - p(~;) . g - p(~;)O 
1 - e q • g ~ 0. (3.2) 

With 0, g, and 6 fixed, it follows from (3.1) that all 
terms in (3.2) are determined except 0, which may 
assume arbitrary values. In order for (3.2) to be 
satisfied for all 0, its coefficient (01pj06) must vanish, 
i.e., 1p must be independent of 6. Similarly, 1p cannot 
depend on g, so that (3.1a) and (3.2) reduce to 

1p = 1p(e) (3.3) 
and 

(
01p ) . 1 

- p 00 + n 0 - e q • g ~ 0, (3.4) 

respectively. 
Next, we decompose n into two parts 'Yj(O) , r/ e), 

defined by17 

n(O, g, 8) = ~(O)(O) + 'Yj(e)(O, g, 6), 

(3.5) 

Assuming that ~ is continuous in 6 at 8 = 0, we have,18 
in the limit as IX ->- 0, 

1}(O, g, 1(6) = 1}(O, g, 0) + 0(1), (3.6) 
so that 

(3.7) 

where IX is a real number. Now, in (3.4) put g = 0, 
replace fJ by IXfJ, and use (3.5) and (3.7) to obtain 

-pG; + nCO) )lXfJ + 0(0:) ~ 0, (3.8) 

where lim O(IX)/IX = 0, as IX ->- 0. It then follows from 
(3.8) that 

')')(0) = _ 01p 
./ 00 ' (3.9) 

and the inequality (3.4) assumes the form 

-P'f}(e)6 - 0-lq • g ~ 0. (3.10) 

In view of (3.1), (3.3), (3.5), and (3.9), the energy 
equation (2.5) becomes (in component form) 

(O:lk)O.lk + (~~k + pO O;~:)e'k + po(o~~e)o 
+ (Oqk)O k + p(rJ(e) + e or/el 

_ e 021p)fJ = pr, 
00 . 00 0()2 

(3.11) 

which is the counterpart of (2.13) under the assump
ti ons (3.1).19 

Many of the conclusions drawn in Sec. 2 are altered 
for the rate-dependent response under consideration. 
In particular, even though 1p still reduces to a function 
only of e, we cannot conclude the same about 1) which 
remains dependent on g and fJ. Furthermore, it is 
clear from (2.2) and (3.10) that the inclusion of (j as 
an independent variable in constitutive assumptions 
(3.1) has led to a local entropy production. In addition, 
the total entropy is no longer expressible in terms of 
the free energy as in the case not only of the rate
independent-type response but also of the more 
general response characterized by a functional over 
the time history of temperature as investigated by 
Coleman and Gurtin.20 

The requirements that the constitutive equations 
(3.3), and (3.1 b), and (3.1c) satisfy the appropriate 
transformation relations under a change of reference 
frame (imposed by the symmetry group of the 
materia!), that the heat flux function q be continuous 
in g at g = 0, and that the material possess a center of 
symmetry imply [with an argument parallel to that 
used to arrive at (2.12)] that q must be an odd, and 1} 

an even, function of g with 

q(O, 0, 6) = o. (3.12) 

Therefore, as in the rate-independent case, there can 
be no heat flux corresponding to zero temperature 
gradient. We also observe the inequalities 

q(O, g, 0)· g S 0, 1}(e)(e, 0,6)6 SO, (3.13) 

which follow from (3.10), but we note that, in general, 
we cannot conclude that q . g S 0. 

4. PROPAGATION OF THERMAL WAVES 

We investigate here the possibilities of the existence 
of propagating second order discontinuities, i.e., 
discontinuities in the second derivatives, in the 
temperature field. For convenience, however, we 
confine our analysis to one space dimension x. 
Writing q and g for the x components of q and g, we 
obtain from (3.11) its l-dimensional counterpart 

(~;)O.xx + (~: + pO o;:e)e.x + p( 0 o~~el)o 
+ (Oq)o + p(,),)(e) + 0 or/e) _ 0 021p)6 = pro oO'x ., 00 (j02 

(4.1) 

We assume that 0, g, 0, and r are continuous 
functions of x, t and denote by brackets the value at 
the propagating discontinuity of the jump of whatever 
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quantity it brackets. If we allow discontinuities in 
second order derivatives of 0 and assume that the 
first derivatives are continuous, 

(
Oq) (0) (Oq 0 or/el) [8 J og .xx + 00 + p og .x 

+ p(OO~;)[8J = 0 (4.2) 

follows from (4.1). Using standard jump conditions,21 
we have 

(4.3) 

where U is the speed of propagation of the discon
tinuity. Substitution of (4.3) into (4.2) gives 

{
Oq or/e) [(Oq or/e))2 u = --; + pO - ± --; + pO-
00 og 00 og 

oq or/e)]!}/ iJr}(e) 
- 4pO og 00 2pO oe ' (4.4) 

provided [O,xx] and or/e)/oe are not zero. In the event 
or/e)/oO does vanish, (4.2) and (4.3) yield 

U = Oq/ (O~ + pO or/e)). (4.5) 
og 00 og 

The terms on the right-hand side of (4.4) and (4.5) 
are evaluated at the propagating discontinuity, so that 
U can be considered alternatively as a function only 
of x or t. 22 

The following observations are apparent from 
(4.4) and (4.5): 

(i) Equation (4.4) shows that second order dis
continuities in temperature, i.e., thermal waves, may 
possibly occur with two distinct real wave speeds. 
This depends, of course, on the relative magnitudes 
and signs of the terms in (4.4) and will be investigated 
further for particular representations of 'Y](e), "P, and q 
in the following sections. 

(ii) It follows from (4.5) that if 1;(e) is independent 
of e, then only one wave-speed is possible. In fact, 
we see that thermal waves may occur when 1](e) 

vanishes altogether. Thus, thermal dissipation caused 
by a local entropy production, represented by the 
first term of the inequality in (3.10), may not be 
necessary for thermal waves, provided q remains 
dependent on r'J as well as g. Equation (4.5) also shows 
that when 1](e) vanishes and q does not depend on 8, 
as in the rate-independent response discussed in 
Sec. 2, no finite-speed thermal wave can occur. 

5. LINEARITY IN TEMPERATURE RATE 

Recalling (3.1b), (3.Ic), and (3.3) we introduce in 
this section specific assumptions regarding the 

dependence of the response functions on the tempera
ture rate. Before doing so, we decompose q [as was 
done with 1] in (3.5)] into two parts q(O), q(e) defined by 

q(O, g, 8) = q(O)(O, g) + q(e)(O, g, 8), 

q(O)(O, g) = q(O, g, 0), (5.1) 

Then, (3.12) implies 

q(O, 0, 8) = q(O)(O, 0) + q(e)(O, 0, e) = O. (5.2) 

Since q(e)(O, g, 0) vanishes by (5.1), it follows that 

q(O, 0, 0) = q(O)(O, 0) = O. 

From (3.5), (5.2), and (5.3) we have 

1](e)(o, 0,0) = 0, 

q(OJ(O,O) = 0, 

q(e)(o, 0, e) = o. 

(5.3) 

(5.4a) 

(5.4b) 

(5.4c) 

Now "P, and consequently 'Y](O), are arbitrary func
tions of e, while q(O) is any continuous function of ° and g which is odd in g and satisfies (5.4b). We 
assume that the "extra" parts of entropy and heat 
flux, namely 1](e) and q(e), are nonlinear functions of ° and g, but are linear functions of degree one in e 
so that 

'Y](e)(O, g, e) = -n(O, g)8, q(eJ(8, g, 8) = 1(0, g)8. 

(5.5) 

Assuming further that q(O) and q(e) are polynomials in 
g and recalling (5.4), we arrive at the forms 

q(O)(O, g) = -K(O, g)g, q(e)(O, g, e) = H(O, g)g8. 

(5.6) 

By (3.13), (5.1), and (5.2), the functions n(O, g) 
K(O, g) in (5.5), (5.6) must satisfy 

nCO, 0) ~ 0, K(O, g)g. g ~ O. (5.7) 

In view of (5.6), the energy equation (3.11) now 
assumes the form 

(
. . on 02"P) , 

- p n8·+ 08 - + 0- 8 = pr 
00 002 

' 
(5.8) 

which is a quasilinear second-order partial-differential 
equation to be satisfied by the temperature. The 
classification and type of initial-boundary-value 
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problem appropriate to such an equation has been 
extensively discussed in the literature. 23 

The essential character of Eq. (5.8) will not 
be altered if we make some further simplifying 
assumptions. In particular, we assume, henceforth, 
that the material is isotropic with a center of symmetry 
so that n, K, and H in (5.5) and (5.6) are isotropic 
functions of 0 and gigi' It is tempting at this stage to 
introduce a further simplification and to consider 
the case in which n, K, and H are functions of 0 only. 
However, for the reason that will become apparent 
later, we limit the discussion to a slightly more 
general case in which n, K, and H have the forms24 

nCO, g) = '11(0) + fl(O)gigi, 

Kk;(O, g) = [K(O) + ,8(O)gigilbkJ' 

HklO, g) = [h(O) + y(O)gigilbkJ' 

The inequality (3.10) now becomes 

pO[v + flgigi]02 + Kgigi + ,8gigigkgk 

(5.9a) 

(5.9b) 

(5.9c) 

- hgigiO - ygigigkgkO Z 0, (5.10) 

from which we deduce the restrictions 

y = 0, 'liz 0, K Z 0, ,8 z 0, fl Z 0. (5.11) 

With the help of (5.11), we can also deduce the 
necessary condition 

h2gigi ~ 4pO(K + ,8gigi)(V + flgkgk)' (5.12) 

Although the inequality (5.12) depends on gig;, it 
places no restriction on h in the limits as gigi ~ 0, 00. 

It is not difficult to see that (5.12) permits nonzero 
values of h. For example, a sufficient condition 
(independent of gigi) for the satisfaction of (5.12) is 

h2 ~ 4pO(v,8 + flK). (5.13) 

Substituting (5.9) and (5.11) into (5.8), we obtain 

(-K - ,80,iO,i + hO)O,kk - 2,80,kO,ZO,kl 

+ (h - 2pOOI-lW,kO,k - pO(v + 1-l0,iO,;)tJ 

( 
_ dK _ d,8 0 0 dh 0) 0 0 + dO dO ,i ,i + dO ,k ,k 

( 
. .. dv 

- p pO + flO,iO,;O + 00 dO 

. dl-l d21p ) , + 00 - 0.0,. + 0 -2 0 = pro dO ••. dO 
. (5.14) 

We now use the I-dimensional form of (5.14) to 
examine more closely the propagation of thermal 
waves. Following the procedure that led to (4.~) and 

(4.5), we obtain for the speed of propagation U of 
second-order discontinuities the expression 

u = (-(h - 2pOflfJ) ± (h - 2pOflO)\0,,,l 

- 4pO[v + fl((),,,,>2][K + 3,8(O,,,Y - hfJ]}!)j 

2pO[v + fl((),illl, (5.15) 

provided that v + fl(O,,,,)2 does not vanish. If this 
expression does vanish, no finite wave speed is possible 
corresponding to (4.5), since by (5.12) the vanishing 
of v + fl(O,,,,)2 implies (h - 2pOflfJ)O,i1J is also zero. 

Equation (5.15) reveals an interesting phenomenon. 
No real wave speed can result if both O.i1J and fJ are 
zero "in front of the wave," that is, if the conductor 
into which the wave is to propagate is in a uniform 
equilibrium (time-independent) thermal state. On 
the other hand, it appears that real wave speeds can 
occur provided the temperature gradient and the 
temperature rate in the conductor are large enough; 
this will be further discussed in Sec. 6. 

Before closing this section, we return to (5.9) and 
observe that if we had assumed the coefficient func
tions n, K, and H to depend on 0 only [or, equiv
alently, if fl, ,8, and y were absent from (5.9)]' then 
from the inequality (3.10) we would have found h = ° 
and no propagation of thermal waves would be pos
sible, Moreover, within the limitation of the special 
forms (5,9) and recalling the inequality (5.10), it 
becomes evident that of the terms in (5.9) which 
contain gig; only the one in K seems to be essential 
for possible existence of a real wave speed. 

6. FURTHER REMARKS: PROPAGATION 
CONDITIONS IN A LINEARIZED THEORY 

In this section we discuss the possibilities of prop
agation of thermal waves in the context of a linearized 
theory governing infinitesimal time-dependent tem
perature variations. Since the propagation condition 
in (5.15) depends on the temperature gradient and 
the temperature rate, we permit the temperature 
field upon which the infinitesimal time-dependent 
field is superposed to be nonuniform but time-inde
pendent, and we place no restriction on the magnitude 
of this equilibrium temperature variation from the 
reference temperature. Therefore, we set 

O(x, t) = O(x) + EO'(X, t), (6.1) 

and consider temperature variations from equilibrium 
that are O(E) in the limit as E ~ 0. It follows from 
(6.1) that 0 is O(E), whereas 0 i is 0(1) in general. 
In the special case when 0 is uniform, 0,; is also O(E). 

It is not necessary to develop here the complete 
linearized theory in order to point out the significant 
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results concerning the possibility of wave propagation, 
as predicted by the linear equation for O'(x, t), which 
emerges from the systematic linearization of (5.14). 
For brevity we omit such a development and proceed 
directly to a discussion of the results by a further 
examination of (5.15). 

The classification of the I-dimensional form of 
the differential equation (5.14) is determined by the 
sign of the expression within the braces in (5.15). 
This expression can be written as the sum of two terms, 
namely 

Tl = (hO,.,)2 - 4pO[v + ,u(O,,,,)2][K + ,8(0,,,,)2], 

T2 = 4pO{,u(O,,,,)2[pO,u02 - 2,8(0,,,,)2) 

+ v[hO - 2,8(O,.,)2]}, (6.2) 

and the condition for propagation of finite-speed 
thermal waves becomes 

(6.3) 

Comparing Tl in (6.2) with the inequality (5.12) when 
gigi = (0,,,,)2, we see that Tl :::;; O. Therefore, in order 
for waves to be possible, it is necessary that 

(6.4) 

This condition is possible provided that vhO is large 
enough, since 0 appears in Tz but not in T1 • Hence, 
(5.14) can predict waves, as already noted at the end 
of the previous section. 

Consider now the propagation condition (6.4) 
subject to (6.1) which restricts the time-dependent 
temperature variation to O(€). In the case when 0 is 
merely a uniform reference temperature, the expres
sion Tl in (6.2) when linearized is 0(1), while T2 is 
only O(€). Clearly, the propagation condition (6.4) 
cannot be satisfied when 0 is uniform in the linear 
theory. In the more general case,when 0 is nonuniform 
and O,i is 0(1), it follows that both T1 , Tz are 0(1) in 
the linearization; however, the 0(1) term in T2 is 
-SpOp[ji + P(O ",)2](0 ",)2, where p = ,8(0), etc., and 
is nonpositive i~ view' of (5.11). Thus, we again con
clude that the propagation condition (6.4) cannot be 
satisfied. 

In summary, we have found that within the frame
work of the rate-dependent constitutive assumptions 
which led to Eg. (5.14) for the temperature in a 
rigid conductor, thermal waves can occur in the finite 
theory but not in the corresponding linearized theory 
governing infinitesimal time-dependent temperature 
variation. 

ACKNOWLEDGMENTS 

We are grateful to Professor A. E. Green for 
discussions concerning the implication of the entropy 

inequality in special cases, which led to the remarks 
made at the end of Sec. 5. The results reported here 
were supported by the U.S. Office of Naval Research 
under Contract N00014-67-A-0114-0021 with the 
University of California, Berkeley. 

1 B. D. Coleman and W. Noll, Arch. Ratl. Mech. Anal. 13, 167 
(1963). 

2 B. D. Coleman and V. J. Mizel, J. Chern. Phys. 40,1116 (1964). 
3 B. D. Coleman, Arch. Ratl. Mech. Anal. 17.1 (1964). 
4 B. D. Coleman and M. E. Gurtin, Z. Angew. Math. Phys. 18, 

199 (1967). 
• We may recall here that constitutive equations of linear viscous 

fluids can be regarded as exact constitutive relations which describe 
the behavior of a class of fluids in all motions. On the other hand, 
in a functional theory (e.g., of the type developed by Coleman, 
Ref. 3) a linearly viscous material approximates a general material 
with fading memory only in the limit of "slow" motions. 

6 M. Chester, Phys. Rev. 131, 2013 (1963). 
7 C. W. Ulbrich, Phys. Rev. 123, 2001 (1961). 
8 P. Vernotte, Compt. Rend. 246,3154 (1958). 
9 S.Kaliski, Bull. Acad. Polon. Sci., Ser. Sci. Tech.,l3, 253 (1965). 

10 M. E. Gurtin and A. C. Pipkin, Arch. Ratl. Mech. Anal. 31, 
II3 (1969). 

11 These constitutive equations when properly linearized reduce to 
those appropriate to the classical theory of heat conduction. 

12 These local forms can be deduced from the corresponding 
statements in integral form. See, for example, C. Truesdell and W. 
Noll, in Handbuch der Physik, S. Fliigge, Ed. (Springer-Verlag, 
Berlin, 1965), Vol. III/3, p. 294; our q, r correspond to their -h, q. 

13 The same symbols can be used here for a function and its 
value without confusion. 

14 The results of this section follow as a special case of those 
obtained in another context by B. D. Coleman and V. J. Mizel, 
Arch. Ratl. Mech. Anal. 13, 245 (1963). They have studied heat 
conduction based on nonlinear constitutive equations for rate
independent response, in which the independent variables are the 
temperature and the first n spatial gradients of temperature. 

.. Similar arguments have appeared many times in the literatUle. 
See, for example, Ref. I. 

16 Assuming, of course, that 0211'1002 does not vanish. 
l' It should be noted that the decomposition of 1] in (3.5) does not 

imply that 1](0) is independent of t, since 0, g, and ° are considered 
as independent variables. 

18 A function of (X defined in a neighborhood of (xo is 0(1) or 
0(1) as (X ~ (xo, according to whether it is zero or bounded in this 
limit, respectively. 

19 It is worth noting that if in place of (3.1) we had assumed 
11' = 11'(0, g, 0, g), etc., that is, if the rate of the temperature gradient 
had been included as an independent variable also, then (3.3) would 
be replaced by 11' = 11'(0, g). This should be contrasted with the 
results obtained by Coleman and Mizel (Ref. 14), where it is shown 
that 11' cannot depend on temperature gradients when a dependence 
on rates is excluded. See also, in this regard, A. C. Eringen [Intern. 
J. Eng. Sci. 4, 179 (1966)], where the rate of temperature and rates 
of temperature gradients are included as independent variables in 
the context of a general thermomechanical investigation. 

20 See Ref. 4. 
21 See T. Y. Thomas, Plastic Flow and Fracture in Solids (Academic 

Press, New York, 1961), Vol. 2, p. 47. Alternatively, see C. Truesdell 
and R. A. Toupin, "The Classical Field Theories," in Handbuch 
der Physik, S. Fliigge, Ed. (Springer-Verlag, Berlin, 1960), Vol. II1/1, 
Sec. 181. 

22 An alternate derivation of (4.4) results from the characteristic 
relation appropriate to the quasilinear partial differential equation 
(4.1). It is, thereby, seen that discontinuities of the type under 
consideration can occur only along a characteristic. See R. Courant 
and D. Hilbert, Methods of Mathematical Physics, Vol. II: Partial 
Differential Equations (Interscience Publishers, Wiley, New York, 
1962), p. 416. 

23 See Footnote 22. 
2( Here we regard (5.9) merely as special cases of (5.5) and (5.6). 

In the context of rate-independent response, where only K(B, g) 
arises, it follows from the work of Coleman and Mizel (Ref. 14) 
that a function of the form (5.9b) can be regarded also as a special 
case of a certain higher-order approximate theory for which Fourier's 
law is a complete first-order theory. 
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1. INTRODUCTION 

In recent years, much effort has been expended upon 
the production of algebraically special vacuum solu
tions of Einstein's field equations. Many of these 
space-times possess singularities, which in principle 
should be removable by introducing suitable matter
filled regions. In this paper, the interior extension of 
such a space-time, namely the NUP·2 solution, is 
presented. (This is also called the Taub-NUT solu
tion. However, we are interested in the stationary part 
of this manifold, which is usually referred to as NUT 
space.) 

Our starting point is the curious "derivation" of this 
solution, given by Demianski and Newman,3 in which 
the exterior Schwarzschild metric is first complexified, 
and then a certain complex coordinate transformation 
performed, in such a way that the result is a "new" 
real vacuum metric. It is shown that a similar pro
cedure can in fact be applied to any spherically 
symmetric static solution. In particular, given a static 
interior Schwarzschild solution joined smoothly onto 
the exterior one, the process can be chosen to yield a 
metric which is still smoothly joined onto the "new" 
exterior metric. The vacuum NUT manifold has no 
singularities in the elementary sense of the word; 
however, it is not geodesically complete,4 and we 
shall show that it can be made complete by introducing 
matter in this way. The interior NUT spaces so ob
tained have several features in common with the 
vacuum solution, namely their Petrov classification 
and symmetries. It turns out that they inevitably 
possess regions where the matter is unphysical. This 
behavior seems to be associated with certain unusual 
topological properties; the matter distributions are 
bridges joining two otherwise independent vacuum 
regions through a "wormhole." 

A brief discussion of the spherically symmetric 
situation is necessary. In this, a suitable physically 
reasonable interior Schwarzschild solution is given, 
from which an explicit interior NUT solution will be 
generated later. We write the spherically symmetric 

metric in the form 

ds2 = PZ dt 2 - Z-1 dr2 - r2(d()2 + sin2 () d,P), (1) 

where Y and Z are arbitrary functions of r. The Ein
stein tensor has eigenvalues such that 

8Trp = ..!. _ ~ _ ZI 
1'2 1'2 1" 

8 
Z Y1 TrPl = 2 - - - 8Trp 
I' Y , 

8TrP2 = 8TrP3 

_ Z Yll + lZ 3Z Y1 ZI Z Y1 
- "2 ll+2 1-+-+--y y I' I' y' 

(2) 

where p and the Pa are the principal density and pres
sures, and ZI == az/ar, etc. (Greek indices take 
values 0,'" , 3, and Roman ones I,"', 3. The 
usual relativistic units, i.e., G = c = I, are being 
used.) 

Let the boundary of the source be at r = d. It will 
prove necessary to work in an admissible coordinate 
system, so that Y and Z and their first derivatives must 
be continuous here. The first of Eqs. (2) shows that in 
this case the density vanishes at the surface. (It is for 
thi~ reason. thaHhe well-known incompressible perfect
flUid solutIOn cannot be used.) With any reasonable 
equation of state, it is then essential for all the pres
sures to be zero at r = d. The Lichnerowicz conditions 
ensure that J?1 vanishes at the surface, and a simple 
way of makmg P2 and P3 do so is to introduce the 
additional requirement that Z11 and Y11 be continuous. 

In view of the regularity requirement Z = I at the 
center r = 0, we assume for Z an expansion in positive
integral powers of r: 

00 

Z=l+LAnrn. (3) 
n~1 

Equations (2) show that there will be singularities at 
r = ° unless Al = 0. The three boundary conditions 
are 

924 

Z - I = -2m/d, ZI = 2m/d2
, Zn = -4m/d3

, 

(4) 
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at r = d, and (3) will be terminated when it contains 
enough constants to satisfy them, i.e., after n = 4. 
Equations (4) then give 

Z = 1 - - - 10 - 15 - + 6-2m r2( r r2) 
d d2 d d2

' 

and from (2) we find 

87Tp=60- 1--. m( r)2 
d3 d 

The continuity requirements on Yat r = dare 

Y = 1, Y1 = Yu = O. (5) 

It is ensured that PI is proportional to m2 by setting 

2Yl . Yl Omr(1 r)2 ~ y = 87TP, 1.e., y = 3 d2 d - d ' 

which integrates to 

and clearly Eqs. (5) are satisfied. Equations (2) lead to 

87TPl = -1200 ;42 ~: (1 _ ~)2 (1 _ ~ ~ + ~ ~:). 
We shall not bother to show P2 and Pa explicitly, but 

note that the last of (2) can be written 

dpi 1 r 
P2 = Pa = PI + tr -d + - - (p + PI) 

r 2Z 

X [47Tr(p + PI) + tZd. 

It is easily seen that with Z, p, and PI given above, 
this expression contains no powers of m lower than the 
second. 

This matter distribution can be made physically 
reasonable because: 

(1) there are no regions of infinite density or 
pressure; 

(2) the density is everywhere positive if m > 0; 
(3) the pressures can be made everywhere arbitrarily 

smaller than the density by making m sufficiently 
small. 

2. THE METRIC 

Introduce a null coordinate 

u = t - f (YZ)-I dr, 

in which case (1) becomes 

ds2 = y2Z du2 + 2 Y du dr - r2(d()2 + sin2 () d¢2). 

A contravariant null tetrad for this is (with xo, Xl, X2, 

XS = u, r, 0, e/>, respectively) 

[II = b't, nil = y-Ib~ -lZb't, 

ml< = [(.j2)rrl(o~ + i csc eo~), (6) 

ii11l = [(.j2)rrl(o~ - i csc Ob~), 

where 
g/V = /Il nv + ZVnv _ mllmv _ mvmll. 

Following Demianski and Newman,s the coordinate 
r is now allowed to take complex values, and (6) is 
rewritten as 

/11 = br, nil = y-lb~ - tzor, 
mil = [(.j2)frl(b~ + i csc eb~), 

mil = [(vl2)rrl(b~ - i csc eo~), 

which have been chosen so that 

(1) [II and nil are still real, i.e., Y and Z are real 
functions of rand f, which reduce to the original 
functions in (1) when r is real. 

(2) .ml< is still the complex conjugate of mil, 

Y and Z are, of course, not uniquely determined by 
condition (1). This tetrad is now subjected to the 
complex-coordinate transformation 

u' = u + 4ib log (tsec to), 
r' = r + ib, 0' = 0, e/>' = e/>, 

where b is a real constant. The tetrad components with 
respect to the new coordinate basis are 

I'll = bf, n'll = y-1blt - tZbf, 

m'll = [(.j2)(r' + ib)J-l(2ib tan to + b~ + i csc Ob~). 

(7) 

The "new" metric is defined by letting r' be real, and 
defining m'l< to be the complex conjugate of m'p.. Yand 
Z are now real functions of r'. The metric is obtained 
from the null tetrad in the usual manner. Its co
variant form is, dropping the primes, 

ds2 = y2Z(du + 4b sin2 to de/»2 

+ 2Y(du - 4b sin2 to de/» dr 

- (r2 + b2)(d02 + sin2 0 de/>2), 

which can be simplified by introducing a coordinate 

t = u + f (YZ)-l dr 

to give 

ds2 = Y2Z(dt - 4b sin2 to d¢)2 - Z-l dr2 

- (r 2 + b2)(d02 + sin2 0 de/>2). (8) 

In the future, this coordinate system will be used. 
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We shall have more to say about the way Yand Z 
must be "complexified" later. The empty-space 
Schwarzschild values of these quantities are 

Y = 1, Z = 1 - (2m/r) , 

from which Demianski and Newman3 obtain the 
NUT vacuum solution, using the following complexi
fication: 

Y =? 1, m =? m - ib, 

Z =? 1 _ m _ iii = 1 _ 2(mr' + b2
) • 

r f r /2 + b2 

3. BOUNDARY CONDITIONS 

Suppose we start with a spherically symmetric 
interior solution having Z of the form (3), except that 
for later convenience we let An =? mAn: 

0() 0() 

Z = 1 + I Anmrn, Z1 = I nAnmrn-1. 
n=1 n=1 

No assumptions are made about the form of Y. 
Assume that the Llchnerowicz boundary conditions 
are satisfied at r = d, i.e., 

Y(d) = 1, Y1(d) = o. (9) 

We now show that Y and Z can be complexified so 
that they and their first derivatives are equal to the 
respective vacuum NUT quantities at a certain new 
boundary, namely r2 + b2 = d2• (It is assumed that 
b2 < d 2

.) Externally we have 

2(mr + b2
) 

Z=l- , y2 

2m 4(mr + b2)r 
Z1 = - - + -'------'-

y2 y4 

Y = 1, Y1 = 0, 

where y2 = r2 + bZ• Internally, let 

m=?m - lb, 

Z(r) =? 1 + f tAn (m + ~) (rf)(nH)/2, 
n=1 r r 

Y(r) =? Y[(rf)'l 

Remembering that the new real radial coordinate is 
r' = r + ib, we see that these become, dropping the 
prime, 

0() 

Z(r) =? 1 + I An(mr + b2)y"-1, 
n=l 

Y(r) =? Y(y), 

so that internally, we now have 

0() 0() 

Z1 = I A nmyn-1 + L A,,(mr + b2)(n - 1)yn-3r , 
11=1 n=1 

oY r 
Y1 =--. 

oy Y 

The required continuity conditions at y = dare, 
therefore, 

0() 0() 

I A nmdn- 1 + L An(mr + b2)(n - 1)dn- 3r 
n=1 11=1 

2m 4(mr + b2)r 
= - d2 + d4 ' 

Y(d) = 1, (OY) .!: _ 0 
oy Y=d d - , 

which are automatically satisfied if Eqs. (9) are satis
fied. 

In fact, it can be shown by induction that C" 
boundary conditions are preserved under this com
plexification. However, it has been verified that if an 
admissible coordinate system is not being used, and 
the O'Brien-Synge conditions5 adopted, these are not 
preserved. 

4. EINSTEIN AND WEYL TENSORS 

Using the exterior-calculus techniques developed by 
Misner,6 we can easily evaluate the components Gap 

and C aJlyn of these tensors (the Riemann and Ricci 
tensor conventions are given by 'v;[pu] = tR~pu'p, 
Rvp = R~pp), with respect to the orthonormal frame 

~ = YZ!(dt - 4b sin2 to drp), 

1 1 2 3 ',I. 
W = Z-~ dr, w = y dO, w = y sin 0 d'f" (10) 

the dual of which is 

; = (y~z)! ;1' ; = Z! ~ , 
1(} b e(} 1 (} 

e=-- e=2-tan--+---, 
y ao' 3 y 2 at y sin () orp 

(11) 

The conformal tensor is of Petrov type D. Its double 
principal null vectors, satisfying 

Capy[,}k<]kPkY = 0, 

are, in terms of (II), 

la = Z-!(!5~ + !5~), na = !Zil(!5~ - !5~), 
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and are, in fact, the real members of the null tetrad 
(7). In Newman-Penrose language, 7 therefore, this 
tensor is characterized by one complex invariant, 
namely 

ur C l~ (J y-d 
T 2 = - afJyd m n In , 

which becomes 

'Y 2 = -i(2A + 2B + C + E) + iD, 
where 

A = 1Z(Yll + 1 Y1 Z 1 + 1Z11), 
2 Y 2YZ 2Z 

B = -b-2[1 - (r2 + y 2b2)y-2Z + 4b2y-2y 2Z], 

C = _ry-2z(Y1 + 1 Z1) _ b2y-4y2Z, 
Y 2 Z 

D = by- ZYZ(Y1 + ! Zl _ ry- 2), 

Y 2 Z 

E = - y-2(b2y-2Z + trZ1). 

By substituting the empty-space values of Y and Z, 
the well-known expression2 

'Y2 = (m - ib)/(r - ib)3 (12) 

is regained. 
We also find the nonvanishing components 

Goo = 2(B - E), 

Gll = 2(C - B), (13) 

G22 = G33 = C + E - 2A, 

so that tetrad (10) is the eigenframe of the Einstein 
tensor. 

The physical significance of these results will be 
discussed later. 

5. SYMMETRIES AND TOPOLOGY 

Metric (8) has the following Killing fields: 

a 
~o = -, at 

f} a . a a 
~l = - 2b tan - cos if> - + sm if> - + cos if> cot e - , 

2 at ae a if> 

~2 = 2b tan ~ sin if> ~ + cos if> ~ - sin if> cot f} J.-, 
2 at of} a if> 

, = 2b~ + J.-. 
3 ot a if> 

Thus, our general manifolds admit the same four
parameter group of motions as the vacuum solution. 
The fact that the latter possesses this group of motions 

has consequences which have been worked out by 
Misner6 and Misner and Taub,4 and their results are 
applicable to our situation. The relevant ones are 
summarized in the following paragraph. 

The group, acting on a given point, generates the 
whole of a hypersurface of constant r. These hyper
surfaces have a universal covering space with topology 
S3. If one makes the assumption that leads to the 
smallest number of identifications in them, namely 
that their topology is just S3, the coordinates t, e, and 
if> all behave as "angles," with 

t == t + 8rrb, 

f} == f} + 4rr, 

if> == if> + 4rr, 

so that even this assumption leaves the space with 
closed timelike curves. Although a given point is 
regained only if f} or if> is increased by 4rr, values of 
these coordinates outside the ranges 0 S f) S rr, 0 S 
if> < 2rr are redundant. The structure constants of the 
group are given by 

[to, tal = 0, 

[ta, tbJ = €abctc, 

from which we see that the space-time admits a 3-pa
rameter subgroup whose Lie algebra is isomorphic to 
that of the rotation group SO(3). However, the sub
group must be simply connected, as it generates by 
itself the constant-r hypersurfaces, which we have 
taken to be simply connected. Thus it is, in fact, 
SU(2). (These results are, of course, invalid when 
b = 0.) 

Situations with this symmetry might be called 
spherically symmetric. However, perhaps this name 
should be reserved for cases where the "rotation" 
group acts on 2-surfaces. Invariantly defined quantities, 
like the eigenvalues of the Einstein tensor, are func
tions only of r; points in a given r = const surface are 
indistinguishable, i.e., these surfaces are homogene
ous. 

Another aspect of the manifold's topology will now 
be examined, namely, whether or not it possesses a 
center. In the fully spherically symmetric case, such a 
point is defined8 •9 as one where the area of the spheres 
which are the rotation group orbits tends to zero. If 
it exists, the usual coordinate r is introduced, and the 
metric becomes singular at r = 0, restricting r to 
positive values. In our case, the metric remains regular 
at r = 0, suggesting that now this coordinate can be 
continued to negative values. The "rotation" group 
has 3-dimensional orbits, and a center can reasonably 
be defined as a point where their volume vanishes. 
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This volume is 

f 0 2 3 lsrrb [rr12lT V = w 1\ w 1\ (J) = YZ! l sin edt de d rp, 
orbit. 0 • 0 0 

i.e., 

where ~, &, it are defined in (10). It never vanishes if 
Yand Z are never zero, which in the next section 
turns out to be a condition for the manifold 0 ~ t < 
81Tb, - 00 < r < + 00, 0 ~ () ~ 1T, 0 ~ rp < 21T to be 
geodesically complete. 

6. GEODESIC COMPLETENESS 

This treatment is similar to that given for the 
vacuum solution in Ref. 4. We employ the Killing 
fields, in the usual way, to give us the linear first inte
grals of the geodesic equations. If Ull = dxlljdJ.. is the 
unit tangent vector to the geodesic, J.. being an affine 
parameter, and ~Il a Killing vector, then UIl~1l is a 
constant of the motion. Thus, writing 

gives 

- 2b tan t() cos rpuo + sin rpU2 + cos rp cot ()U3 = Q1, 

2b tan t() sin rpuo + cos rpU2 - sin rp cot ()us = Q2 • 

The symmetry can also be used to find a coordinate 
system in which q1 = Q2 = 0, when 

The vanishing ofu2 => d()jdJ.. = 0, so that () is constant, 
given by 

which reduces when b is zero to the familiar motion in 
the plane e = !1T. The contravariant components ull 

are 
o dt qo qa . 2 

U = - = - - 4b - sm t() 
dJ.. y 2Z l ' 

3 drp qa 
u = dJ.. = - l' 

and u1 is found from 

for timelike, null, and spacelike geodesics, respec-

tively. It is 

u1 = dr = ± (q~ _ qi Z sin2 () _ f.z)t. 
dJ.. y2 y2 

Further integration of these equations is not pos
sible unless we know Y and Z explicitly. However, if 
the latter possess no zeros, and Z has no infinities, 
dt/dJ.., dr/d)." and drp/d)., are bounded, so that every 
geodesic can be continued to all values of its affine 
parameter, and the manifold is geodesically complete. 
The vacuum manifold 0 ~ t < 81Tb, - 00 < r < + 00, 

o ~ () S 1T, 0 ~ rp < 21T is not geodesically complete, 
since Z = 0 at 

and Misner and Taub4 show that it cannot be extended 
to one that is complete. 

7. EXPLICIT SOLUTION 

We are now in a position to examine the physical 
features of our solutions. A typical one is obtained 
from the Schwarzschild solution given in the intro
duction, and is 

Y = exp [ - ~; (1 - ~r (1 + 3~) 1 (14) 

It was shown in general that the continuity conditions 
are satisfied at 

y2 = r2 + b2 = d2, 

i.e., at the two distinct surfaces 

r = +(d2 - b2)t and r = -(d2 - b2)t. 

As r diminishes from large positive values, so does the 
volume V of the surfaces r = const. This reaches a 
positive minimum somewhere near r = 0, and then 
opens out when r assumes large negative values. The 
manifold has no center, and the two vacuum regions 
r > (d2 - b2)t and r < - (d2 - b2)t are joined 
through a "wormhole" by a bridge of matter. 

If m is positive, say, Y and Z of (14) fulfill the 
conditions for geodesic completeness if 

This completeness is a definition of singularity free. IO- IS 

We have therefore removed the singularities from 
NUT space by introducing a matter-filled region, 
which can justifiably be regarded as a source for the 
exterior field. 
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The field equations obtained from (13) are 

b2 b2 

87Ty2p = 1 - (rZ),l + 3 ---; y 2Z - "2 z, 
y y 

Y b2 

87T/(p + Pl) = 2rZ -l - 2"2 Z(1 _ y2), 
Y Y 

87T/P2 = 87T/P3 (15) 

(16) 

If the original spherically symmetric matter distribu
tion has a physically reasonable equation of state, it 
can be shown that Y(y) < 1 for y2 < d2. (When 
b = 0, 47T(p + PI) = (Z/r)( YI / Y) > 0 if physically 
reasonable. Then YI > 0 for 0 < Y < d, and as Y = 1 
at y = d, it follows that Y(y) < 1 in this region.) Thus 
(16) shows that at y = 0, p + PI < 0, and the equation 
of state must now be unphysical in places. (This 
behavior is unreasonable because it implies the exist
ence of observers for whom the energy density is 
negative.) The possibility that an interior NUT solu
tion, consisting entirely of realistic matter, might be 
generated from a spherically symmetric one that does 
not, is excluded by the following argument. Such a 
solution would certainly have Y(y) > 1 at y = o. 
Consider the region ° < y < Yo, where Yo is the 
smallest positive value of r for which Y(y) is unity, 
i.e., Yo ~ d. Imposing the "reasonable" condition on 
(15) in this region gives 

(Y2 _ I)-I y-I Y1 > _b2y-Iy-2, 

which, on integrating between the limits E, y, where 
o < € < r < r 0, leads to 

There exists a b > 0 such that this condition is violated 
when r > ro - b. 

The vacuum regions are characterized by (12), i.e., 

'¥2 = (m - ib)/(r - ib)3. 

As in the case b = 0, m is the "electric"-type mass of 
the source; b has been identified3 as the source's 
"magnetic"-type mass, i.e., as the gravitational equiv
alent of a magnetic monopole. If m > 0, test particles 
dropped in vacuum move in the direction of decreasing 
r. This means that an observer in one vacuum part 

1.5 

+ 
·5 

'05 

·9 ·6 '4 ·1 ·4 ·6 ·8 ~o 
+ 

·03 

FIG. I. Behavior of the density for mid = 0.01. b'ld" = 0.001 is 
represented by --; b21d2 = 0 is represented by - --. 

sees a source whose mass is the negative of that seen by 
an observer in the other. 

The particular example (14) gives cumbersome ex
pressions when substituted into the field equations, 
and therefore p and PI have been given graphically 
(Figs. I and 2) for typical values of mid and bid, 
namely mid = 0.01, b21d2 = 0.001. The behavior of 
the other pressures is similar to that of Pl' For ex
ample, they are zero at the two boundaries, because 
the second derivatives of the metric components are 
continuous there. We see that these quantities behave 
in a wildly unphysical manner in regions of negative 
r; even negative principal densities are encountered. 
However, in view of the fact that for positive m, an 
observer on the y < -(d2 - b2)t side of the "worm
hole" sees a source with negative mass, this is not 
surprising. 

We shall now consider the way in which the matter 
is rotating. The vorticity tensor is defined by WIl> = 
h~h~u[p;111' where up is the velocity of the matter, 

'OJ 

+ 
'8 ·6 ·4 

'05 

·1 

·5 

1'5 

'4 I ' " &-,8 ,1iJ 
+ I r 

\ / d 
\ I 

, I 

',- ~""-..ll00 

FIG. 2. Behavior of the pressure for mid = 0.01. b21d2 = 0.001 is 
represented by --; b'ld' = 0 is represented by - --. 
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i.e., the timelike eigenvector given in (10), and h~ = 
b~ - u/luP is the usual operator projecting into the 
instantaneous rest space of an observer moving with 
this velocity. The components waf! of the vorticity 
tensor with respect to the eigentriad given in (11) are 

W12 = W 13 = 0, 
W 23 = -by-2 YZ!. 

The matter is therefore rotating everywhere about the 
normals to the surfaces of constant r. This provides a 
heuristic explanation of why the source appears to have 
a magnetic-type mass. Consider a rod of matter: 

which, when rotating about its axis, develops a 
"magnetic" dipole moment, with magnetic monopoles 
at each end. In our source, rotating rods of this nature 
are threaded through the "wormhole," with their axes 
along the r-lines. Their ends, carrying the monopoles, 
coincide with its surfaces. 

8. ,CONCLUSION 

We have given a prescription for generating solu
tions which are, in every sense, interior extensions of 
the vacuum metric considered. However, the method 
unavoidably gives rise to matter distributions having 
unphysical regions, and to "wormhole" topologies. 

The question of whether this behavior is due just to 
the particular method used has not been answered. 
However, there are very strong reasons for believing 

that the NUT field cannot have a physically reason
able, isolated source. This is because a coordinate 
system in which the metric is asymptotically Minkow
skian cannot be found, essentially because the con
stant-r hypersurfaces have topology S3 for arbitrarily 
large values of this coordinate. Indeed, in view of the 
peculiarities of vacuum NUT space, such a source 
would be an embarrassment, so that the one presented 
here is probably as reasonable as is possible under 
the circumstances. 

ACKNOWLEDGMENTS 

The author wishes to express his thanks to Professor 
F. A. E. Pirani, for the advice, encouragement, and 
constructive criticism given during the course of this 
work. It was carried out while the author held a re
search studentship, given by the Science Research 
Council of Great Britain. 

• Present address: Astronomy Centre, University of Sussex, 
Brighton, Sussex, England. 

1 A. H. Taub, Ann. Math. 53, 472 (1951). 
2 E. T. Newman, L. Tamburino, and T. J. Unti, J. Math. Phys. 4, 

915 (1963). 
3 M. Demianski and E. T. Newman, Bull. Acad.Polon.Sci.,Ser. 

Sci. Math. Astron. Phys. 11, 653 (1966). 
• C. W. Misner and A. H. Taub, "A Singularity Free Empty 

Universe" (to be published). 
5 S. O'Brien and J. L. Synge, Commun. Dublin Inst. Advan. 

Studies A9 (1952). 
• C. W. Misner, J. Math. Phys. 4, 924 (1963). 
7 E. T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 
8 H. Bondi, Proe. Roy. Soc. (London) A282, 303 (1964). 
• H. P. Kiinzle, Proc. Roy. Soc. (London) A297, 244 (1967). 

10 R. Penrose, Phys. Rev. Letters 14, 57 (1965). 
11 S. W. Hawking, Proe. Roy. Soc. (London) A294, 511 (1966). 
12 S. W. Hawking. Proe. Roy. Soc. (London) A295, 490 (1966). 
13 S. W. Hawking, Proc. Roy. Soc. (London) A300, 187 (1967). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 3 MARCH 1970 

Transfer Matrix Solution of Some One- and Two-Medium Transport 
Problems in Slab Geometry* 

RAPHAEL ARONSON 

Department or Nuclear Engineering, New York University, New York, N. Y. 10453 

(Received 27 June 1969) 

The transfer-matrix method is used to solve several one- and two-medium problems in plane geometry. 
The formal solutions are given in terms of operators which make no reference to the interactions or to 
the nature of the flux approximations. This formulation points up the structural similarities between 
solutions of various problems. 

1. INTRODUCTION 

The transfer-matrix method! offers a simple 
perspective on radiation transport in slab geometries 
for both single- and multiple-medium problems. The 
reason is that the physics-that is, the interactions 
and the form of the approximation for the flux-is 
isolated from the specific geometry and boundary 
conditions that characterize the problem under 
consideration. 

The group property of transfer matrices implies 
that the transfer matrix for any configuration of 
slabs is given simply in terms of the transfer matrices 
for an infinitesimal slab. The latter is characterized 
by two operators, which we call a and ~, which are 
essentially the transmission and reflection operators 
for an infinitesimal slab. The flux in a given configura
tion can be expressed in terms of a and ~ for each 
medium, the geometry, the boundary conditions, and 
nothing else. This expression is exact, so it can be 
used for exact computations.2 There is no explicit 
dependence on either the cross sections or on the 
type and order of the flux approximation. 

The operators a and ~, since they give the trans
mission and reflection properties of an infinitesimal 
slab, depend respectively on the forward and back
ward parts of the differential cross section. In a given 
finite approximation scheme for the flux, one uses 
the corresponding finite-matrix representation of a 
and ~. The algebra by which one computes the flux 
from a and ~ remains the same, however, as for the 
exact calculation. 

The formulation of the problems in terms of opera
tors derived from a and ~ permits one to write down 
the solutions explicitly in operator form. The results 
derived in this paper apply whether one is dealing 
with isotropic or anisotropic scattering. They hold 
for polarized radiation and for energy-dependent 
interactions (so long as the diagonalization in Sec. 2 
can be carried out, as it always can in a multigroup 
scheme). They are valid whether the fluxes are com-
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puted exactly or in a P~, double-PK , S ~, or any of 
the other standard representations. 

One finds in solving various problems of interest 
that the same few combinations of operators arise 
from problem to problem. The simple form of the 
results shows up certain structural similarities which 
are obscured by other calculational methods. 3 (The 
simplicities occur in the operator formulation, and are 
lost, or at least are hard to find, when the kernels 
corresponding to all the operators are substituted 
explicitly.) The results fall into certain patterns which 
have not been observed before. In particular: 

(1) The operators appropriate to a half-space 
problem are generalized in a very specific way in 
going to the corresponding slab problem. 

(2) The operators appropriate to one-medium 
problems are generalized in a very specific way when 
reflectors are added. 

(3) The operators appropriate to one-medium 
problems are generalized in a closely related, very 
specific way when the slab becomes one component 
of a two-component lattice. 

By "very specific way," we mean that the modifica
tion is the same regardless of the specific problem 
being considered, e.g., whether one is dealing with 
a critical slab or a medium with sources. 

It can be shown4 that the transfer matrix formula
tion is completely equivalent to a formulation in 
terms of Case eigenfunctions5 for arbitrary interaction. 
Every step in a Case-type calculation is paralleled by a 
step in the transfer-matrix development. This has al
ready been demonstrated for one-speed isotropic 
scattering,2 but it is true quite generally.4 It follows 
that all the expressions to be obtained have analogs in 
the Case method. Many of these have already been 
noted for one-speed isotropic scattering.2 The results 
thus have meaning even outside of the transfer-matrix 
formulation. The operator notation makes it possible 
both to derive the expressions in a simple way and to 
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recognize recurrent patterns which have physical sig
nificance independent of the particular formulation. 

Further, since ultimately every problem must be 
solved numerically, it is useful to isolate and recognize 
the modules out of which solutions for various 
problems are built. In this method they become the 
actual computational intermediates, and they must 
appear in some form, however hard to recognize, for 
any method. 

In deriving the results, we have found it convenient 
to put everything in a form directly suitable for 
computation once ex and ~ are known. In the original 
formulation of the transfer-matrix method, both 
increasing and decreasing exponentials occur. The 
increasing exponentials arise because the transfer 
matrix gives both incoming and outgoing fluxes on 
the right-hand surface of the slab in terms of those 
on the left. That is, it gives part of the input in terms 
of the output, as if the output were known. In any 
actual problem, the inputs are given as boundary 
conditions and the outputs determined from them. 
The increasing exponentials then cancel. In doing 
numerical calculations, however, it is preferable to 
avoid the numerical round-off difficulties arising from 
the computation and cancellation of large numbers.6 

For this reason, we reformulate the equations to avoid 
any explicit appearance of increasing exponentials in 
the final results. 

We consider as examples of the use of the method 
three single-medium problems and five two-medium 
problems. These are: 

(1) Milne problem 
(2) Slab with sources, with extension to half-space 

with sources 
(3) Symmetric slab 
(4) Reflected critical slab 
(5) Critical lattice 
(6) Reflected slab with sources 
(7) Lattice with alternating source and source

free regions 
(8) Two-medium Milne problem. 

In probs. (3-7), we restrict the discussion to sym
metric slabs. In regions with sources, the source 
distributions will be assumed to be uniform. These 
are not necessary restrictions, but represent situations 
of intrinsic interest and permit an interesting and 
useful simplification. 

In Sec. 2, we summarize the transfer-matrix 
method. Section 3 discusses the meaning of the 
operators and states certain conventions employed 
in the subsequent presentation. In Sec. 4, the method 
is reformulated to eliminate the increasing expo-

nentials. The one-medium problems are discussed 
in Secs. 5 and 6. Section 7 contains a treatment of 
a single symmetric slab. The two medium problems 
are treated, in the order indicated, in Secs. 8-12. The 
results are discussed in Sec. 13. 

2. THE TRANSFER MATRIX FOR A 
SOURCELESS SLAB 

The transfer-matrix method for a sourceless 
homogeneous medium was treated in detail by 
Aronson and Yarmush.1 We give here a brief summary 
of the pertinent results. 

Consider a sourceless slab of material normal to 
the x axis, extending from x = 0 to x = t (Fig. 1). 
Let the right-directed distributions be given at x = 0 
and x = t by "P+(O) and "P+(t) , respectively, and the 
left-directed distributions by "P-(O) and "P-(t). In other 
words, the incident distributions from the right and 
left are, respectively, "P+(O) and vdt), and the exit 
distributions are "P-(O) and "P+(t). 

The fluxes obey the matrix equation 

( "P+(t») = H(t) ("P+(O») , (2.1) 
vdt) "P-(O) 

where H is a 2 x 2 matrix of operators, 

H = (T - R*T*-lR R*T*-l) 
_ T*-lR T*-l' (2.2) 

Here T and T* are transmission operators for radia
tion incident from the left and right, respectively; 
Rand R* are the respective reflection operators. For 
a symmetric slab, T = T* and R = R*. The central 
idea is that a knowledge of H is sufficient to obtain 
any quantity of interest. 

If the slab is 'thought of as being made up of a 
sequence of n slabs whose individual H matrices are 
given by Hi' where i designates the ith slab from the 
left, then the H matrix for the entire configuration is 
given by 

(2.3) 

For homogeneous slabs, it is convenient to introduce 
the operators ex and ~, defined by the linear terms in 

\V, (0) V.(t) 

FIG. 1. Schematic 
slab geometry. 
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the expansions in t of T and R, respectively: 

T(t) = 1 - at + ... , 
R(t) = ~t + .... 

(2.4) 

(2.5) 

Here 1 is the unit operator. Then if a constant matrix 
W is defined by 

W = (a -~), 
~ -a 

(2.6) 

it is easy to show that 

H = exp (-WI). (2.7) 

It is most convenient to determine H by a diagonali
zation procedure carried out on an operator related to 
a and ~ rather than directly on a 2 x 2 matrix 
operator. Define 

a = a + ~, (2.8) 

~ = a - ~, (2.9) 

and let the diagonalization of as be given by 

11.2 = X-la~X, (2.10) 

where 11.2 is diagonal. Then it can be shown that 

H = t(B+ B) (exp (-At) 0) (C+ 
B_ B+ 0 exp (At) C_ 

where 
B± = X ±;, 
C± = X-I ± ;-1, 

and 

C_) 
C ' + 
(2.11 ) 

(2.12) 

(2.13) 

; = ~XA-l = a-IXA. (2.14) 

The last equality comes from Eq. (2.10). Note that 

B+C+ + B_C_ = C+B+ + C_B_ = 41, (2.15) 

B+C_ + B_C+ = C+B_ + C_B+ = 0, (2.16) 

where I is the unit operator. 
If 1p+(0) and "IdO) are known, the flux at an interior 

point x can also be computed. One considers a slab 
bounded by 0 and x and replaces I in Eq. (2.11) by x. 

It is convenient to define the matrices 

(2.17) 

K±(x) = B± + B=F exp (-Ax)Fexp (-Ax). (2.18) 

It will become apparent that K±(t) is the generalization 
of B± for a finite slab of thickness t. 

From Eqs. (2.2) and (2.11), one finds for the trans
mission and reflection operators: 

T(t) = 4C:;:1 exp (-At)K:;:I(t), 

R(t) = K_Ct)K:;:l(t). 

(2.19) 

(2.20) 

3. MEANING OF THE OPERATORS 

The operators a and ~ are integral operators in 
direction, energy, polarization state, and any other 
variables describing the cross sections. The operands 
1p± are functions of these variables. Since, in the trans
fer-matrix approach! the flux is split up into its 
forward and backward components, it is necessary 
to adopt some convention about direction. In the 
following, we take p, as the cosine of the angle the 
particle direction makes with the slab normal, which 
we take to be in the x direction, and when con
venient, we exhibit the p, dependence explicitly, We 
describe 1p+(x, p,) with respect to the positive x axis and 
1p_(x, p,) with respect to the negative x axis, so that p, 
is always in the interval (0, 1). 

We denote the eigenvalues of (as)!, or of the 
diagonal operator A, by A. By Eq. (2.10), if A is an 
eigenvalue of (a~)!, so is -A. We choose A so that 
Re A> 0, and if Re A = 0, so that 1m A> O. The 
pathological case with a double root ±A = 0 occurs 
in a system without absorption and must be considered 
separately. Note that no terms with increasing 
exponentials exp AI appear in Eqs. (2.19) and (2.20). 

We designate the eigenvalue with the smallest real 
part by Ao. The eigenvalues A are ordered according 
to increasing real part, so that Re Ai ~ Re Ai-! . 

In the following, we assume that a and ~ are known. 
They are computed from the cross sections by methods 
discussed elsewhere,l 

An operator such as a operates in angle. Its kernel 
is a function of two angle variables, so we may think 
of a as a matrix with elements (1.(p" P,'), indexed by p, 
and p,'. Similarly, the elements of operators like X 
are X(p" A), those of B+l are B+I{A, p,), and those ofF 
are F(A, A'). We denote the first column of a matrix 
such as X or F by a subscript zero. For instance, the 
elements of the 'vector Xo are X(p" Ao). Similarly, 
Foo = F(Ao, Ao). For convenience of description, we 
think of the eigenvalues as being discrete, even though 
we recognize that they may form a continuum.7 Thus, 
for instance, we may write Eq. (2.15) explicitly as 

k B+{p" Ai)C+(Ai , p,') + k B_{p" Ai)C_(Ai' p,') 
i i 

= 4c5(# - p,'), (3.1) 

f C+(Ai , # )B+(#, Ai) d# 

+ LIc..,(Ai , #)B_(p" Ai) dp, = 4c5iJ , (3.2) 

where c5iJ is to be interpreted as a Kronecker delta 
if both Ai and Ai are discrete and as a Dirac delta 
function if Ai and Ai are in the continuum. It is, of 
course, zero otherwise. 
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For a finite-matrix representation of a and (3, all 
the operators have corresponding finite representa
tions and all the eigenvalues are discrete. In an exact 
calculation, there will, in general, be a continuum.s 

4. REFORMULATION OF THE METHOD 

We want to reformulate the general equations for 
¥,±(x) at an arbitrary point x to avoid the increasing 
exponential in Eq. (2.ll). We recognize that the 
increasing exponential occurs only because the prob
lem is formulated in terms of 11'+(0) and ¥,jO). The 
natural boundary conditions involve not ¥,jO) , an 
output flux, which must first be computed, but ¥,-(t), 
which is presumed given. Since the problem is linear 
and the slab is uniform, we can write 

where Je± are a pair of operators to be determined. 
The notation indicates explicitly that Je± are functions 
of both t, the thickness of the slab, and the position x. 
If there are sources in the interior, there is an additional 
term due to the sources, but this does not affect the 
calculation of Je± . 

To compute Je±, consider a slab of thickness t, 
with a flux 11'+(0) incident from the left and nothing 
incident from the right, i.e., ¥,-(t) = O. Then 

and from Eqs. (2.1) and (2.11), one finds 

¥,±(x) = tB± exp (-Ax)(C+ + C_R)¥,+(O) 

(4.2) 

+ tB'F exp (Ax)(C_ + C+R)¥,+(O). (4.3) 

But from Eqs. (2.18) and (2.20), 

C_ + C+R(t) = 4 exp (-At)F exp (-At)K:;:l(t) (4.4) 

(4.5) 

so 

¥,±(x) = {B± exp (-Ax) + B'f exp [-A(t - x)]F 

X exp (-At)}K:;:l(t)¥'+(O). (4.6) 

Thus,finally, comparison of Eqs. (4.1) and (4.6) gives 

Je±(t, x) = K±(t - x) exp (-Ax)K:;:\t). (4.7) 

Eq uation (4.7) has several useful properties. It 
nowhere contains increasing exponentials, so the 
purpose of introducing this formulation is satisfied. 
Further, it shows that the two-parameter operators 
Je±(t, x) can be decomposed into a product of one
parameter operators. Perhaps most interesting; the 
flux everywhere depends only on the exponential and 

on a particular pair of functions K± of the basic a 
and (3 operators. All the information about the system 
is contained in these three operators, which thus have 
a universal significance in slab transport problems. 

It is of interest to note the limiting forms 

K+(O) = 4C:;:1 (4.8) 
and 

K_(O) = O. (4.9) 

It follows, as one must require, that 

Je+(t,O) = I, (4.10) 

Je_(t,O) = R(t), (4.11 ) 

Je+(t, t) = T(t), (4.12) 
and 

Je_(t, t) = O. (4.13) 

Equations (4.11) and (4.12) are obtained by com
paring Eq. (4.7) with Eqs. (2.19) and (2.20). 

5. THE MILNE PROBLEM 

The Milne problem has been formulated previously 
by the transfer-matrix method. 2 In the usual way, one 
considered a half-space x > 0 with 11'+(0) = 0 and 
imposed a condition that the flux was bounded 
asymptotically by exp Aox. We reformulate the 
problem here without assuming the boundedness 
condition ab initio. Rather it comes out naturally. 

In the present formulation, we consider a slab 
between 0 and t, with 11'+(0) = 0 but 11'-(1) :;t. O. We 
let t ---->- 00 and let ¥,-(t) increase so that the flux at 
any finite x is finite and nonzero. 

From Eqs. (4.1) and (4.7), 

¥,±(x) = lim Je'f(t, t - x)¥,_(t) 

= K'f(x) exp (Ax) lim exp (-At)K:;:l(t)¥,_(t). 
t-+ 00 

(5.1) 

Because of the factor exp (-At), each element of 
the vector 

cf>(t) = exp (-At)K:;:l(t)¥,_(t) (5.2) 

would decrease roughly exponentially with t, if ¥,-(t) 
were to remain finite. The dominant element for large 
t is clearly that corresponding to Ao. The flux remains 
finite and nonzero for finite x if and only if ¥,-(t) "-' 
exp Aot. Then cf>(t) has only one finite element in the 
limit: 

cfo( (0) = lim (-At)K:;:l(t)¥'_(t) = AbiO , (5.3) 

where biO is the Kronecker delta. Here i = 0 corre
sponds to the eigenvalue Ao , and A is a normalization 
constant. 
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Inserting Eq. (5.3) into Eq. (5.1) gives 

lP±(x) = AK'fo(x) exp Aox, (5.4) 

where in accord with Sec. 3, K'fo is the first column of 
K'f' corresponding to }'o. Equation (5.4) may be 
rewritten 

1f'±(x) = A [B'f exp (Ax) + B± exp (-Ax)FJo, (5.5) 

so that 

lP+(x) + 1f'_(x) = 2AX[exp (Ax) + exp (-Ax)FJo· 

(5.6) 
We use this result below. 

The flux distribution emitted from the free surface 
IS 

vdO) = 4A(C:;:1)0' (5.7) 

where we have used Eqs. (2.15) and (2.17). 
By Eq. (2.12), 

(5.8) 

Now the columns of X are the eigenvectors of as 
and nothing said previously has fixed the normaliza
tion. It is convenient to normalize so that 

Equations (2.1) and (2.7) are equivalent to the 
differential equation 

'I"(x) = -W'I'(x) , (6.1) 

where'l'(x) is the 2-component vector 

(6.2) 

The prime denotes a derivative with respect to x. 
Equation (6.1) holds when no sources are present. 
In general, there may be an additional source term, 
so that 

'I"(x) = -W'I'(x) + Q(x), (6.3) 

where Q(x) is also a 2-component vector. 
LetthesourcedistributionbeS(x,f-l), -1::;; f-l::;; 1, 

where f-l is the cosine of the angle with the +x direc
tion. It is evident, either by comparison with the Boltz
mann equation or by considering the relation between 
the sources and the discontinuity in the current, 
that the components Q+(x) and Q_(x) of Q(x) are 
given by 

Q±(x, f-l) = ±f-l-1S(x, ±f-l), 0 < f-l ::;; I. (6.4) 

fX(f-l, A) df-l = 1. 
The minus signs arise from our convention about 

(5.9) the sign of f-l. 

The total flux at x is 

p(x) = 27T f)lP+(X, f-l) + vdx, f-l)J df-l. (5.10) 

The asymptotic flux is that part of the flux which 
does not fall off more rapidly than exp (-Aox). Thus 

1f'~'(x) + 1f'~S(x) = 2AXo[exp (Aox) + Foo exp (-Aox)]. 

(5.11) 
The total asymptotic flux is then 

pUS(x) = 47TA[exp (Aox) + Foo exp (-Aox)]. (5.12) 

The solution of Eq. (6.2) is 

'I'(x) = H(x)'I'(O) + L"H(X - x')Q(x') dx', (6.5) 

where we have used Eq. (2.7). 
We restrict the discussion to a uniform source 

distribution for simplicity. Iri that case, Q is inde
pendent of position and the integration in Eq. (6.5) 
can be performed to give 

'I'(x) = H(x)'I'(O) + [I - exp (-WX)]W-IQ. (6.6) 

Define 
ct-(x) = 'I'(x) - W-IQ. (6.7) 

The extrapolated end point Zo is defined by Then 

from which 

1 
Zo = - In (-I/Foo ). 

2,1.0 

6. SLAB WITH SOURCES 

(5.13) 

(5.14) 

The transfer-matrix method has been used by 
Gelbard6 to solve the problem of the leakage from a 
slab with sources. He too was concerned with elimi
nating the increasing exponentials. The reformulation 
in this section in terms of the 1f'± operators enables 
one to obtain the interior flux as well. 

ct-(x) = H(x)ct-(O). (6.8) 

Note that for a source distribution constant over all 
space, Eq. (6.3) degenerates to 

- W'I'(x) + Q = 0, 
or 

'I' = W-IQ. 

(6.9) 

(6.10) 

Thus ct-(x) is the change in the flux vector for x > 0 
due to the removal of sources and scatterers in the 
half-space x < o. 

Equation (6.8) is of the same form as the transfer
matrix equation with no sources present. Further, 
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we know ~+(O) and ~_(t), where ~+ and ~_ are the 
components of cI>: 

~+(O) = tp+(O) - (W--IQ)+, 

~-(t) = tp-(t) - (W-IQ)_. 

It follows from Eq. (4.1) that 

~±(x) = Je±(t, x)[tp+(O) - (W-1Q)+] 

(6.11) 

(6.12) 

+ Je'F(t, t - x)[tp_(t) - (W-1QL]. (6.13) 

Thus 

tp±(x) = tp~)(x) + (W-1Q)± - Je±(t, x)(W-1Q)+ 

- Je'f(t, t - x)(W-1QL, (6.14) 

where tp~)(x) is the solution for the problem with the 
same incoming distributions but no sources. 

If we introduce the symmetric and antisymmetric 
parts of the source distribution: 

1 
Q.(u) = 2fl, [S(fl,) + S( -fl,)] = t[Q+(fl,) - Q-(fl,)], 

(6.15) 

QaCu) = ~ [S(fl,) - S(-fl,)] = UQ+(fl,) + Q-(fl,)], 
2fl, 

(6.16) 
and note that 

W-l = t (6.17) 
( 

a-I + 6-1 a-I - 6-1 ) 

-(a-1 _ 6-1) _(a-1 + 6-1) , 

we obtain 

W-IQ = . 
( 

a-lQa + 6-1Qs ) 

-a-1Qa + 6-1Qs 

Then Eq. (6.14) becomes 

tp±(x) = tp~)(x) + [K+(t) - K±(t - x)e-A ", 

_ K'F(x)e-A(t-"')]K:;:I(t)6-1Qs 

+ [±K+(t) - K±(t - x)e-A", 

(6.18) 

+ K'F(x)e-A(t-"')]K:;:I(t)a-1Qa. (6.19) 

This gives the flux in the interior in terms of the 
incident fluxes and the angular source distribution, 
again with no increasing exponentials. The exiting 
fluxes are then found to be 

tp_(O) = tp~)(O) + [I - R(t) - T(t)]6-1Qs 

- [I + R(t) - T(t)]a-1Qa (6.20) 

tp+(t) = tp~)(t) + [I - R(t) - T(t)]5-1Qs 

+ [I + R(t) - T(t)]a-1Qa. (6.21) 

Define also tp~)(x) as the part of tp±(x) arising from 
the symmetric part of the source distribution and 
tp~)(x) as that arising from the antisymmetric part. 

In general, 

tp±(x) = tp~)(x) + tp~)(x) + tp~)(x). 
Equation (6.19) implies, as expected, that 

tp~)(x) = tp~)(t - x), 

tp~a)(x) = -tp~)(t - x). 

(6.22) 

(6.23) 

(6.24) 

Thus tp(s) and tp(a) are themselves symmetric and 
antisymmetric, respectively. 

Two properties of these equations are worth noting. 
First, the symmetric and antisymmetric parts of the 
source appear in essentially different ways; Qs is 
multiplied by 6-1 and Qa by a-I, with Qs producing a 
symmetric flux and Qa an antisymmetric flux. Second, 
because a(fl" fl,') and b(fl" fl,') are of the form of 
fl,-1 times something that has no singularities, except 
for a delta function at fl, = fl,', the expressions 6-1Qs 
and a-1Qa have no singularities at fl, = 0, even 
though, according to Eqs. (6.15) and (6.16), Qs and 
Qa by themselves do. As a special case of Eqs. (6.23) 
and (6.24), we have 

tp~)(t) = tp~)(O), (6.25) 

tp~)(t) = - tp~)(O). (6.26) 
Define 

L±(t) = B± + B'F exp (-At), (6.27) 

J±(t) = B± - B'F exp (-At). (6.28) 

From Eqs. (4.7), (4.11), and (4.12), one has that 

R(t) + T(t) = L_(t)L:;:I(t), (6.29) 

R(t) - T(t) = J_(t)J:;:I(t). (6.30) 

One obtains, from Eq. (6.19), after some algebra 

tp~)(x) = J+(t - x)[1 - exp (-Ax)]L~\t)5-1Qs, 

(6.31) 

tp~a)(x) = L+(t - x)[1 - exp (-Ax)]J:;:I(t)a-1Qa. 

(6.32) 

The fluxes tp~) and tp~) can be determined by Eqs. 
(6.23) and (6.24). The exit fluxes can be written 

tp~\t) = (B+ - B_)[I - exp (-At)]L:;:1(t)6-1Qs, 

(6.33) 

tp~)(t) = (B+ + B_)[I - exp (-At)]J:;:I(t)a-lQa. 

(6.34) 

For a half-space, we let t -+ 00. From Eq. (6.19) 
one has 

tp~)(x) = [I - B± exp (-Ax)B+l]5-1Qs, (6.35) 

tp:)(x) = [± 1 - B± exp (-Ax)B+l]a-1Qa. (6.36) 
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The emergent flux at the free surface is then 

V'-(O) = RCX) V'+(O) + [I - RCX)]S-lQs 

- [I + Roo]a-1Qa, (6.37) 

where RCX) is the reflection operator for a half-space. 
According to Eqs. (2.18) and (2.20), 

(6.38) 

Note also that the solution, as given in Eqs. (6.35) 
and (6.36), approaches the infinite medium solutions 
as x ---->- 00. 

The form of the half-space solution is closely 
related to the form of the solution of the half-space 
albedo problem, which is2 

[V'±(X)]albedo = B± exp (-1\.X)B:;:lV'+(O). (6.39) 

This similarity is not fortuitous. Consider the comple
mentary half-space problem with a constant source 
S(I1-) in the half-space x < 0, and a vacuum for 
x > O. Let the solution of this problem be denoted 
by V'~)(x). Then 

(6.40) 

where V'~) and V'~) still refer to the solutions of the 
original problem, for the half-space x > O. 

Let X±(x) denote the solution of the uniform source 
problem in the entire space. From Fig. 2, one sees 
that 

x+(O) = RooX_(O) + V'~)(O), (6.41) 

X-CO) = RooX+(O) + V'~)(O). (6.42) 

In Eq. (6.41), the first term on the right represents 
radiation reflected from the x < 0 region, due to the 
radiation. incident from x > 0, and the second term 
represents radiation born in x < 0 crossing at x = 0 
for the first time. Equation (6.42) has a similar 
interpretation. The infinite medium solution is, from 
Eq. (6.18), 

(6.43) 

FIG. 2. Two half-spaces. 

independent of x. Inserting this into Eqs. (6.41) and 
(6.42) and using Eq. (6.40) gives 

V'~)(O) =f V'~)(O) 

= S-lQs ± a-1Qa - Roo(S-lQs =f a-1Qa) 

= (I - Roo)S-lQR ± (I + RCX)a-lQa, (6.44) 

in agreement with Eq. (6.37). 
For x > 0, the half-space and full-space problems 

are related by 

X±(x) = B± exp (_1\.X)B:;:lX+(O) 

+ V'~)(x) + V'~)(x). (6.45) 

The first term on the right gives the flux at x due to 
the incident flux X+(O) at x = O. With Eq. (6.43), this 
equation is equivalent to Eqs. (6.35) and (6.36). 

7. THE SYMMETRIC SLAB 

A considerable simplification in the treatment of 
slab problems results in the case of the symmetric slab, 
i.e., when the inputs and sources are symmetric. 

Consider a sourceless symmetric slab with inputs 
V'i on both sides [Fig. 1 with V'+(O) = V'-(t) = V'i]' The 
outputs will then also be symmetric. Let us call the 
output on either side V'o. Clearly, 

V'o = (R + T)V'i' 

We can rewrite this as 

V'o = M(t)V'i' 

where, by Eq. (6.29), 

M(t) = L_(t)L:;:\t). 

(7.1) 

(7.2) 

(7.3) 

According to Eqs. (4.1) and (4.7), the interior flux is 
given by 

V'±(x) 

= {K±(t - x) exp (-Ax) 

+ K'f(x) exp [-1\.(t - X)]}K:;:l(t)V'i 

= {B± exp (-1\.x) + B'fexp [-.1\.(t - X)]}L:;:l(t)V'i 

= L±(t - 2x) exp ( -Ax)L+1(t)V'i 

= L'f(2x - t)exp [-A(t - x)]L:;:\t)V'i' (7.4) 

The symmetry implies that 

V'+(t - x) = V'_(x), (7.5) 

so that it is necessary to compute the flux only for 
x ~ t/2, using the expression involving L±(t - 2x). 

If the slab has a uniform symmetric source distribu
tion in the interior, then we have 

V'o = M(t)V'i + V'Q' (7.6) 
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where 1JlQ is the output flux due to the sources. It is 
given by Eq. (6.33): 

1JlQ = (B+ - B_)[I - exp (-At)]L:;:\t)8-1QA' (7.7) 

In the interior of the slab, 

1Jl+(x) = {B+ exp (-Ax) 

+ B_ exp [-ACt - X)]}L:;:l(t)1Jli 

+ J+(t - x)[1 - exp (-Ax)]L:;:1(t)8-1Qs' (7.8) 

It is sufficient to calculate 1Jl+, since 1Jl- is given by the 
symmetry condition, Eq. (7.5). 

8. REFLECTED CRITICAL SLAB 

Consider a multiplying slab of thickness a sur
rounded on both sides by identical reflectors of 
thickness b (Fig. 3). We ask for the conditions under 
which the system is critical, and in particular, for 
the critical core thickness a for given materials and 
reflector thickness b. There is no restriction that the 
outer material be nonmultiplying, but just that a 
thickness 2b of that material be subcritical. 

We denote operators for the core by unprimed 
symbols and operators for the reflector by primed 
symbols in this and the following sections. Let 1Jli 
be the flux into the core from the reflector and 1Jlo 
be the flux out of the core into the reflector. By the 
discussion in the previous section, 

1Jlo = M(a)1Jli' 
But also 

1Jli = R'(b)lpo. 

These equations have a solution if and only if 

[M-l(a) - R'(b)]1Jlo = 0. 

With the aid of Eq. (7.3), this becomes 

[L+(a) - R'(b)L_(a)]L=\a)1Jlo = 0, 

b a b 

FIG. 3. Symmetrically reflected slab. 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

or 

{[B+ - R'(b)B_] 

+ [B_ - R'(b)B+] exp (-Aa)}L=\a)1Jlo = 0. (8.5) 

This is an eigenvalue equation in which the smallest 
value for a for which there is a solution is the critical 
thickness. The eigensolution 1Jlo is the critical output 
flux. In the absence of a reflector, Eq. (8.4) degenerates 
to 

(8.6) 

The reason we write the equation in terms of 1Jlo 
instead of 1Jli is that 1Jli is zero for the unreflected slab. 

The flux in the core is, by Eqs. (7.3), (7.4), and 
(8.1), 

1Jl±(x) = L±(a - 2x) exp (-Ax)L=l(a)1Jlo' (8.7) 

Here the core is assumed to extend from ° to a. The 
flux in the reflector is given by 

1Jl±(x) = Je~( -x)1Jlo, 

where -b :::;; x:::;; 0, or 

(8.8) 

1Jl±(x) = K~(b + x) exp (A'x)K~-l(b)1Jlo. (8.9) 

Tn the right-hand reflector, where a S x:::;; a + b 

(8.10) 
or 

1Jl±(x) = K~(a + b - x) 

x exp [-A'(x - a)]K~\b)1Jlo. (8.11) 

9. CRITICAL LATTICE 

Consider a lattice made up of an infinite array of 
alternating layers of multiplying material of thickness 
a and nonmultiplying material of thickness b. Again, 
let lpi and 1Jlo be respectively the fluxes into and out of 
a multiplying slab. In every slab, the flux distributions 
are symmetric. From Fig. 3, one sees that 

1Jlo = M(a)1Jli' 

lpi = M'(b)lpo. 

(9.1) 

(9.2) 

The formulas of the last section still apply, with 
M'(b) replacing R'(b). The critical equation becomes 

{[B+ - M'(b)B_J 

+ [B_ - M'(b)B+J exp (-Aa)}L=l(a)1Jlo = O. (9.3) 

The flux in the multiplying medium, 0:::;; x:::;; a, is 
still given by Eq. (8.7). In the nonmultiplying slab, 
where -b < x < 0, Eq. (8.8) must be replaced by a 
form of Eq. (7.4) translated through a distance b. 
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Thus, for -(b/2) S x S 0, 

'If'±(x) = L~(b + 2x)exp(A'x)L~-1(b)'lf'o· (9.4) 

The symmetry property can be used to obtain the 
flux for -b S x S b/2. Since the cell thickness is 
(a + b), we have for all x 

'tf'±(x) = 'tf'±[x + n(a + b)], (9.5) 

where n is any integer. 

10. SYMMETRICALLY REFLECTED SLAB 
WITH SYMMETRIC SOURCES 

Consider a slab of thickness a with a uniform 
symmetric source distribution. The slab is reflected on 
both sides by identical reflectors of thickness b. 
Again, reflector operators are denoted by primes. 

From Eq. (7.6), 

'If'o = M(a)'lf'i + 'If'Q' (10.l) 
Also, 

(10.2) 

Putting these two equations together, one has 

'If'o = [I - M(a)R'(b)]-l'lf'Q. (10.3) 

From Eqs. (6.20) and (6.29), one can write 'If'Q in 
the alternate form 

'If'Q = (I - M(a)]S-lQs' (l0.4) 

Thus, 

'If'o = [I - M(a)R'(b)]-l[I - M(a)]S-lQs 

= L-<a)[L+(a) - R'(b)L_(a)t1 

X [L+(a)L=l(a) - I]S-lQs' (10.5) 

Note the appearance of the same operator, L+ -
R'L_, that appears in the critical problem. 

Putting together Eqs. (7.8), (10.2), and (10.5), one 
obtains the interior flux in the source medium, 
Os x sa: 

'If'+(x) 

= ([B+ exp (-Ax) + B_ exp (-A(a - x»] 

x [L+(a) - R'(b)L_(a)t1R'(b)[L+(a) - L-(a)] 
+J+(a - x)[I - exp (- Ax)]}L:;:l(a)S-lQs' 

(10.6) 

One could obtain an algebraically neater form for 
'If'+, but Eq. (10.6) separates explicitly the part that 
vanishes as b ---+ O. The flux V"-ex) can be found from 
the symmetry condition, Eq. (7.5). The fluxes in the 
left-hand and right-hand reflectors are given by Eqs. 
(8.9) and (8.11), respectively. 

11. LATTICE WITH ALTERNATING SOURCE 
AND SOURCE-FREE REGIONS 

Consider a lattice made up of regions of thickness 
a with uniform symmetric sources alternating with 
sourceless regions of thickness b. In place of Eq. 
(10.2), one has 

'If'i = M'(b)'lf'o· (11.1 ) 

The expressions for the fluxes in the core are there
fore the same as for the symmetrically reflected slab, 
but with M'(b) replacing R'(b). That is, Eqs. (10.3)
(10.6) hold with M'(b) instead of R/(b). The fluxes in 
the sourceless medium are given by Eq. (9.4). The 
lattice condition, Eq. (9.5), determines the fluxes when 
x is not in the interval (-b, a). 

12. TWO-MEDIUM MILNE PROBLEM 

Let the half-space x > 0 be filled with Medium 1 
and the half-space x < 0 with Medium 2. We will 
use unprimed symbols for operators for Medium 1 
and primed symbols for operators for Medium 2. 
We assume an infinite source, at + 00, of such a 
strength that the flux at any finite value of x is finite 
and nonzero. The flux coming from infinity is given 
by Eq. (5.4). In this problem, unlike in the simple 
half-space Milne problem, there is in addition a flux 
'If'+(0) incident on Medium 1 from the left, reflected 
from Medium 2. The solution for x ~ 0 is then the 
sum of the one-medium Milne solution and the 
solution of the albedo problem for the half-space 
x> O. The latter is given elsewhere. 2 Thus, for 
x ~ 0, 

'If'±(x) = B± exp (-Ax)B~l'lj)+(O) + AK'fO(x) exp )'ox. 

(12.1) 

The interface flux distributions'lf'+(O) and 'If'_(0) are 
connected by 

(12.2) 

Since K+(O) = 4C:;:1, we can solve Eq. (12.1) for 
'If'-(O): 

'If'_(0) = 4A(1 - B_B:;:lR:'T\C:;:l)O 

= 4A[(C+ + C_R:.,)-l]O' (12.3) 

where we have used Eq. (2.16) to obtain the last 
equality. Inserting this result in Eq. (12.1), we get for 
the flux distribution in Medium 1, after some algebra 
involving Eqs. (2.15) and (2.16): 

'If'±(x) = A[B=f exp (Ax) + B± exp (-Ax).'Flo, (12.4) 

where .'F is the generalization of F in the presence of a 
medium for x < 0: 

.'F = (C_ + C+R:x,)(C+ + C_R:.,)-l 

= -(B+ - R:x,B_)-l(B_ - R:x,B+). (12.5) 
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Equation (12.4) is identical to Eq. (5.5) except that 
j< replaces F. Thus the expression for the extrapolated 
end point in the two-medium problem is 

(12.6) 

When R~ -+ 0, j< -+ F and all the results approach 
the one-medium results. 

For x < ° we have a simple albedo problem and the 
flux is 

(12.7) 

Tn obtaining Eq. (12.7) we have made the appropriate 
changes in the known results for the albedo problem 
for the half-space x > 0. 2 

If we use Eq. (12.3) for vdO), we obtain for x < ° 
1f!±(x) = [4AB~ exp (1\'x)(C+B~ + C_B~)-l]O' (12.8) 

Thus, if all space is filled with Medium 1, i.e., if 
Media 1 and 2 are identical, Eq. (2.15) implies that 
for x < 0, 

1f!±(x) = AB'fo exp (!lox). (12.9) 

Since in this case, 
j< = 0, (12.10) 

Eq. (12.9) then holds for all x. Note that Eq. (12.9) 
is obtained from Eq. (5.4) by letting K± -+ B±. This 
is in accord with our ideas that K± is the generaliza
tion of B± that takes into account boundary effects. 

13. CONCLUSION 

The convenience in notation and the generality 
offered by the transfer-matrix method point up strong 
similarities between apparently very different prob
lems. We note, for instance: 

(1) The ubiquitous appearance of K±, L±, and J±. 
(2) The generalization of B± in semi-infinite

medium problems to K±(t) for slabs of thickness t. 
(3) The generalization of B± in problems involving 

an unreflected medium to (B± - R'B'f) in problems 
for reflected media. 

(4) The identical formulation of lattice problems 
and symmetric reflector problems, with M' in the 
lattice problems replacing R' in the reflector problems. 

These generalizations are summarized in Table 1. 
These features hold completely generally, for every 

type of interaction, and for every approximation 
method. They can be used to predict results for 
problems not yet solved. The simplest such extension 
is given by the last point. A given lattice problem can 
be formulated immediately in terms of the corre
sponding reflected slab problem and vice versa. 

It has been shown in the literature for isotropic 

TABLE I. Generalizations of B± operators. 

Geometry 

Half-space 
Slab 
Symmetric slab 

Reflected symmetric slab 

Lattice 

Operator 

B± 
K±(t) 
L±(t) 

{
B± - R'B=r: 

L±(t) - R'L'f (t) 

{
B± - M'B=r: 

L±(t) - M'L=r:(t) 

scattering2 (and it is true in general4) that to within a 
normalization factor, the kernel of the integral 
operator B+ is the forward part of the Case eigen
function and the kernel of B_ is the backward part. 
Thus the generalizations of B± describe the effective 
modification of the modes by reflections at the 
boundaries. The comparison with Case's method 
will be described in detail in a future article. 

Finally, when the operators are reduced to matrices 
in some finite approximation scheme, all the indicated 
algebra can actually be carried out. The generalized 
operators are useful intermediate results. In effect, 
they enable one to decouple various parts of the 
calculation. 

Extensive numerical calculations have been per
formed for several of the problems listed, for a variety 
of differential cross sections for one speed. Some of 
the results have already been given9.1O and others will 
be presented elsewhere. The speed and accuracy of 
the computations compare favorably with those by 
other methods. Some calculations for polarized 
photons, as well as for energy-dependent neutron 
interactions in a multigroup approximation, have 
been done. 
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After a brief discussion of well-known classical fields we formulate two principles: When the field 
equations are hyperbolic, particles move along rays like disturbances of the field; the waves associated 
with stable particles are exceptional. This means that these waves will not transform into shock waves. 
Both principles are applied to nonlinear electrodynamics. The starting point of the theory is a Lagrangian 
which is an arbitrary nonlinear function of the two electromagnetic invariants. We obtain the laws of 
propagation of photons and of charged particles, along with an anisotropic propagation of the wavefronts. 
The general "exceptional" Lagrangian is found. It reduces to the Lagrangian of Born and Infeld when 
some constant (probably simply connected with the Planck constant) vanishes. A nonsymmetric tensor 
is introduced in analogy to the Born-Infeld theory. and finally. electromagnetic waves are compared with 
those of Einstein-Schr6dinger theory. 

1. WAVE DYNAMICS 

A. Waves, Rays, and Exceptional Waves 

Quite generally we have seen that, as far as wave 
propagation is concerned, the field equations can 
always be written as a quasilinear system of partial 
differential equations that is a system of equations 
which are linear with respect to the highest derivatives 
of the dependent field variables.1 We assume that 
across the hypersurface S, 

lP(x") = 0, IX = 0, 1, ... , n, 

these derivatives are discontinuous. Precisely, if q is 
the highest order of the derivatives of the field com
ponent u, we assume that,after a change of variables, 

XiX ~ IP(XiX), ~i(XiX), i = 1,2, ... , n, 

the jump 

[~~J = (;;t~+o- (;;t~-o= bQu 

is finite, while 
bTU = 0, 0 ~ r < q. 

S is called the wave surface, and since Hadamard2 

it is well known that 

[a u] - m m ••. m (jqu 
cXlCX2"'(lq - '('CX1'rCl2 laq , 

where a subscript IX denotes partial differentiation with 
respect to XiX. 

To allow for the above-mentioned discontinuities, 
IP must be a solution of some characteristic equation of 
the form 

tp=GiXP"'VlPiXlPp"'lPv, tp=O. (1.1) 

When the field is nonlinear, the completely symmetric 
tensor G may depend on the field and all its continuous 
derivatives. 

The discontinuities-or disturbances-propagate 
themselves along the rays: 

dXiX atp dlPiX atp - = -, - = - - (1.2) 
da alP", da OXiX 

Thus in general relativity the ray velocity Otp/OlPiX must 
be a timelike (or possibly null) vector, i.e., 

..N' = (giXP ~ ~)! 
alPiX OlPp 

must exist (be real). We normalize (if..N' =/= 0) the ray 
velocity 

u'" = 2- otp UnU'" = 1. 
Jf 0 ' ~ lPiX 

Equation (1.1) shows that 

(1.3) 
which now implies 

giXPlPiXlPP ~ O. 

Now what about the growth of the disturbances of 
the field (such as (jqu)? Though we cannot here enter 
into details, the following results generally holdS: It is 
possible (because of the nonlinearity of the field) by a 
suitable choice of the (initial) disturbance to produce 
an accelerated wave (e.g., in fluid mechanics, push the 
piston into the cylinder). Consequently, the disturb
ances will cease to be finite after some critical time, 
thus tending to a shock. From this moment on, the 
field equations are no longer valid and must be replaced 
by others (e.g., Rankine-Hugoniot conditions). How
ever, the form of the field equations might be such that 
this phenomenon does not appear on some wavefront; 
then we say with Lax4 that this wave is exceptional. If 
this is true for all the waves, the system of field equa
tions is called completely exceptional.4•5 

941 
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The condition for (1.1) to be exceptional isL3 

rJ1p = 0, rp~rpp'" rpvrJGaP"'Y = 0, 

or, equivalently, 

rp~rJu~ = O. 

For instance, gravitational waves, 

g~Prp~rpp = 0, 

(1.4) 

(1.5) 

are exceptional, for g~/l only depends on the metric 
tensor g~/l whose first-order derivatives are contin
uous6 (hence r5g~/l = 0). 

Alfven waves of magneto hydrodynamics are ex
ceptional to03•5 ; Alfven shocks cannot be produced 
directly from a continuous initial state. 7 

B. Wave Dynamics: Two Principles 

In this section we want to show briefly how particles, 
sources of hyperbolic fields, may be considered as 
disturbances of the field (in the sense of Sec. IA) and 
therefore move along the rays of the associated waves. 
Let us distinguish several cases. 

(l) The field equations contain the four-dimensional 
velocity u~. They give the trajectories and, in order to 
be able to identify them with a family of rays, u~ must 
be a ray velocity. Hence, by virtue of (1.3), the 
characteristic equation 

u!T.rp~ = 0 (1.6) 

must exist. Let us examine the equations derived from 
the conservation laws 

V~TfXP = 0 

of two classical energy tensors. 

i. Incoherent Matter 

T~fJ = pu~uP, 

V~(pu~) = 0, (1.7) 

u!T.VaufJ = O. (1.8) 

The discontinuities are of first order and a convenient 
way to obtain them is to make the replacement 

(1.9) 

(The Christoffel symbols are continuous; see the end 
of the previous section.) From the very definition of r5 
it is obvious that it operates as does the operator of 
differentiation, i.e.,f(u1 , U2 , ••• ) being a continuously 
differentiable function of the continuous field variables 

From 

we immediately get (1.6) and (1.5); the wave is 
exceptional. Equation (1.8) describes the time track 
of a test particle (geodesic). 

ii. Perfect Fluids 

The entropy satisfies the adiabatic condition 

otherwise the motion of the fluid would not be deter
mined.s On the other hand, an equation similar to (1.7) 
holds and it is easy to see that we obtain again (1.6) 
and (1.5) for the entropy wave, 

rJS ;I: O. 

Similar results are valid for magnetohydrodynamics. 9 

Thus we have seen on these examples that particles 
move in the same way as the disturbances of the wave 
(I .6) and that this wave is exceptional. This, of course, 
does not give us more information about the particle 
paths; they are what they are, already given by the 
field equations. But let us go further. 

(2) From the Einstein equations 

we get 

g~/lrp~rpp = 0, rJ 2gap ;l: 0, 

no matter what the continuous energy-momentum 
tensor is. This is the equation of a null surface propa
gating with the speed of light. The wave is exceptional 
(Sec. IA) and it is well known that the rays are null 
geodesics and the trajectories of particles with vanish
mg mass. 

(3) The field equations do not give (directly) the 
laws of motion of particles. This is the case of non
linear electrodynamics which we investigate in Sec. 2. 

We propose now the following principles1o : 

Ray Principle: When the field equations are hyper
bolic, particles move along rays like disturbances of 
the field. 

Principle of Exception: The waves associated with 
stable particles are exceptional. 

Generally other waves-that is, waves which are 
not associated with particles (e.g., fast or slow waves 
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in magneto hydrodynamics ) or which are associated with 
unstable particles-are not exceptional. In the latter 
case the critical time might be connected with the 
lifetime of the particle: if the instability lies in the 
nature of the particle, it must also lie in the nature of 
the disturbance that represents it. 

However, if all the waves of the field can represent 
stable particles, the system of field equations must be 
completely exceptional. 

As yet we have only checked the above principles on 
the examples of (1) and (2). We are now going to see 
what comes out of them when applied to nonlinear 
electrodynamics. 

2. NONLINEAR ELECTRODYNAMICS 

A. Field Equations 

It is well known that from the electromagnetic 
tensor F~fJ and its dual, 

1 F* y6 = lo/l~fJy6 F o/l~fJyd = _ -- €~fJy6 (2.1) 
2'/ ap, '( (_g}t' 

one can construct the two invariants 

(2,2) 

[In a pseudo-Cartesian frame at some point, Q = 
t(H2 - E2), R = E· H, where E and H are the ordi
nary electric and magnetic 3-vectors.] 

Let us introduce the 4-potential CPa through 

Remark: Equation (2.4) shows that L needs to be 
defined only up to multiplicative and additive con
stants [more precisely, because of (2.5), to an additive 
linear function of R]. The first constant can be 
absorbed by X and the second one can cancel a "cosmo
logical" constant of the Einstein tensor, so we shall 
not bother here ensuring the conditions 

LQ(O, 0) = 1, L(O, 0) = 0. 

The following relations are useful too: 

F* FfJp = RgfJ F* F* {Jp = F Flip - 2QgP (2.8) 
~p a:' rxp rxp ex. , 

T~pTPP = p2g~, P = (Q2 + R2)!. (2.9) 

We shall suppose, of course, that L is nonlinear, 
and more precisely that 

B. Wave Surface 

We assume that, across the wavefront cp(x~) = 0, 
CPa has a discontinuity of the second order, 

so that, from (2.3), 

(2.10) 

(2.3) Equations (2.4) and (2.5) give [see Eq. (1.9)] 

and the Lagrangian L(Q, R) arbitrary function of the 
invariants (2.2). 

Then the Euler equations for the variational prin
ciple applied to 

read as 

V~L~P = 0, e fJ = LQF~fJ + LRF*~fJ, LQ = oL/oQ, 

(2.4) 
which, together with 

V~F*lZfJ = 0, (2.5) 

locally satisfied by (2.3), and the Einstein equations 
(cf. Ref. 11), 

Sap = XTo:p, 
T~fJ = LglZfJ - L~P FfJ p 

= LQT"fJ + (L - QLQ - RLR)g~P, (2.6) 

form the system of the field equations. We recall that 

T~fJ = Qg~fJ _ F~PFfJp 

is the Maxwellian energy tensor. 

(2.7) 

cp~(PfJ6LQ + F* afJ6LR + L Q6pP) = 0, 

cp.6P*·P = 0, (2.11) 

or by introducing the vectors 

uP = F~fJcp~, vP = F*~fJcp" 

and taking account of (2.10), 

U.6LQ + V.6LR + LQ{~7Ta - (7TPCPP)CPa} = 0. (2.12) 

If ~ = g"fJcpaCPp :;6 0, this equation shows that 

7Ta = aUa + bVa + ccpa' (2.13) 
with 

The coefficient C is undetermined, but the last term 
of (2.13) has no effect on the disturbance (2.10) of the 
electromagnetic tensor; the Lorentz condition (V "cpa. = 
0) will make it vanish (provided ~ ¥- 0). 

From (2.2) and (2.10), we have 

(2.15) 

inserting (2.13) and taking account of (2.7) and (2.8), 
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we obtain 

bQ = a(Q~ - T:» + bR~, M = aR~ - b(Q~ + T:»; 

Now Eqs. (2.14) give 
T:) = TaPCf!aCf!p. (2.16) 

a{~(LQ + QLQQ + RLQR) - T:)LQQ} 

+ b{~(RLQQ - QLQR) - T:)LQR} = 0, 

[When .N' = 0 (Sec. lA), we note la instead of ua in 
order to avoid confusion.) 

Here 
GaP = TaP + fl gaP 

and the eigenvalues are 

a{~(QLQR + RLRR) - T:)LQR} We must have (2.21) 

+ b{~(LQ + RLQR - QLRR) - T:)LRR} = 0, (2.17) fl > P. (2.23) 

wherefrom we get the characteristic equations,12 

T:) + fl~ = 0; 

fl(Q, R) being a solution of 

711'fl2 + fl + W - 711'p2 = 0; 

LQQLRR - L~R 
w= , 

LQ(LQQ + L RR) 

LQ + Q(LQQ - L RR) + 2RLQR 
w= . 

LQQ + LRR 

(2.18) 

(2.19) 

The roots of (2.19) always exist since the discrimin
ant can be written13 

II = (LQQ - LRR _ 2Q711')2 
LQQ + LRR 

+ 4 ( LQR _ R711')2. (2.20) 
LQQ + LRR 

(We disregard the case 711' = 0 that does not seem of 
physical interest.) 

Let GaP be a normal tensor, 6 

3 

Gap Va vP "'- Va vP 
= So (0) (0) - £.. Si (i) (i), 

i=1 

and let the characteristic equation be 

G"'PCf!a.Cf!p = O. 

Then the following inequalities1o.14 must hold accord
ing to the definition of the ray velocity (see Sec. IA): 

S· o < -! ~ 1, i = 1,2,3. (2.21) 
So 

If one equality is satisfied, light velocity is reached in 
two directions: 

dx'Z la. oc Va. Va. - = oc Cf! oc (0) ± (1) • 

da 
(2.22) 

This inequality must be true for both values of fl. 
Hence,13 

w < 0, 711'P + t > 0, w + P < O. (2.24) 

Propagation with the speed of light [(2.22) is satisfied] 
will be studied in Sec. 2.n. 

C. Double Root: The Born-Infeld Lagrangian 

The discriminant (2.20) is positive and vanishes iden
tically only for a solution of the system of partial 
differential equations: 

per - t) - 2x(rt - S2) = 0, 

ps - y(rt - S2) = O. (2.25) 

Here we have replaced L(Q, R) by z(x,y) and used 
p, q, r, s, t to denote the partial derivatives. Since we 
assume that w ¥= 0, the system is equivalent to 

p(yq - xp) - 2x = 0, 

pyp + y = O. (2.26) 

By integration this equation gives 

y = -F'(q)Jp. 
Then 

Inserting these expressions into (2.26) results in 

F"(q) + pG'(p) + 2G(p) = 0, 

or (since 711' ¥= 0) 

F"(q) = const = k, F(q) = tkq2 + a 

(the coefficient of q in F can be taken equal to zero by 
changing q into q + const; cf. Remark, Sec. 2.A). 

G(p) = (bjp2) - lk. 

p and q are easily obtained and so is z, 

z = const[-y2 + k(2x + k)]t. 
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By (2.19) and (2.25) we have 

1 P 
f-l = - - = --2 [tCr - t) - r] 

2w rt - s 

= x - PYa = X + F" = X + k. 

Therefore,13 

It is worthwhile to note that for a null field (P == 0) 
these equations-together with (2.4)-(2.6)-coincide 
with those of the Maxwellian casel6 : 

P = 0, FaPlp = 0, lala = 0, 

implyingl7.18 

L = [-R2 + k(2Q + k)]!, (2.27) FaP = laPp - IPPa, Papa = -1, 

f-l = Q+k, (2.28) Pala = 0, Tap = lalp, laValP = 0. 

and according to (2.23) k must be positive. This is the 
Lagrangian of Born and Infeld.ll [Note that it can also 
be written L = (f-l2 - P2)!.] We shall see the funda
mental role it plays in the theory. 

The spherically symmetric solution obtained with 
this Lagrangian is well knownll .15 : 

It removes the singularity at the oligin that appeared 
in the Maxwellian field: 

r = 0: FOI = k!. 

This finite value is called, after Born and Infeld, the 
"absolute field." 

D. Propagation with the Speed of Light 

At the end of Sec. 2B we have seen that, owing to 
(2.22), the speed of light is reached in two directions 
that we are going to determine. Equations (2.7), (2.8), 
and (2.18) give 

UaU a = (f-l + Q)~, 
uava = R~, Vava = UaUa - 2Q~. (2.30) 

Thus when ~ = 0, Va' Va' CPa are null vectors. Since 
on the other hand 

it is necessary that 

(2.31) 

Multiplying (2.8) by CPP results in 

uv = - R, v2 
- u2 = 2Q 

or 
u = ±(P - Q)!, v = =r=(P + Q)! sgn R. 

The equations [cf. (2.22) and (2.31)] 

~:a = la, [FaP ± (P _ Q)1-gap]lp = 0, lala = ° 
give the trajectories of photons. lO 

The null field still describes a fluid of photons6 that 
still follow null geodesics. 

In Sec. 2F we shall show that the results of this 
paragraph are compatible with Eq. (2.12) by calcu
lating the associated disturbances. 

E. Raysl9 

Let us define the tensors 

GaP = (raP + f-lgaP)/(f-l2 _ p~1-, 

Hap = -(raP - f-lgap)J(f-l2 _ P2)!, 

such that,by virtue of (2.9), 

H GPY = gY ap a' 

Let us introduce the relative spacelike 4-vectors, 

ea = Fpau P, ha = F*pauP, sa = 1]aPYdephyUd 

(uaua = 1), 

which coincide in the rest frame (u i = 0, UO = I) with 
the electric, magnetic, and Poynting vectors, respec
tively. When expressed with these quantities, we have 

Fap = uaep - upea + 'YJaPYdhYud, 

F*~P = uahP - uPha - 'YlaPY"e U ./ Y d, 

(2.32) 

From Sec. IA and Eq. (2.18), the rays are given by 

dx
a 

1 GaP a ---- cP-U 
dr - (_~)1- P - , 

(2.33) 

(2.34) 

Equation (2.33) yields 

~l = Hapu P = 1 1- {a - e2)ua + Sa}, 
(_~)"2" (f-l2 _ p 2) 

, = f-l - Q, (2.35) 
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while 

i.e., 
(2.36) 

or equivalently, 

t(e2 + h2) = fl, S2 = fl2 _ p2 

[because Q = t(h2 - e2), R = e~h~, S2 = e2h2 - R2]. 
Thus, 

(2.37) 

the Poynting vector is orthogonal to the wavefront, 
, (or rather 'f) is the absolute field of the charged 
particle which moves along the rays according to the 
first principle of Sec. 1 B. fl is the absolute density of 
energy. 

According to (2.33) and (2.34), particle paths are 
null geodesics for the metric 

ds2 oc H~{J dx~ dx{J. 

Consequently, 

where 

y~ = -tG)'P(V/lHvp + VvH/l p - VpH/l,,)u/lu v. 

[As for the uncharged particles, they move along 
geodesics according to (1.8).] 

Now it is easy to show that the Born-Infeld 
Lagrangian is well suited to describe a particle in the 
spherically symmetric approximation. We have (2.29) 

e2 = _ gOOgl1(FOl)2 = F~l' ui = 0. 

On the other hand, (2.28) and (2.35), 

,= k, (2.38) 

so that at the origin r = 0, where the particle is at rest, 
the equality (2.36) is true. 

To end this section, we shall say a few words about 
the ray velocity diagram. This diagram gives us the 
shape of the wavefront resulting from a point disturb
ance (that is, a disturbance initially localized within a 
small sphere) and propagating into a constant state 
(specified by g~{J = 'fJa{J' E, H). A proper choice of the 
reference frame in the three-dimensional physical 
space (the z axis lies in the direction of the Poynting 
vector S = E x H) allows one to write the equation of 
the wavefront at time t 20

: 

x2 
y2 1 2 2 S - + - + - (z - Vt) = t, V = -- (2:39) 

a2 b2 c2 fl + W ' 

with 

v = lVI, W = t(E2 + H2), 

a = (fl + P)!, b = (fl - P)!, c = abo 
fl+ w fl+ w 

It is immediately seen that 

1 > a ~ b > c, V2 = (1 - a2)(l - b2). 

The propagation is anisotropic, and besides there is 
a draught effect of speed V. In the limit of an infinite 
absolute energy density fl -+ 00, the ellipsoid (2.39) 
becomes the usual sphere of the linear theory of 
Maxwell. 

F. Disturbances 

i. Disturbances Associated with Photons12 .16 

Inserting (2.31) into (2.15) and (2.12) results in 

bQ = U7T~CP~, bR = V7Tacp~, (w - P)7T~cp~ = 0, 

or [see (2.24)] 

bQ = bR = 0. 

(2.40) 

(2.41 ) 

Furthermore we have from Eqs. (2.10) and (2.11) 

cp~bF~{J = 0, cp~bF*~{J = 0, 

which means that the electric and magnetic disturb
ances are transverse, orthogonal to each other, and of 
equal strength, i.e., the usual results of the linear 
theory. But here Eqs. (2.41), bQ = bR = 0, re
place the null field conditions (fluid of photons) 
Q = R = 0. 

It is even possible to show that (2.41) characterizes 
photons. Let us assume that (2.41) is satisfied. Then, 
by (2.15), 

V~7T ~ = V~7T a = 0, (2.42) 
and,by (2.12), 

which means 

(2.43) 

for a wave (i.e., a disturbance) to exist: (JFa{J ¥- ° 
(2.10). Then, taking account of (2.30), 

(2.44) 

7T ~ is certainly a spacelike vector; otherwise it would 
be colinear to CPa ,which is just what we wanted to 
avoid when writing (2.43). Va. cannot be timelike for 
Va.CPa. = 0; if Va. were spacelike, then according to 
(2.42)-(2.44) cp(% would be orthogonal to the three 
linearly independent spacelike vectors 7T (%' Va., V(% and 
would be timelike (and not null). Therefore, V(% is a 
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null vector and we are led back to the conclusions of Thus the wave will be exceptional [cf. (1.4)] if 12 
Sec. 2D: light rays are eigendirections of the electro
magnetic tensor. 

ii. Disturbances Associated with Charged Particles12 

The first equation (2.17) and (2.18) yield 

a = -7T{R'YJQ + (ft - Q)'YJR}' 'YJ = log ILQI, 

b = 7T{1 + (ft + Q)1]Q + R'YJR}; (2.45) 

7T(X"') is a function of the coordinates whose growth in 
the course of time has been briefly discussed in Sec. 
lA. Equations (2.16) give 

or 

oQ = !;{a(2Q + 0 + bR}, oR = !;taR + b~), 
(2.46) 

oQ = 7T!;(R - P'YJR) , oR = 7T!;(~ + f2'YJQ), (2.47) 

with the definition 

f(Q, R;~) = [_R2 + ~(2Q + m! [= (ft2 - P2)!]. 

The expressions (2.45) and (2.47) are not valid for 
the Born-Infeld Lagrangian: the coefficients of a and b 
in (2.17) all vanish; a and b are arbitrary. It had to be 
so because of the double root in Sec. 2C. 

Making use of the relation 

-'YJ",pyJs", = €f~~e;NtuV = (ePh Y - eYhfl)u J 

+ (eYh J - eJhY)u fl + (eJh P - ePhJ)u' 

and ofEqs. (2.32) and (2.37), we can write (2.13) as 

1 
7T", = - --! (e",oQ + h",OR + c!;S",), 

f( -!;) 

while (2.10) takes the form 

of,,,p = )2 {(e",Sp - epS",)(jQ + (h",Sp - hpS",)(jR}; 

(2.48) 

the disturbance of the dual tensor is easily obtained14 : 

i.e., 

G. Exceptional Waves 

We apply now the second principle. According to 
(2.7), (2.10), and (2.15), we have 

tp",tppo( r"'P + ftg"'p) 

= ~o(ft + Q) - 2U pC tp"7TP - tpP7T")tp", = ~o,. 

(2.50) 

From (2.38) it is already obvious that the Born-Infeld 
waves are exceptional. When the absolute field is not 
constant, this gives 

or,by (2.47), 

PJ = R~Q + "R' J = ~Q'YJR - ~R'YJQ' (2.51) 

If we assume the Jacobian J ¥- 0, 

~Q = JRq, ~R = -JQq, 

and (2.51) become 
f+ fq = 0, 

whose integration is easy,13 

(2.52) 

Z being an arbitrary function of ~. When J = ° this 
equation still holds: 

J = ° and 'tlT ¥- ° -+ ~ = ~('YJ), 
RLQQ + ~LQR = 0. 

With the change of variables of Sec. 2C, this last 
equation is equivalent to 

which is analogous to (2.52) if ~ is not constant. 
Now Eq. (2.19) can be written 

f2 
(2x + Or + 2y5 + ~t + p. + - (rt - 52) = 0, 

P 
(2.53) 

which is an equation of Monge-Ampere since, by 
virtue of (2.52), ~ can be considered as a function of 
X,y,p: 

pj(x, Y; 0 = Z(O· (2.54) 

It is then easily seen that, along the characteristic 
curves of (2.53) (see, for instance, Ref. 21), 

( 

dp 
f2 - + ~ dx - y dy = 0, 

l' ~q - y dx + (2x + () dy ~ 0, 

the quantities 

" q + y~ 
are constant. As a result z is obtained by eliminating 
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~ between the equations 

z = Fmf + yG(O + H(O (F = Zm, 
oz = 0: F'f2 + (yG' + H')f + (x + OF = 0, 
a~ 

where the prime denotes differentiation with respect 
to ~. 

Therefore the Lagrangian is of the form22 

where the absolute field '(Q, R) is obtained by solving 

F'f2 + (RG' + H')! + (Q + OF = 0, (2.56) 

F, G, H being arbitrary functions of ,. 
Moreover, 

L - H LR = -R ~ + G. 
Q - f ' f (2.57) 

H. Exceptional Lagrangians22 

To each value Ill' 112 of Il solution of (2.19) corre
sponds a wave (2.18). If both families of waves can 
describe trajectories of stable particles,they must both 
be exceptional. Then the field equations will be com
pletely exceptional (Sec. lA) and we say that the 
Lagrangian is exceptional. It has already been made 
clear that the Born-Infeld Lagrangian is exceptional 

al = '2 = const = k). 
In the general case when neither '1 nor '2 is constant, 

(2.50) must be true for each value; the equations 

{
01'1 = 0, 

02'2 = ° 
must be satisfied simultaneously, where the subscript 
1 in 01 means that we must put ~ = ~l in the expres
sions (2.47) (and also, of course, 7T = 7Tl' ~ = {;II)' 

Consequently, the Eqs. (2.55)-(2.57) must be valid 
no matter which value of , is used. In other words, the 
following relations hold: 

Fdl + RG1 + HI = Fd2 + RG2 + H2, (2.58) 

F1'1 F2~2 Fl F2 (9) -= -, -R- + G1 = -R- + G2 • 2.5 
fl f2 fl f2 

We eliminate Q and R between these equations to 
obtain the identity 

~1~2(Gl - G2)2 - (~1 - ~2)(Fi~1 - F~~2) 

+ (HI - H2)2 = 0. (2.60) 

aI' ~2 cannot be linked by any relation, for Q and R 
would then be functions of each other.) 

This identity can also be written in the form 

1jJ12 + Hi - Fi~i + m - F:~; = ° (2.61) 
with 

1jJ12 = '102 + '201 - 2CPICP2 - 2H1H2, 

o = ,(G2 + F2), cP = G'. (2.62) 

According to the Remark of Sec. 2A, we shall 
make use of the possibility to change G and H into 
G + const and H + const, respectively, thus avoiding 
unnecessary constants of integration. We shall mention 
in parentheses the function to which the constant is 
added. 

By virtue of (2.61), 1jJ12 is equal to the sum of a 
function of '1 and of a function of '2; hence, 

i.e., 

0; + O~ - 2cp;cp~ - 2H{H~ = 0. (2.63) 

It is only a matter of simple calculations to see that 
if both (cp')'s were constant, the same would be true of 
the absolute fields. Hence we assume cP~ ¢ 0. Differ
entiating (2.63) with respect to ~2' we get 

(O~/c/>~) - 2cp{ - 2H;(H~/c/>~) = 0. (2.64) 

The assumption H~ = const would lead to conclusions 
analogous to the above ones. Thus we are left with 

HI! 
cP; = const = y ¢ 0, 

H2 = YCP2' 

Equations (2.64) and (2.63) give 

CP1 + yHl = 0, 

01 = -a~l + b, O2 = a~2 + c. 

By (2.62) we have 

1jJ12 = C~l + b'2, 

and taking account of (2.61) we finally obtain the 
systems (I) and (II): 

(I) 
(

GIS! + yHI = 0, 

~1(Gi + Fi) = -a'l + b, 

Hi - Fi~i + C~1 + I = 0; 

(
YG2~2 - H2 = 0, 

(II) ~2(G~ + F:) = a~2 + c, 

H~ - F:s~ + bS2 - I = 0. 

Anyone of these systems may be used with (2.55) 
and (2.56) to determine the Lagrangian. We note that, 
on passing from (I) to (II), that is,from the value ~l to 
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the value ~2 of the absolute field, we make the follow
ing changes (C): 

I 
(C) (~1 ---+ ~2): y ---+ - - , a ---+ -a, b ~ c, I ---+ -1. 

y 

From (I) and (II) we get 

2 -1 2 HI = --2 {a~l - (b - cg l + I}, 
l+y 

If a y6 O,we can always assume a > O. The discriminant 
of the polynomial inside brackets is necessarily positive, 
so we can put 

1 b - c 
k = - --, I = a(k2 - h2). 

2 a 

The new constants hand k are C invariant, i.e., 
invariant by the transformations (C). Then, 

H~ = [a/(1 + y2)]{ h2 - (~l - k)2}; 

The absolute field depends on the new constants in 
the following way: 

~l = ~(Q, R; k, h, s, 0), 

~2 = ~(Q, R; k, h, -s, 0 + 7T); 

h = 0: ~I = ~2 = k. 

The constant h might well be simply connected with 
the Planck constant. When it vanishes, both values of 
~ reduce to the constant absolute field k of Born
Infeld, thus allowing for a spherical approximation of 
the particle (Sec. 2E). The spin of the stable particle 
seems to be represented by sand 0 is some constant 
angle. 

To illustrate the role played by 0 we consider the 
first-order approximation of the absolute field when 
the parameter h/k is small (which is probably the case). 
Let Qo, Ro be the values of the invariants built from 
a solution of the Born-Infeld field equations and let 

We introduce the three coplanar dimensionless 

the Lagrangian (2.55) reduces to the Born-Infeld vectors A, B, C: 
Lagrangian when h = 0 al = k), provided we assume p 
k> O. We have for h = 0 IAI = k~' IBI = s 11 - (R~/k2)1, 

which shows that the C invariant 

1 b + c ---
2 k 

(2.65) 

must be positive. 
We introduce the dimensionless constant 23 

1 b + c 1 s=----
2 k a' 

and, assuming that L has been divided by the square 
root of (2.65), the solution of (I) can be taken equal 
to 

F2 = 1 {y2 (e _ h2) + 2K 1:.. _ I}, 
I s(1 + y2) si ~1 

G1 = - r HI, H~ = 1 2 {h 2 
- al - k)2}, 

Sl s(1 + y) 

where the C-invariant constant K is defined by 

1 k 
2K = - (b + cy2) = - {s + 1 + y2(S - l)}. 

ay y 

The law of transformation (C) of y suggests to one to 
put 

y = tgtO. 

ICI = 2s(lRol/k), 

the last ones being orthogonal to each other (B . C = 
0) and making with A the constant angles 

(A, B) = 10 + ~ [1 - sgn (k2 
- R~)] I, 

(A, C) = I ~ + 0 sgn Ro I; 
then, using (2.56), we find 23 

S ~ k ± h IAI - IB + CI 
1- IA + B + CI ' 

S ~ k ± h IAI + IB + CI . 
2- IA + B + CI 

Remarks: (1) Quite generally in one-dimensional 
propagation when a field has only two components 
and when the field equations are completely excep
tional,a the characteristics (wave surfaces in the x, t 
plane) belong to two families of isocline curves. This 
means that the slope of curves of one family is con
stant along each curve of the other family; in other 
words, curves of the same family cannot intersect. 
This phenomenon had already been noted for the 
Born-Infeld one-dimensional field equations.24 
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(2) It has also been predicted25 that shocks might 
arise when the Lagrangian of Heisenberg-Euler26 is 
used. This is true since this Lagrangian is not excep
tional. This Lagrangian, however, as it is given,appears 
as the first terms of an expansion with respect to a 
small parameter. As we ignore the exact form of this 
Lagrangian, we cannot even calculate the absolute 
field. Nevertheless it is probable that the exact form is 
not exceptional since it is used in connection with the 
production of unstable particles. 

I. Disturbance of the Ray Velocity 

It is given by the formula14 ,l 

bua = [llf( _~)l](bp - uaup)cpyb(TPY + flgPY) 

and calculations show that it is equal to 

When the wave is exceptional, 

from (2.48) and (2.49) we have 

bea = u/jFpa = 0, bha = upbF*pa = ~(aha - bea), 

bS. = 'YJaAIlVeAbhlluV = a~Sa' 

Thus a stable particle appears in its proper frame as 
a disturbance of the sole magnetic field. 

On the other hand, we obtain1o, by solving Eqs. 
(2.46), 

a~ = - - - bs b~ = - 15 - + - - bs. bf fl f (R) R fl 
f f2' S f s ,r 

Inserting these expressions into the above relations,we 
immediately see that in the exceptional case (bs = 0), 
the tetrad of vectors 

f 

is not disturbed by the stable particle wave: 

bVfll) = 0. 

J. Introduction of a Nonsymmetric Tensor 

(2.66) 

(2.67) 

In their famous paper,ll Born and Infeld introduce 
the nonsymmetric tensor 

(2.68) 

tensors, respectively, and use the Lagrangian density, 

L = A( - laapl)~ ± B(lFapl)! + C( - Igapl)!. (2.69) 

If a positive constant k is introduced for the sake of 
dimension, we rewrite (2.68) as 

aaP = k!gap + Fa(1' 

while (2.69) gives the Born-Infeld Lagrangian, 

L = Aj(Q, R;k) + BR + C, 

L = (-g)!L, g = Igapl. 

(2.70) 

(2.71) 

Now an obvious generalization of (2.70) and (2.71) 
consists of replacing the constant k by the function 
seQ, R) of Q and R, 

(2.72) 

L = F(s)j(Q, R; 0 + GmR + Hm. (2.73) 

This is nothing but the Lagrangian (2. 55),and,from the 
results of Sec. 2G, we know that S is indeed an 
absolute field if it is defined by 

aLias = 0, 

a result which can also be established by direct calcu
lation.16 ,27 

Let us compare waves of nonlinear electrodynamics 
with waves of the Einstein-Schrodinger theory. To 
this aim we introduce the adjoint tensor of (2.72),23 

i.e., 

dOP = sl (TaP + ugap) + 1. (SPP _ RF* aP). 
f2 r f2 

We see at once that the quantity 

oa[( _a)ld[aPJ], a = laapi = gf2, 

vanishes [cf. (2.4)] for the Born-Infeld field11. 28 and 
that the waves, 

d(aP)m m = ° 'ra'rp , (2.74) 

are to be found in Einstein-Schrodinger theory too.6 

However, in nonlinear electrodynamics we do not 
find the other family of waves of the Einstein-Schro
dinger field. If we put 

and hence 
g'OP = g"p;Sl, g' = S2g, 

this family is given by29 

( d(aP) - 2 ~' g,ap) CParpp = 0, 

i.e., identify the symmetric and anti symmetric part i.e., 
with the gravitational and electromagnetic field 
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it would correspond to the change of, into -, ,which 
would not be acceptable since,by (2.23) and (2.35), , 
must be positive. 

Another difference must be stressed: in Einstein
Schrodinger theory, the non symmetric tensor is 
assumed to be continuous in the first order6 and to 
admit discontinuities of the second order, which is 
natural because the field equations involve second
order derivatives of this tensor. On the contrary we 
have here 

ba.p :;i: O. 

Thus if we want to try to write the field equations of 
nonlinear electrodynamics in terms of the components 
of a nonsymmetric tensor and its first- and second
order derivatives, we had better choose this tensor in 
such a way that 

ba.p = O. 

For this purpose we might think of the vectors (2.66). 
(A set of four vectors is used by M0ller in his tetrad 
theory.30) 

For instance, the tensor 

a.p = g.p + f. p , 

f.p = V(O). V(l)P - V(1). V(O)P + 1J'Pro V;2) vfo), 
is analogous to (2.72) when the ratio pn is small, 

g.p + f.p ~ g.p + (F.pn i ), PI'« 1. 

Furthermore, 

and 

a = la.pl = 2 la(7P)1 = 2g. 

This is a singular case in Einstein-SchrOdinger theory, 
but it also allows for the choice of another connec
tion.28 •31 
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The conservation laws derived in an earlier paper for the Korteweg-deVries equation are proved to be 
the only ones of polynomial form. An algebraic operator formalism is developed to obtain explicit 
formulas for them. 

1. INTRODUCTION 

Research in recent years exhibits an increase of 
interest in nonlinear dispersive wave phenomena. One 
of the simplest nonlinear dispersive wave equations 
is the Korteweg-deVries (KdV) equation 

the second is obtained after multiplying by u and 
rewriting. 

Whitham2 needed a third c.l. to study nonlinear 
dispersive waves by a method of averaging, hence 
he sought (and found) one, with a term u3 in its 
p.c.d .. A fourth c.l., with a term u4 in its p.c.d., was 

U t + uu'" + u"''''''' = 0, 

where subscripts denote partial differentiations. This 
equation is conservative and dispersive, in sharp 
contrast to the much studied Burgers' equation which 
would obtain if u"''''''' were replaced by -VU",,,,, v> 0. 
Burgers' equation can describe a constant pressure, 
incompressible, viscous fluid. In most applications 
(see! Papers I and III for references to physical appli
cations of the KdV equation), a dispersion parameter 
appears as a coefficient of the u"""'" term in the KdV 
equation. However, there is no loss of generality (for 
present purposes) in confining ourselves to (1), because 
of the scaling properties discussed in Appendix A. 

(1) found by Kruskal and Zabusky.3 In an effort to 
understand the results of certain numerical computa
tions, they developed an asymptotic theory for the 
KdV equation when a small parameter 152 multiplies 
the U",,,,,,, term. If 152 is set equal to zero, then for a large 
class of (smooth) initial data, the solution becomes 
discontinuous after a finite time due to the non
linearity. However, if 152 is small but not zero, then, as 
the solution tends to become discontinuous, the 
u"''''''' term becomes important in spite of its small 
coefficient and keeps the solution smooth. Moreover, 
small-wavelength finite-amplitude oscillations develop, 
initially occupying a small region at the near-discon
tinuity but then spreading indefinitely. (For Burgers' 
equation with v ~ ° no such oscillations develop, but 
rather a conventional hydrodynamic shock structure.) 
The asymptotic theory of the KdV equation developed 

In Paper II we proved that the KdV equation 
possesses an infinite sequence of polynomial conserva
tion laws in the form 

Tt + X", = 0, 

where T, the conserved density, and -X, the flux of T, 
are polynomials (not explicitly dependent on x or t) 
in u and its derivatives. In this paper, we give a 
detailed discussion of these conservation laws (also 
called conservation equations). We frequently use the 
abbreviations c.d., p.c.d., and c.l. for conserved den
sity, polynomial conserved density, and conservation 
law. 

Two c.l. for the KdV equation are obtained imme
diately, 

by Kruskal and Zabusky in this region of oscillations 
is a nonlinear generalization of the WKB method. 
They obtained a system of equations for the evolution 
of the solution on the "macroscopic" scale (together 
with a detailed description of the oscillations on the 
"microscopic" scale). Solutions of the limit system 
(152 ~ 0) exhibit discontinuities of an unusual type which 
may be considered as "reversible (nondissipative) 
shock waves." A count of the appropriate number of 
jump conditions across such shock waves led to the 
search for and discovery of the fourth conservation 
equation and to the investigation presented here. 

ut + (tu
2 + u"'''')''' = 0, 

(tu 2)t + (lu 3 + uu",,,, - tu!)", = 0. 

Definitions and operators are introduced in Sec. 2 
along with a number of commutation formulas. In 
Sec. 3 we prove that the KdV equation has no 

The first is simply the equation itself rewritten, and p.c.d. other than those established in Paper II. 

952 
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Further, we outline the method of undetermined 
coefficients used to establish them there. However, 
this method does not yield an explicit formula for 
all p.c.d.; in Sec. 4 we find such formulas by other 
means. 

We had originally intended to include a section 
proving uniqueness and nonexistence theorems for 
some generalizations of the KdV equation. However, 
the material has accumulated to such an extent as to 
justify our collecting it into an eventual separate 
Paper VIf in this series. 

2. DEFINITIONS AND OPERATORS 

In this paper we deal extensively with polynomials 
and eventually formal infinite power series in U and 
its x derivatives. In fact, the words polynomial and 
series are always to be understood in this sense. Here 
we introduce some definitions to be used throughout. 

We denote the t and x differentiation operators by 

a a at == - and :0 == - , at ox 
and the jth-order x derivative of U by ui . In much of 
the following we treat the Ui as independent variables. 

Any term in a polynomial (or series) has the form 
cugou~l ... u71 where ai ~ ° are integers with at ~ I 
if I¥:O; I is the order of the term. (Throughout this 
paper c and Ci' i = 0, I, ... , denote arbitrary con
stants.) Of any two distinct terms we call that one 
dominant which has larger I, or the same I but larger 
at, or the same I and at but larger at_1 , etc. Obviously 
dominance is an ordering relation (it is transitive and 
irreflexive) and is complete (of any two distinct terms, 
one dominates the other). 

The total number of factors in a term is its degree 

(2) 

The total number of differentiations will be called 
the derivative index (or simply index) 

t 

n == L iai • 
i=l 

(3) 

The rank of a term (introduced in Paper If) is defined 
by 

I 

r == m + tn = L (l + ti)a i ; (4) i=O 
a term scales as the (-2r )th power of C under the 
scale transformation (see Appendix A). For example, 
the last two terms in the KdV equation are of equal 
rank t. From the above definitions it is clear that 
acting on a term with the operator ~ leaves the degree 

of that term unchanged but raises its index by 1 and its 
rank by t, whereas acting on a term with at raises the 
rank by i but has a nonuniform effect on the degree 
and on the index. A polynomial of degree m has m as 
the l.u.b. of the degrees of all its terms, and similarly 
for the order, index, and rank. 

Associated with the three "Iabelings" degree, index, 
and rank are the linear differential operators 

.At, == L Uiai , (5) 
i 

.N' == L iUiOi , (6) 

:it == .At, + t.N' = L (l + ti)UiOi , (7) 
; 

where Li denotes Li:O and 0i == a/au;. (For i negative, 
we shall interpret 0i as zero.) The effect of applying 
.;\(" .N', or :R to any term is to multiply that term by its 
degree, index, or rank. Thus any term, indeed any 
polynomial of uniform degree (i.e., with all terms of 
the same degree), is an eigenpolynomial of .At, with 
eigenvalue m, and similarly for .N' and :R. For each of 
these labelings we define slice operators, i.e., projection 
operators that select terms of a certain degree, index, 
or rank. Thus, for example, the m-degree slice operator 
';\('m, acting on a polynomial, leaves unaffected all 
terms of degree m and annihilates all terms of degree 
different from m. (Because of the eigenproperty, such 
an m-degree slice operator could be defined formally 
as .;\(,m == o<,I("m, where the right side is the Kronecker 
delta function, here equal to unity if the eigenvalue 
of .;\(, operating on a term is m, and otherwise 
zero.) 

Besides :R, we have occasion to consider other 
operators linear in .;\(, and .N'. The operator c1.At, + 
c2.N' + C3 has the effect of multiplying any term by the 
number c1m + C2n + C3' We define (C1.;\(, + c2.N' + 
C3)-1 to be the operator whose effect is to divide any 
term by c1m + C2n + c3 , or annihilate any term for 
which this number vanishes. If there are no anni
hilated terms we have a true inverse, otherwise a 
pseudo-inverse; in any case it commutes with the 
original operator. 

In Sec. 4 we use series (of nonnegative powers) 
extensively. Many of the properties (e.g., vanishing 
and equality) and operations (e.g., addition, multi
plication, differentiation, integration, exponentiation, 
.;\(" .N', :R, and the slicings) generalize naturally and 
obviously from polynomials to series. A series is 
considered to have a property if arbitrarily high 
polynomial truncates of it do; in particular, it vanishes 
only if all its coefficients do. The result of an operation 
on a series consists of all terms common to the results 
of the same operation on arbitrarily high truncates; 
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for all the parenthetically mentioned operations, 
except multiplication and exponentiation, this amounts 
to operating term by term. The definitions of order, 
degree, index, and rank for polynomials have been so 
expressed as to apply also to series, now allowing 
infinity as a value. (A series of finite rank is neces
sarily a polynomial.) 

Expressed as a differential operator in the space of 
functions of the U,' the x differentiation operator is 

(8) 

Lemma 1: A polynomial P of degree m and order 
I is either (a) a constant (m = 0), whereupon '])P = 0, 
or (b) not a constant (m > 0), whereupon '])P( ¥- 0) 
is of order I + 1 and is linear in ul+l . 

Proof: Case (a) is obvious. Case (b) follows imme
diately from (8), the dominant term in '])P coming 
from i = t. 14 

Using the KdV equation (1), the t differentiation 
operator can be written 

Ot = L (OtUi)Oi = - 2: [~)i(UOUl + Ua)]Oi 
i i 

(9) 

where 

(10) 

(,;-1) being the binomial coefficient, and '])3 is a special 
case of 

The commutativity of x and t differentiations expressed 
by (19) has already been used in (9). 

We next introduce 

11 == 2: (_'])iO, , (20) 
i 

the Euler operator of the calculus of variations. [For 
a function F(uo, ... , ul ), l1F is the functional deriva
tive of S F dx, aside from boundary terms.] Since we 
are dealing here with formal algebraic expressions, we 
give a purely algebraic proof of the familiar 

Lemma 2: If P is a series [polynomial] with no 
constant term, then P is the derivative of some series 
[polynomial] if and only if l1P = o. 

Proof: If P = 'lJQ, then (12) for j = 1 gives 

l1'lJQ = 2: (-'lJ)iOi'])Q = L (-'lJ)'('])Oi + 0i-l)Q 
i i 

which is seen to vanish by shifting indices (since 
0_1 = 0). 

Conversely, if 'HP = 0, we multiply by Uo to restore 
the degree and integrate by parts repeatedly, obtaining 

o = Uo 'HP = Uo 2: (_']))iOiP 
i 

= uoooP - 'lJ(UOi~1(-'])y_10iP) 
<Xl + U1 L (_']»i-lOiP 

i=l 

<Xl 

= ... = .A{,P - 'lJ L Uj L (-'lJ)i-j-10iP. (21) 
j i=1+1 

Other special cases of (11) are 

'])0 = .AL, '])1 = ']). 

(11) We apply .A{,-l and note that .A{,-I.A{,p = P because 
only constant terms are annihilated by .A{" and P has 
none. Furthermore .A{, -1 commutes with ']): for, by 
(13), .A{, ( = '])0) does, so that 

We present here a number of results not needed 
until Sec. 4. First, a number of commutation formu
las all obvious or straightforwardly derived: 

Oi'lJ; = ']) ,Oi + OH' (12) 

'J)i'lJ j = '])j'lJi , (13) 

0iX = (X + i)Oi' (14) 

'])..N' = (X - i)'lJi , • 
(15) 

00$ = $00 + ']), (16) 

01$ = $01 + .A{, + X, (17) 

'])$ = $']), (18) 

'])Ot = 0t'])· (19) 

.A{, -1(.A{,']).A{, -1 = .A(, -1('lJ.A{,).A(, -1, 

while .A(, -1.A{, = .A{,.A{, -1 is the identity operator except 
for constant terms, which, by (8), do not occur in 
derivatives and are annihilated by 'lJ. Thus we have 

P = 'lJ (.A{, -1 4 U j. i (- 'J))i-i-lO;p) . (22) 
J '=J+l 

Note that the infinite summations are (formally) 
well defined since we could have worked with deriva
tive index slices, in each instance of which the 
summations would obviously be finite. For the same 
reason, if P is a polynomial, so is the expression in 
brackets. I 

We will want operators which when applied to 
powers of 'lJ produce something simpler. We seek 
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such operators in the form \') == Ii ci ( -:0)i-r Oi 
(which reduces to 11 for Ci = 1). This gives 

\'):0 = I Ci( -:0y-r(:0oi + 0i-l) 
i 

= L (CHI - Ci )( -:0Y+l-rOi , 
i 

which suggests choosing Ci = (;) and defining the 
operators 

Theorem 1 (Existence): Every polynomial has an 
irreducible equivalent. 

Proof: Appropriate integrations by parts can be 
applied successively only a finite number of times, 
since the order always decreases. I 

Theorem 2 (Uniqueness): Any two equivalent irre
ducible polynomials are equal. 

(23) Proof: Their difference, an irreducible derivative, 

Then 1Ir:0 = 1Ir_1 so that 

(24) 

Incidentally, a basic property of the operators 11, is 
stated in the following generalization of Lemma 2. 
However, we make no use of it. 

Lemma 3: If P is a series [polynomial] with no 
constant term, then P is the (r + I)-order derivative 
of some series [polynomial] if and only if 1IsP = 0 for 
s = 0, I, ... , r. 

Proof: Straightforward, inductive, and omitted. I 

3. POLYNOMIAL CONSERVED DENSITIES 

A. Preliminaries 

Our general objective is to find conserved densities. 
The existence of an infinite sequence of p.c.d., one for 
each integral rank (here always meaning uniform 
rank), was proved in Paper II. 

Since differentiations with respect to x and t com
mute, any x-derivative term is a trivial c.d. Given 
any c.d. we can immediately obtain any number of 
others simply by adding x-derivative terms. It is 
therefore natural to call two polynomials PI and P2 

equivalent if their difference is an x derivative; we 
denote this by 

(25) 

(The terminology is justified by the obvious properties 
of reflexivity, symmetry, and transitivity.) 

Among the many equivalents of a polynomial we 
seek a canonical representative. Let us integrate by 
parts to reduce order whenever possible. For instance 
UOU2U4 ~ -U1U2U3 - uou~ ~ tu~ - uou~. A polynomial 
is irreducible if no term has its highest-derivative factor 
U i occurring linearly, i.e., if each of its terms has 
order 1=0 or has I ~ 1 and al ~ 2, since then we 
cannot integrate by parts appropriately. 

Our first two theorems state that the irreducible 
polynomials can serve as canonical representatives. 

vanishes by Lemma I. I 

We also have occasion to speak of equivalent 
operators, meaning operators whose difference can be 
written in the form :0A for some operator.:lt. We keep 
the same notation, so that, e.g., 110 ~ 00 by (20). 

B. Uniqueness of Conserved Densities of Rank r 

In this section we prove for each r the uniqueness 
theorem that, up to multiplication by a constant, there 
is at most one irreducible p.c.d. T, of uniform rank r. 
We give two proofs, one of which shows further that 
the "extreme" term u~ necessarily appears (i.e., with 
nonzero coefficient), and the other that so does the 
opposite extreme term U;_2' From either of these, we 
deduce the nonexistence theorem that for half-integral 
r there are no nontrivial p.c.d. at all. 

We rely upon the structural 

Lemma 4: The dominant term of the irreducible 
equivalent of the result of applying $ to an irre
ducible term ugo ••• U~l may be obtained by multiply
ing that term by [-I + a1 + 3a2 + 4a3 + ... + 
(I + l)aZ]u1 , unless 1= 0, in which case $ugo ~ 0. 

Proof: The result is obtained by straightforward 
calculation followed by the appropriate integration by 
parts to reduce order. It is unnecessary to give the 
details; in any case a slightly more general lemma will 
be presented in Paper VI r. I 

A basic result of this section is 

Theorem 3: If Tr is any nonzero irreducible p.c.d. of 
uniform rank rand T;ml its highest degree slice, then 
the dominant term Q of T;m) is cu~ (c ~ 0). 

Proof: The highest degree slice of ($ + ~])3)Tr ~ ° 
is $T;m) ~ 0. By Lemma 4, the dominant term of 
the irreducible equivalent of $T;ml would be just the 
dominant term of the irreducible equivalent of 3)Q, if 
the latter did not vanish. Therefore 3)Q ~ O. Then 
by Lemma 4 again, Q = cu~. I 



                                                                                                                                    

956 KRUSKAL, MIURA, GARDNER, AND ZABUSKY 

As immediate corollaries we have two of our main 
theorems. 

Theorem 4 (Uniqueness): The KdV equation has only 
one linearly independent irreducible p.c.d. of rank r. 

Proof' Given any two, we form a linear combination 
of them such that the u~ terms cancel. This is then a 
p.c.d. with no u~ term and hence vanishes, so the two 
are linearly dependent. I 

Theorem 5 (Nonexistence): The only p.c.d. of half
integral rank (e.g., containing terms such as ~OU~l 
with al odd) for the KdV equation are trivial. 

Proof' There is no polynomial term u~ for r a half
integer. I 

An alternative proof of these results relies on the 
structural 

Lemma 5: The dominant term of the irreducible 
equivalent of the result of applying ~a to an irreduc
ible term Q may be obtained by multiplying Q by a 
nonzero constant (depending on Q) and replacing 
each of the three highest factors U l , Ul , and Uk (k 5: /) 
by ul+!' Ul+!' and Uk+! , unless Q has degree less than 
three, in which case ~aQ ;::: O. 

Proof' Same comments apply as for Lemma 4. I 

Analogous to Theorem 3 is 

Theorem 6: The dominant term of any nonzero 
irreducible p.c.d. of uniform rank r is CU;_2 if r ~ 2, 
CUo ifr = 1, and C ifr = 0 (c ¥- 0). 

Proof' Analogous to that of Theorem 3, but, if 
anything, simpler because we need not take any kind 
of slice before selecting the dominant term. I 

It is perhaps worth remarking, as a corollary of 
the preceding results, that the only irreducible p.c.d. 
of the "truncated" KdV equation Ut + UU" = 0 are 
polynomials in Uo alone. Similarly, the only irreducible 
p.c.d. of the alternatively truncated (i.e., linearized) 
KdV equation U t + U",,'" = 0 are linear combinations 
of 1, uo, and u;, i = 0, 1,2, .... 

C. Method of Undetermined Coefficients 

In Paper II we exhibited ten irreducible p.c.d. for 
the KdV equation and seven of the associated fluxes. 
(An eleventh is givenS in Appendix B.) Here we outline 

the method of undetermined coefficients (MUC) used 
to obtain those p.c.d. and fluxes. 

We write Tr as a general linear combination of all 
possible irreducible terms of rank r. Then we seek to 
determine the coefficients such that GtTr will be equiv
alent to zero, i.e., equal to an x derivative. By 
Theorem 3 Tr contains the term u~, the coefficient of 
which we choose to be l/r for computational con
venience. (Later we will choose it to be l/r! instead. 
Alternatively, we could have fixed the coefficient of 
U;_2' by Theorem 6.) 

We next work out GtTr , use the KdV equation to 
eliminate explicit t derivatives, and convert the result 
to its irreducible equivalent by the integration-by
parts algorithm described in Sec. 3A. We demand that 
the final expression vanish identically, and obtain 
thereby conditions on the original coefficients. 

To illustrate MUC consider the case r = 6. All 
possible irreducible terms are represented in 

T6 = tu~ + b1ugu; + b2UgU~ + bau~ 
+ b4UOU~ + b5U~ + b6U~, 

The first term, for instance, gives 

Gt( tu~) = ug( -UOU1 - ua) 

= -~(-~u~ + ugu2 - !u~u;) - 10ugu~, 

which contributes only -lOu~u~ to the final irreduc
ible expression which is to vanish. We eventually 
obtain an (overdetermined) inhomogeneous linear 
algebraic system of seven equations for the six bi 

which turns out to have a unique solution. The result 
is 

T6 = tu~ - 10ugu; + 18ugu~ - 5u~ 

- 1 ~ 8UOU~ + .!tQ.u~ + 376 u~. 

It is evident that in obtaining the p.c.d., we simul
taneously obtain the corresponding fluxes, so long as 
we keep all the ~ terms. 

An interesting aspect of MUC for obtaining 
irreducible p.c.d. is that for r ~ 6, the number 
of equations exceeds the number of unknowns hi' 
(Nevertheless, in addition to the uniqueness assured by 
Theorem 4, the theory in Paper II guarantees the 
existence of a solution.) Table I lists,5 for each rank 
r up to 20, the number of undetermined coefficients 
(which is one less than the number of irreducible terms 
of that rank) and the number of possible equations 
(Le., the number of irreducible terms of rank r + I). 
Up to r = 11, every possible r + 1 term actually 
occurs and so yields an equation, and presumably this 
is true in general. 
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TABLE I. Number of irreducible terms less one, and number of possible equations, up to rank 20. 

Rankr 
No. of bi 

1 2 3 
1 
1 

4 
2 
2 

5 
3 
3 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
o 0 6 9 13 21 31 44 66 94 133 191 268 372 520 717 982 

No. of r + ! terms o 0 7 11 17 28 43 63 96 139 199 287 406 566 792 1092 1496 

4. OPERATOR FORMULA FOR 
CONSERVED DENSITIES 

In Paper II we proved that there exists an infinite 
sequence of p.c.d. for the KdV equation and obtained 
recursion formulas for generating them. MUC, as 
described in Sec. 3C, is straightforward for deriving 
individual p.c.d. but is not well suited for obtaining 
an explicit general formula. In this section our main 
objective is to derive an operator-product formula for 

Tr • . 
J n Paper VII we will show that the generalized 

equation 

U Ot + ugu l + uq = 0, p;;::: 1, q;;::: 2, (26) 

for odd q has exactly three independent p.c.d. unless 
p = 1 or 2 and q = 3 (in which case it has infinitely 
many as proved in Paper II), and for even q has 
exactly one. The formalism to be developed in this 
section (for the KdV equation) depends essentially 
on Galilean invariance, requiringp = I, but would go 
through for any q. However, the results would be 
meaningless (except for q = 3) because the supposed 
p.c.d. do not exist. 

A. Exponential Series 

A comparison of the p.c.d. in Paper II shows that 
consecutive Tr are related by6 

to c, the coefficient of the linear term is 

Alternatively, following Wiley,6 we can derive (29) 
by operating on OtT + ~X = 0 with 00 and using the 
commutation formulas 

OOOt = OtOO -~, oo~ = ~OO, 

obtained from (12) and (16). (A posteriori, one might 
have been led to this by applying 1:1 in order to 
annihilate ~X and then have observed that 1:1 ¢ 00') 

We can eliminate the factor r - 1 in (27) by re
scaling each Tr so that u~ has coefficient I/r! rather 
than I/r. Then instead of (27) we have 

(30) 

valid for all r ;;::: 0 if we define To == 1 and Ll == O. 
We define the formal infinite sum 

(31) 

a kind of generating function from which each Tr can 
be recovered by taking the r-rank slice. Then the 
formal sum of the infinite sequence of relations (30) 
can be written as the single relation 

(32) 

(27) which formally integrates to 

As it stands, this relationship is of limited use even 
though it provides a complete prescription for going 
from Tr to Tr- l • We cannot go up in rank from 
Tr- l to Tr because nonzero "constants" of integration 
(functions of Ul , U2 , ••• ) appear in Tr • 

Our remaining results depend heavily on 

Lemma 6: If T and X are the c.d. and flux of a 
c.1. for the KdV equation, then so are 

(28) 

Proof Making the Galilean transformation x' = 
x + ct, t' = t, and u~ = Uo + c (see Appendix A), 
OtT + ~X = 0 can be written 

ot,T(uo + c, u l ,···) + ~'X(uo + c, u l ,···) = 0, 

where at' = at - c~, ~' = ~. Expanding with respect 

(33) 

Series of this exponential form, namely eUo times a 
series in Ul , U2 , ••• , will be called e-series. For the 
most part in the following we can confine ourselves to 
the class of e-series because it is obviously closed 
under many of our operators, e.g., ~, Oi' and .N'. 
However, 

0t[eUOB(u 1 , u2 , ••• )] 

= -eUO[(uOu1 + u3)B + ($ + ~3)B] 
= -eUouo(ulB + ~B) - eUOC(u l , U2,"') 

is not purely exponential. The offending terms have 
been collected and written first; note that only the 
j = 0 and j = i + I terms from the inner summation 
in $ have factors uo. Nevertheless, since we only use 
the results of operating with at up to equivalence (i.e., 
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modulo x derivatives), we can write 

otCeuOB) = -{~[eUO(uo - l)]}B - euouo~B - e"oe 

~ eUII(uo - l)~B - euouo~B - euoe 

= _eUO(~B + e), 

which is an e-series. 

B. Canonical e-Series 

Factors U l can always be successively eliminated 
from an e-series by integrating by parts with eUo , e.g., 

~ e"O( -U2U3 + u5). 

This process terminates because the power of Ul keeps 
decreasing. An e-series E will be called canonical if 
it is independent of U1 , 

olE = O. 

a flux X such that 

(34) 

We make use of the e-series property (ooT = T) by 
applying 00 and subtracting (34) itself. In view of the 
commutation formulas (12) and (16) and Lemma 1, 
we obtain 

T= ooX - X, (35) 

after absorbing into X an otherwise free constant as 
in the proof of Theorem 7; (35) characterizes the 
Uo dependence of X as 

(36) 

where Y is an e-series. 
We make use of canonicity (olT = 0) by applying 

01 to (34). In view of the commutation relations (12) 
and (17) we obtain 

(.At, + .N')T = ~OlX + ooX. 

(We are abandoning irreducibility because it has no Eliminating ooX by (35), this can be written 
comparably algebraic expression.) The justification of 
the terminology is given by the above existence (X - I)T = ~OlX + X, (37) 

property and where the effect of the operator 

Theorem 7 (Uniqueness): Any two equivalent ca
nonical e-series are equal. 

Proo/" Their difference E is equivalent to zero, so 
E = ~F. Thus 

0= ooE - E = ~(ooF - F), 

since 00 commutes with ~. From Lemma 1 
ooF - F = c, so that (absorbing c into F) F = 
eUo B( ul , U 2 , ••• ). But E is canonical, so that 

o = OlE = (~Ol + (0)F = ~olF + F 

= eUo(ulolB + ~olB + B) 

using (12). Dropping the exponential and taking an 
arbitrary n-index slice gives 

0= UlolB(n) + ~olB(n) + B(n) 

where B(n) == .N' nB is a polynomial. If B(n) did not 
vanish, its highest degree slice would satisfy the same 
equation without the middle term, which is impossible 
because the operator UlOl + 1 has the effect of 
multiplying each term by a positive constant. Hence, 
all B(n) = 0, F = 0, and E = o. I 

C. Operator Formula for Conserved Densities 

From now on we use T to denote the canonical 
equivalent of (31) rather than (31) itself. Next we 
derive an equality (not just equivalence) for. T which 
is the basis of the further analysis. To T corresponds 

is to multiply each term by the number of its factors 
and differentiations combined. 

Formally, solving (37) for the X term alone, we can 
substitute the resulting formula into itself recursively. 
Since 01(J{, - I)T = 0, this gives X = (J{, - I)T + 
o + 0 + ... , and indeed 

X = (J{, - I)T (38) 

is evidently a solution and is consistent with (35), 
and (36), by (12) and (14). To prove that it is the solu
tion we need a uniqueness theorem. But we have 
already proved such a theorem for the e-series F in the 
proof of Theorem 7, and it applies for X of the form 
(36) since Y is an e-series. 

Putting (38) back into (34) gives 

($ + ~3)T = ~(J{, - I)T (39) 

as an equation for T alone. 
This can be rank-sliced to give the recursion 

formula 
($ + ~3)Tr = ~(J(' - I)Tr+1' (40) 

r n using this to generate the Tr , it is most convenient 
to start iterating from Tl = uo. 

The difficulty with solving this in general for Tr+l in 
terms of Tr is to invert ~. This operator has no inverse 
because only polynomials of very special form are 
derivatives, and unessentially because it annihilates 
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constants. (The difficulty does not occur in carrying 
out the recursion explicitly step by step, since at each 
stage the left side is guaranteed to be a derivative by 
the existence results of Paper II.) However, ~ has 
(many) left inverses (excluding constants), one such 
being 

OCJ 

~-1 == ,M, -1 LUi L (_1)y-i-1ai 
j i~i+1 

obtained from (22). (Other expressions for :])-1 and a 
detailed discussion of the algebra of these and other 
operators will be given in a forthcoming paper.) 

Applying ~)-1 and then (J{, - 1)-1, we iterate to 
obtain 

Tr+1 = [(J{, - l)-I~-\.'1) + ~3)rUO' (41) 

This is an explicit representation of the p.c.d., as 
desired. Note that (J{, - 1)-1 annihilates only terms of 
the form CUo, which are of rank 1 and hence never 
occur. 

Alternatively, in order to avoid ~)-1 with its 
arbitrariness and (moderate) complexity, we apply 
j)r-1 to (39) and commute operators to obtain for 
j)rTr+1 the recursion formula 

(J{, - r - 1):lYTr+1 = (.'1) + 1)3)'J)T-1TT. 

There is no difficulty in inverting (J{, - r - 1), since 
every term of Tr+l has degree m ~ 2 and ~T raises 
derivative index n by r, so that m + n - r - 1 > 0; 
doing so and iterating gives for ~TT+1 the explicit 
formula 

~IYTr+l = (J{, - r - 1)-\ -at)(J{, - r)-l 

X (-at)'" (J{, - 2)-\-at)uo' (42) 

Fortunately we can bypass the need to invert ~)T by 
applying ar , because ar :]) ~ a"_l by (12) and so 
ar:])r ~ ao. Since aoTr+1 = TT by (30), we thus have an 
equivalent representation of the p.c.d. 

Tr ~ ( _1)r-lor(J{, - r - 1)-1 

X at(J{, - r)-la/· .. (J{, - 2)-latuo' (43) 

Instead of ar we could have applied 11., by (24) 
obtaining 1l0Tr+l on the left. This in itself is no im
provement, being equivalent to aoTr+l, but it can be 
used to remedy a slight disadvantage of formula (43): 
though at (and the associated inverse "numerical" 
operator involving J{,) is applied,. times on the right 
as in (41), we obtain a p.c.d. of rank merely r, rather 
than r + I. To restore the rank lowered by 110 , we 
multiply by Uo and observe that Uo 110 ~ .AL, as seen in 
(21). Since .AL -I:]) = :]).AL -1 ~ 0, applying .AL -1 yields 

T,.+l ~ C -I r-1.AL -lUO llr C,x, - r - 1)-1 

X otCJ{, - rr10t" . (J{, - 2r10tUo' (44) 
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APPENDIX A: TRANSFORMATION PROPERTIES 
OF THE KdV EQUATION 

It is of interest to find transformations of the 
dependent and independent variables that leave the 
KdV equation invariant. It is obviously invariant to 
arbitrary translations of the independent variables 
(since they do not occur explicitly) 

x --+ x + Cl, t --+ t + C2' 

Similarly, it is invariant to the scale transformation 

In particular, for c = -1 the signs of x and tare 
reversed and we note a kind of reversibility of the 
solution. Further the KdV equation is Galilean
invariant, i.e., invariant under the transformation 

x --+ x + ct, t --+ t, U --+ u + c. 

This property is essential for our results in Sec. 4. 
Aside from the invariance transformations, there 

are (real-valued) transformations that change the signs 
of individual terms in the KdV equation. The sign of 
the t-derivative term (relative to the other two) is 
changed by either t -). - t or x --+ - x, that of the 
nonlinear term by U --+ - u, and that of the dispersive 
term by the combination u --+ -u, t --+ -t (or u--+ 
-u, x --+ -x). 

Incidentally, the KdV equation possesses a simi
larity solution, i.e., a solution U invariant under the 
above scale transformation; U satisfies the ordinary 
differential equation 

d3U dU - + (U -1J)- - 2U = 0, 
d1J3 d1J 

where 
_:l 1 

u(x, t) == (3t)- 3 U(1J), 1J == x(3W"· 

APPENDIX B: CONSERVED DENSITY OF 
RANKr=ll 

1;1 = YT U~l - 45ugu: + 216u~u~ - 1260ugut 

- 648ugui + 4320ugu~ + 22680u~u~u~ 
- 7560u~u~ + 1296ugu! - 32400u~U2Ui 

- 38880u~u~ui + 45360u~u~ + 238464u~u~1I~ 
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+ 136080uoutu~ - Hl-l-Sl u~u~ + HHH U~U2U! 

+ 38880ugu~u! - H 1-1SlH U~UIU~ 

- ~fHll-l-H ugu~u; - 668736uou;u2u; 

- 58320ufu; + HfillfiSl uou~ 
+ 423792u~u~ + 7.~J!i3fiSl u~u~ 
- .HfH~Q U~UIU~ - HHfiSl uou~u~ 

+ -"fifUH ltgu: + ~Hll-liH UOUIU3U! 

+ H11'i--lH uou~u! + 7.~\~J!H u;u2u! 

- HQIJ!13~H uou~ - H 9 HHQ U11l2U~ 

- H1HiUQ U~lI; - Hll3~!;l u~u~ 

+ J!J!fHH Uo1l2U~ + ~~J!13H u~u~ 
- 11 ?l-l17. U01l4U~ - 1J!~l13J!7.!;l UIU3U; 

- 177ll-3J!H U~U~ + H\1i-/H U211! 

+ H~1~73JiH lIill! + JtH-Hfi UOU~ 
- HiHtH U2U~ + MIHH 1I4U~ 
- 7.iHn~ 1I~. 
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The work of a previous paper, which examined the relationship between the assumption of Cutkosky
type discontinuity formulas to the positive-a( condition for the singularity of anomalous thresholds, is 
extended using more powerful methods. The method is first described in general terms. It is then justified 
using homological techniques, and specific expressions are calculated for distortion terms. Finally, some 
specific cases are considered and more elaboration versions of the cancellation processes previously found 
are shown to occur. 

1. INTRODUCTION 
In a previous paper1 (hereafter referred to as I), we 

considered the way that the positive-IX condition for 
anomalous thresholds and the assumption of Cut
kosky-type discontinuity formulas with "vanishing 
cycle" contours both lead to criteria for the singularity 
of connected S-matrix elements. This permitted the 
testing of the consistency of these conjectures on the 
basis of the usual S-matrix-theory assumptions. We 
remarked on the technical difficulty of performing 
finite continuations of unitarity integrals outside the 
physical region. The method we used to perform these 

continuations can be described as a metrical one in 
that we took a specific form for the unitarity integral 
as a repeated integral in the space of (complex) 
internal momenta, the order of the integrations being 
chosen with reference to the possible distortions. The 
different orders of integration result in different but 
"homologous" contours of integration, whose equiv
alence follows from Cauchy's theorem. The lack of 
symmetry in the way the integration contour had to be 
chosen and the increasing complexity of the integrals, 
taken with the delicate cancellation processes found 
in any but the simplest examples, make it clear that 
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the range of cases easily accessible to this approach 
would be small. In Sec. 2, we describe in general terms 
a more powerful approach to the problem which lacks 
these disadvantages. In Sec. 3, we justify in rigorous 
terms the discussion of Sec. 2. Section 4 deals with 
calculations necessary to fix signs and establish 
cancellations. In Sec. 5, we return from these homo
logical considerations to applications of the method 
and show how the cancellation process associated 
with distortion by the triangle anomalous threshold 
arises in this approach. Sections 6 and 7 deal with 
further particular cases. Section 8 summarizes some 
further work and problems. 

2. DESCRIPTION OF METHOD 

We have to consider finite continuations ofunitarity 
integrals, and of distortion terms arising from them, 
outside the physical region. These take the form of 
integrals over certain internal loop momenta k, 
restricted to various surfaces Si(k,p), 1 ::;; i::;; N, by 
mass-shell b functions dependent on the external 
momenta p. The integrand will have certain singularity 
surfaces Si(k,p), N + I ::;; i::;; N', specified by 
Landau equations, which depend on the masses of the 
particles in the theory. As p is varied, the contour of 
integration will have to vary, and we now outline 
when and how such continuations may be performed. 

Consider the general problem of the integral, with 
respect to variables k, over a contour h, contained in 
certain surfaces Si(k,p), I ::;; i::;; N, and bounded 
by surfaces Si(k,p), N' + 1 ::;; i::;; N", of a function 
A(k, p), which is analytic except for singularity sur
faces Si(k,p), N + 1 ::;; i::;; N'. We suppose the 
Si(k, p) are analytic manifolds. The sort of situation 
we encounter is that, for some range of values of p, 
the SiCk, p) are in general position (that is, that they 
do not pinch anywhere), and there is a real integration 
contour h, not intersecting the singularity surfaces. 
Cauchy's theorem then tells us that this contour may 
be deformed in various ways, leaving the value of the 
integral unchanged. The amount of freedom this gives 
the contours of multidimensional integrals is difficult 
to visualize. The only easily picturable case of one 
complex dimension is not usually sufficiently general, 
and intuitive geometrical methods need to be supple
mented by more rigorous mathematical tools. At a 
fixed value of p, Cauchy's theorem permits us to 
perform any continuous deformation of the contour 
which leaves the Si(k, p) invariant. Such a deformation 
will be specified by maps k ---+ Ilk), 0 ::;; t ::;; I, where 
It(k) depends continuously on t and k (and has a 
continuous inverse for each t) and leaves Si(k, p) 
invariant, I ::;; i ::;; Nil, and/o(k) = k (that is, the map 

FIG. 1. ><s , 

starts as the identity). Similarly, when continuing in p, 
it is only necessary to "continuously," rather than 
analytically, continue the contour in order to analyt
ically continue the integral. To continue along a path 
p = A(U), 0 ::;; U ::;; I, on which the S;(k, p) are in 
general position, one needs to construct continuous 
maps k --. I,,(k) , 0::;; U ::;; 1, such that (k, A(O»---+ 
(luCk), A(U» gives an isomorphism of SiCk, A(O» onto 
SiCk, A(U» and/o(k) = k. Such a set of maps can be 
constructed given the requirement of general position 
(and also a compactness condition). (This is a rough 
explanation of the "ambiant isotopy" concept. For 
details of this and subsequent notions see Sec. 3 and 
the references there.) 

The possibility of constructing such a deformation 
is obvious in certain simple cases. Consider the 1-
dimensional integration from S2(P) to sa(P) of a 
function with a pole at k = Sl(P), illustrated in Fig. 1. 
Continuous deformation is always possible as long as 
Sl' S2' S3 remain finite and distinct. 

Returning to our general case, the integral f h A thus 
continues into ffuh A along the path A.I" is not unique, 
but the corresponding possibilities for I"h are contours 
whose equivalence for A follows from Cauchy's 
theorem. The problem of continuing the integral all 
the way along A is that of finding what};. maps h into. 
Now, the properties I is required to have are specified 
in terms of the SiCk, p) and, given these surfaces, the 
problem of continuing the contour h is independent 
of A. That is, in order to decide how and whether the 
contour may be continued along a given path, it is 
necessary only to know the singularity surfaces of A 
(and the boundary surfaces, etc., of the contour). The 
problem can be considered for any surfaces S;(k,p) 
independently of the existence of an analytic function 
A. This is crucial to our argument. 

Now consider continuous variations of the path A 
for fixed initial and final points of the continuation, 
A(O) and A(l). This continuous variation will be 
specified by a continuous function TvCU) of (u, v), with 
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TO(U) = A(u), 0 SUs I and Tv(O) = A(O), Tv(l) = 
A(I) so that the end points remain fixed. Provided that 
the SiCk, p) are in general position at each point of 
the surface of values ofp, TvCU), 0 Sus 1,0 < v < 
I, traced out by the continuous variation of A, t~n t~ 
"final" path will induce maps f~ which define equiv
~lent contours f~h at A(l) to those defined by maps 
l~duced by T = A. That is, paths that may be con
tIlluously deformed into one another result in equiv
alent continuations of contours, given fixed end 
points. 

In the specific applications, keeping these general 
ideas in mind, we consider the continuation of 
unitarity integrals corresponding to normal thresholds 
occurring below the physical region for the relevant 
process, from just below this physical region to just 
above the normal threshold corresponding to the 
integral. Since the S;(k, p) depend on the masses of 
the theory only, we can consider paths of continuation 
for the contour on which the masses vary and even 
become complex. We may continuously deform paths 
along which the integral may be continued (paths at 
constant physical values of the masses, as specified by 
the theory) into paths along which the integrand is not 
defined, but where it is easier to decide what happens in 
the contour continuation. We will now show how this 
enables us to obtain information about continuation 
in a general case from the obvious solution in a 
particular case. The approach of trying to solve 
problems connected with distortions of unitarity 
integral contours, during finite continuations outside 
the physical region, by using the known behavior of 
other continuations has previously been employed by 
Polkinghorne,2 who used Feynman integrals as a 
"mathematical probe." 

Let us consider this, as in the introduction to I, in 
the context of the relation of the positive. a condition 
for a triangle anomalous threshold to the distortion of 
a 2-particle unitarity integral by a crossed channel 
pole. The extended unitarity equation considered 
there was 

where ftl + ft2 -->- m1 + m2 has a t-channel pole at 

t = m2
, corresponding to a particle of mass m: 

(at t = m2). (2) 

The continuation considered was from just below 
~m1 + m2?' wh~re the contour of the unitarity 
llltegral IS speCIfied by the requirement that one 
obtains the appropriate Cutkosky-type discontinuity 
for the (m1 + m2)2 normal threshold, to just above 
(ft1 + ft2)2. A real (undistorted) initial contour in the 
loop momenta k will always exist, for stable values of 
the masses, just below threshold. If, more particularly, 
~1 = m2 and ft1 = ft2 with ft1 just less than m1 and m 
Just less than m1 + ft1' it is easy to see that this real k 
contour remains undistorted on our path continuation 
which is illustrated in Fig. 2 (because the set of value~ 
t takes on the real contour during continuation varies 
continuously with the masses and so may be restricted 
to any neighborhood of t = 0, which is the sole value 
it takes when ft1 = m1, by taking PI near enough m1). 
Denote this path by Ao. Let Av , 0 S v S I, each be 
~aths at fixed values of the masses, depending con
ttnuousl~ on v, and free of pinches of the Si(k, p) 
(the vanables p are now to be understood to include 
the masses), and suppose Al is not the general value of 
the masses which is of interest. Now, we cannot 
immediately extract information about what happens 
along ,11 from what is known to happen along ,10' 
because they have different end points since they 
correspond to different values of the masses. In order 
to obtain a path with the same end points as AI, one 
has to add to Ao the paths traced out by the end points 
of Av , taken appropriate directions (see Fig. 3). 

The path obtained by first following '1'0 and then Ao 
and then '1'1 has the same end points as Al and may 
clearly be obtained from it by continuous deformation. 
If '1'0 is taken just below the (m1 + m2)2 threshold and 
~ear enough to it [that is, the initial point of the path A 
IS kept near enough (m1 + m2)2], the integration 
contour may be kept as the usual real undistorted 
contour specified by 

ki = Pi, k~ = ftL kl + k2 = P, k? > O. (3) 

!hus, continuation along '1'0 takes the contour required 
III (1) at the general value of the masses of interest , 

:Xo ()2 
. f'1i-----=------ .m,+I'\"\~ 

( /-,-,+/-'-2),2 

FIG. 2. Complex s plane; triangle anomalous threshold. 
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Vo(V) = Ar_y(O) 

Vr(V) = Ay(l) 
FIG. 3. 

"0 

just below threshold, into that whose continuation 
along Ao is clearly undistorted; that is, it continues 
into the vanishing cycle at (ftl + ft2)2. We must now 
discuss what happens on VI to this vanishing contour. 
The vanishing contour appropriate to a pinch of a 
given set of boundary, singularity, and constraint 
surfaces is uniquely determined (up to the usual 
equivalence resulting from Cauchy's theorem) apart 
from sign. Any contour appropriate to these surfaces 
will, on continuation along a small loop in p space 
about the pinch point, just have some multiple of the 
vanishing contour added to it. Consequently, we 
can always generate the vanishing contour in this way. 
Hence, we will have the vanishing contour at the end 
of Ao continuing into the vanishing contour at the 
end of Al along VI' provided that one ensures that a 
small loop about (ftl + ft2)2, 00 , with base point at 
vI(O) = Ao(1), can be continuously deformed through 
loops Ov with base point vI(v) to a loop 01 , about 
(ftl + ft2)2 with base point VI(l) = AI(1) (see Fig. 4). 
Then, the path 01 may be continuously deformed into 
vIOov11 and so, for a suitable contour h, being con-

-- -
). -+ ::::1 ___ _ 

FIG. 4. 

FIG. 5. C 

"' 

tinued around 01 is equivalent to being continued 
along the following path: VI taken in the reverse 
direction [this gives h' at VI (0), say], taken around 00 

(which adds a multiple of e', the vanishing contour 
corresponding to ( 0), and taken back along VI (this 
takes h' back into hand e' into e). Thus, any contour 
of the appropriate type has a multiple of e added to 
it on continuation around 01 , Thus, e, which is the 
image of the vanishing contour e' corresponding 
to 00 , is the vanishing contour corresponding to 
01 , So, provided that we can deform 0 as well as A, 
we can now infer that on Al the contour appropriate 
in (1) just below (mi + m2)2 continues into the van
ishing contour just above (ftl + ft2)2. Because Al has to 
be obtained by this sort of continuous deformation, it 
is quite possible that it necessarily passes through 
nonreal values of S = p2, between its end points at the 
(ftl + ft2)2 and (mi + m 2)2 thresholds; indeed, if it 
does pass through real values only, there is no distor
tion. In general, the path may lo,?p other pinch points 
before ending just above (ftl + fJ2)2. In this case, as we 
shall now see, we can infer what the initial contour is in 
terms of contours which vanish at various thresholds 
when continued along the real s axis, avoiding 
intervening thresholds by negative imaginary contours. 

As we vary the masses from the extreme situation 
corresponding to Fig. 5, we must vary the paths A, 0 
(see Fig. 6a), so that the pinch points SA (which is the 
triangle anomalous threshold corresponding to a 

(b) 
FIG. 6. Complex s planes. 

l. 
(m -tom,) . \ 
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pinch of the pole at t = m2 , with the two constraining 
mass-shell surfaces) and the normal threshold (corre
sponding to a pinch of the mass-shell surfaces) are 
kept away from them. (Pseudothresholds, etc., must 
also be avoided, but these do not come near in any 
case.) Clearly, this deformation of A and 0 will be 
trivial until SA approaches (ftl + /-l2)2. As long as 
SA < (ftl + /-l2)2 during the continuation A may be kept 
as the usual path along the real S axis. As this is a 
Euclidean-region threshold, a coincidence between SA 

and (ftl + ft2)2 is easily detected in the dual diagram. 
The position of SA is given by the length of BC in 
Fig. 5. Figure 5 has mixed IX'S, and one can clearly 
vary the masses to reach any other mixed-oc situation, 
keeping sA < (/-ll + ft2)2. (For details about the 
triangle Landau curve see Eden et al., Ref. 3, pp. 57-
65.) Thus, we conclude that there is no distortion in 
the mixed-IX case. To reach a positive-oc configuration 
(see Fig. 7) it would be necessary to move through a 
coincidence of SA and (ftl + /-l2)2 or to avoid this by 
taking a detour through complex values of the masses, 
during which SA would loop (ftl + ft2)2. Notice, again, 
that this crucial coincidence which is the dividing 
point between the two cases is easily detected in the 
dual diagram. sA can be made to loop (/-ll + /-l2)2 

either way, and we choose the more convenient one 
for our subsequent argument. As SA moves round, the 
path A must be deformed around before it, for if SA 

were to cross A (or 0), we would have the no pinch 
condition on the paths violated. Figure 6(a) shows the 
effect of avoiding coincidence by a clockwise detour, 
that is, a detour in a negative sense. Once this detour 
has been made and we are in the situation of Fig. 6(b), 
any other positive-IX situation can be reached without a 
coincidence of SA and (ftl + ft2)2 and, thus, the 
corresponding path A will be as in Fig. 6(b). Thus, in 
the positive-IX situation one has that the contour 
required just below (ml + m2)2 continues into the 
vanishing cycle at (/-ll + ft2)2 if first continued around 

FIG. 7. 

SA in the manner described. Consequently, we may 
obtain the contour one should start with just below 
(ml + m2)2 by reversing this contribution and begin
ning with the vanishing cycle just above (ftl + ft2)2. 

If this is continued around SA' one adds a multiple of 
the vanishing contour (corresponding to the pinch at 
SA) to this contour. The details of this and, in partic
ular, the signs are discussed (for a general case) in 
Sec. 4. However, leaving aside the details of signs of 
terms for the moment, above (/-ll + /-l2)2 the extended 
unitarity relation may be written as in (4), where the 
contours for the integrals on the right side will 
continue into vanishing contours, at the 

(4) 

appropriate thresholds, along a path which goes 
through decreasing real values of s, except for small 
detours in the lower-half complex S plane to avoid 
intervening thresholds. Thus, separating these two 
contributions on the right-hand side of (4), we replace 
Fig. 6(b) by Fig. 8 and obtain the appropriate contour 
just below (ml + m2)2 by continuing up vanishing 
contours at SA and (/-ll + /-l2)2 along paths indicated 
in this diagram. Further distortions, in more compli
cated cases, where there are other singularities present, 
can be discussed in more terms of Fig. 8. In this way, 
the most general case considered is reduced to that of 
continuing a Cutkosky-type integral from just below 
the real S axis to just above the corresponding anom
alous or normal threshold. 

For definiteness we have discussed the method in 
the context of the simplest particular case; the applica
tion to a general case should, however, be clear from 
this. In such a case, we shall be dealing with a general 
unitarity integral corresponding to a threshold below 
the physical region and start with a diagram like 
Fig. 6a. Points at which the character of A changes 
will correspond to flattenings of the dual diagrams of 
certain anomalous thresholds of the amplitude. This 
is exemplified in Sec. 5 and subsequent sections. 

Before moving to a rigorous justification of the 
analysis of this section, we note that up to now we 

FIG. 8. 
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have omitted mention of technical problems with the 
method arising from noncompactness and singularities 
of the individual SiCk, p). These are dealt with in the 
more detailed discussion of the next section. 

3. JUSTIFICATION OF THE METHOD HOMO
LOGICAL TECHNIQUES 

In this section and the next, we shall apply ideas 
developed by various authors on the application of 
homological techniques to the sort of integrals of 
functions of several complex variables occurring in 
particle physics. Accounts of this work can be found 
in the books of Pham4 and Hwa and Teplitz. 5 Else
where, Phams had used these techniques to discuss 
aspects of the consistency of the physical-region 
singularity structure, suggested by perturbation theory, 
within S-matrix theory. Pham did not use unitarity; 
subsequently, Bloxham, Olive, and Polkinghorne7 have 
proved this singularity structure for simple Landau 
curves on the basis of the usual S-matrix-theory 
postulates. We wish to apply these homological 
techniques to study extended unitarity equations 
outside the physical region and to develop a method 
for performing finite continuations. 

First, let us consider expressions for unitarity 
integrals. Consider the unitarity integral (Fig. 9) 
for the process ml + ... + mM ---+ m~ + ... + m"'w, 
corresponding to the (~!1 fli)2 threshold, which 
occurs below the physical region. We write 

21f M' 

P = ~p: = ~p;. 
i=1 ;=1 

For S = p2 > (~fli)2, this integral is given by (5). 
Further for real P in this region, the integral is 
restricted by the b functions to a real integration 
contour in k space 

specified by 
N 

k; = fl;, 1::;; i ::;; N, ~ k i = P, k? > O. (6) 
i=1 

Because singularities of the integrand may cross the 
real contour defined by (6) when we are outside the 
physical region, the values of the expression (5) for 
various real P with p2 > (~!1 fli)2 will not neces
sarily be related by analytic continuation along the 
real p2 axis, even when there is no intervening singu
larity. In particular, this applies to its values at points 
just below the physical region and points just above 
the (~;~1 fliP threshold. In the latter region, the 
integration is over a vanishing contour. We shall 
write (5) in a form capable of being continued easily 
[cf. Ref, 8, Eq. (2.2)f.]. 

Let siCk) = k~ - fl~ and Si be the surfaces Si = 0 
in C4!, where I = N - I, the space of the complex ki , 

1 ::;; i ::;; N - 1, and where we have set k N = P -
~~~1 ki . Then, the Si are in general position in C41 

for p2 ¥- (~fli)2 (or any pseudo threshold) , and (5) 
can be written, just below the physical region, as 

(21Ti)N ~ If d
4l

k , 
(21T) hi dS1 A dS2 A' .. A dSN 

(7) 

where f = AB, d41k = A;=1 (A!=o dkf) (the repeated 
exterior product of the dk~) and h1 is a suitable 
element of the compact homology group 

[

N N' J-H~l-N n Si"-' U Si 
i=1 i=N+1 

Here the Si(k,p), N < i::;; N', are singularity sur
faces off and 

N N' -

i: p == [.~ Si "'i=V+1Si] 

is a covering space of 
N N' 

~p == U Si"" U Si 
i=1 i=N+1 

on whichfis defined (that is, single valued). 
Just above S = (! fli)2, (5) will equal (7) with h1 

replaced by ±e, where e is the "vanishing class" 4.9 of 
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H~l=N(i;p) at this threshold (on the appropriate sheet) 
and the sign depends on the orientation chosen for e. 
We now make this choice: Let k; = (K~, iK;) and K; = 
(K?, x;). Then, there is a real "vanishing cell" 4.9 in the 
K; coordinates just below the threshold at (.2i':l ft;)2. 

The order of the Ki thus induces an orientation of the 
vanishing cell e (cf. the definition of d4!k) and, hence, 
of e. Now, in (7), hI must be replaced by an element of 
H41- N CZ p ) , agreeing with the homology class of the 
current (compare Boyling, Ref. 8) 

N 
IT ~(+)(Si) dSl A dS 2 A ... A ds N • (8) 
;=1 

Noticing that the normals to the S; are all outwards 
to the vanishing cell e for s just below (.2~1 ft;)2, one 
obtains the following expression for the value of (5) 
just above threshold: 

(-1)!+1(-27Ti)N_I- f . (9) ./ i d4!k 
(27T)4! e dSl A dS 2 A •.. A ds N 

Now, let G be a Landau diagram for the process 

corresponding to a threshold in the Euclidean region. 
To this graph we associate a Cutkosky integral (9), 
where e is the vanishing cycle at the threshold, 
corresponding to G, at which s takes its largest value 
(here we will consider only fixed-s thresholds), e is 
oriented as described above, and k; are internal 
momenta for G. f is a product of amplitudes and 
coupling constants corresponding to the vertices. 

Now consider the following situation. Let Z be a 
compact n-dimensional analytic manifold and P an 
analytic manifold. Let S;(P), I ~ i ~ N ' , be analytic 
submanifolds of Z in general position for pEP. Write 
8p=U~1Si(P)' Then, any path A: [O,l]-P 
induces a Z-ambiant isotopy class from 8;'(0) to 
8;'(0.4 •10 This in turn will induce an isomorphism of 

the homology groups Hn-N(i;;.(O»)~ Hn-N(f.;'(l»)' 

where :f is a covering space of 

N N' 

1; = ,,~pt~ Sip) """i=~+1Si(P)} £ Z X P 

and :fp = ir-l(p), iT being the natural projection 

f. - P. This ambiant isotopy class and, hence, the 
isomorphism is dependent only on the homotopy class 
of A in P (relative to fixed end points). 

Further, let (u, v) - A(U) be a continuous rpap of the 
unit square [0, I] x [0, I] - P. Write vo(v) = A1_vCO) 
and Vl(V) = Av(1), as in Sec. 2. Then, Al is homotopic 
to VI , Ao, Vo and, consequently, these paths induce the 

same isomorphisms: Hn-,ve'~;'l(O») ~ Hn- N(1;;',(l»)' 
Suppose, now, that P = P' ,..." L, where p' and L are 
analytic manifolds and L is a submanifold of p' of 
(complex) codimension one, and that some subset of 
the S; has a simple (quadratic zero) pinch4•10 on L. 
Let (u, v) - Ov(u) be a continuous map of the unit 
square [0, 1] x [0, 1] - P, with 0,,(0) = 0,,(1) = 
Av(1) [= Vl(V)] and such that 017 is a simple 100p4 
about L for all v E [0, 1]. Using A*, etc., to denote 

isomorphisms of the group Hn-N(:f p), and ev to denote 
the corresponding vanishing class (on the appropriate 
sheet) associated with the loop 0, it is easy to see that 
vheo = e1 · So, since A1* = Vh • Ao* . VO*, if hE 
Hn-N(f.;.(O») and Ao*h = eo, then A1*(voih) = e1. 

The difficulties with applying these results about 
Z x P to our situation are of the type usually met in 
the application of homological methods to S-matrix 
theory or Feynman integrals. While they have, as yet, 
prevented the completion of attempts to completely 
analyze situations of interest,5.11.l2 they are not 
important for the limited applications we have in mind. 
In applying this discussion, we would wish to take 
Z = C4!, P to be some subset of the space of external 
momenta and internal and external masses, with the 
Si defined as at the beginning of this section. The 
difficulties are that Z would not then be compact and 
that the Si' N + I ~ i ~ N ' , would not always be 
manifolds (because we are dealing with points outside 
the physical region and here they may have cusps). 
The former difficulty is associated with second-type 
singularities. To overcome it, it is necessary to com
pactify C4! in some way. The more obvious ways of 
compactifying this spaceS•11 .12 will have the difficulty 
that, when the Si are replaced by the closure of their 
images in this compactification, they are, for any but 
the simplest graphs, no longer in general positions.n.13 

at infinity. In consequence, the compactification 
procedure has to be supplemented by either "stratifica
tion" 5.12 or a "resolution of singularities." 11.12 The 
fact that the "permanent pinches" at infinity can be 
resolved means that the above argument is applicable 
to our case, provided that P does not contain any 
"second-type singularities." Similarly, the singular 
points of the Si may be removed, and they will not 
bother us provided that the contour is kept away fmm 
them. 

By considering P to include paths along which the 
masses vary, we are considering a bigger space than 
that on whichfis defined, and paths along which the 
continuation of (5) has no meaning. However, for 
arbitrary values of the masses satisfying the stability 
conditions, the relations (6), or equivalently the 
current (8), specify a real integration contour for the 
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unitarity integral just below the physical region. Our 
approach now, as described in Sec. 2, is to take Ao to 
be a path along the real s axis down to just above the 
(~!1 l-'i)2 threshold, at sufficiently extreme values of 
the masses to make it clear that Ao*ho = eo, where ho 

is the element of H41-N(~'P) defined by (6) just below 
the "physical region." For Euclidean region singular
ities, stability ensures that, if we choose Av so that Vo 

is kept near enough threshold (see Fig. 4), the real 
contour (6) will be left "undistorted," that is, vo*h1 = 
ho. L is taken (firstly) to be the (Ii~l l-'i)2 threshold. 
So using v1*eo = e1' we have Al$hO = e1 . When the 
pinches occur in the Euclidean region or below, the 
masses may be kept real as they are varied from their 
extreme values (corresponding to Ao) until some 
anomalous threshold is about to coincide with 
(I!1I-'i)2. This coincidence would make deformation 
of (j impossible. If it is avoided by a complex detour, 
the threshold will loop (I!l l-'i)2 and we will reach a 
situation corresponding to Fig. 6(b), which we can 
then replace by a diagram like Fig. 8. In general, we 
get this encircling because the coincidence ofthresholds 
corresponds to the effective tangency of the Landau 
curves, which the thresholds trace out as the masses 
are varied. After the contact we replace A by the two 
paths indicated in Fig. 8, and hv is then the sum of the 
images of the respective vanishing contours under the 
induced isomorphisms of the homology groups. We 
may then consider continuous deformations of these 
paths. In this way, the problem is reduced to the 
investigation for the Cutkosky-integration contour 
defined by (5); the effective contacts of the Landau 
curve correspond to a pinch of all the Si' I ~ i ~ N, 
with those Landau surfaces corresponding to the 
pinch of a subset of these Si' or a subset of the Si' 
1 ~ i ~ N', containing the first N. In fact, in the cases 
we consider here, it turns out that, as regards situa
tions of the latter type, it is only necessary to consider 
effective contacts of the surface corresponding to a 
pinch of the Si' I ~ i ~ N, with the surfaces corre
sponding to pinches of these with one other Si' 
i> N. In the next section, we discuss how to attach 
the correct sign, etc., to these additional terms. 

4. EFFECTIVE CONTACTS 

We consider again the Cutkosky integral (9) 

(_27Ti)N(_1)I+l_1 - f , ·1 1 d4lk 
(27T)41 eD, dS l /\ dS 2 /\ ••• /\ ds N 

(to) 

where eB
I 
is the appropriate vanishing class for a pinch 

of all the Si' 1 :S i :S N. We study the effective contact 
between the Landau curve corresponding to a simple 

B 

FIG. 10. 

AV 
I 
I , 
... 

pinch of the Si' 1 ~ i ~ N, (labeled B in Fig. 10) and 
that corresponding to a simple pinch of these together 
with SN+1 (labeled A in Fig. 10). In the cases we 
discuss, the effective contact is of the type discussed 
by Pham.9 The effect on the path A of continuation past 
the contact of A and B is illustrated in Fig. 10 [compare 
with Fig. 6(a, b)]. Figure 11 defines simple loops 
0(1' fJ1' 0(2' fJ2 (no two of which are homotopic) about 
various parts of A and B. (Compare Pham, Ref. 4, 
pp. 93ff.) We orientate the va"nishing spheres eA., eAt' 

eB
" 

eB., corresponding to 0(1' fJ1, 0(2, fJ2 as indicated 
in Sec. 3. Then, following Pham,4 using e for "vanish
ing cycles" and e for vanishing spheres, we have 

KI[eAI' eB,] = (_l)!n(n-ll, n = 4/. (11) 

B 

flr----~~----~o 

FIG. 11. 
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FIG. 12. 

Now suppose f has a pole on S N+1: f "'-' hi SN+1' So 
with the notation of the last section, hI = A;~eBl = 
qr;lrxl*eBI where 'P is the path directly through real 
values of P indicated in Fig. 12 [cf. Fig. 6(b)]. Thus, 
using the Picard-Lefschetz theorem' (following Ref. 
4, we use Leray's original sign convention), as 

e = '-I(N). '-ICY-I) .•.•• aBle EHc (nN s. s.) Bl U V Bl n-N >,....., N+1 , 
;=1 

lX.e = e + (_I)l(n-N+1)(n-N+2) 
1 Bl Bl 

x KI[a(N) ..... a(lle e ]O(N+lle AI' Bl Al 

= e + (_1)t(n+1)(n+2lKI[e e~ ].l:.(N+1)e 
Ih AI' Bl U Al 

= eBI - o(N+1)eAl' (12) 

Thus, in the situation of Fig. 6(b), (7) is equal to (10) 
together with the additional term 

Using the Cauchy theorem of Leray's residue calculus, 
this becomes 

'l 
(_21Ti)N+1(_l)1+1_1-

(21T)41 

X i Res [I d
4l

k J. (14) 
eA

I 
dS l 1\ dS 2 1\ ..• 1\ dS N 

SN+1IlsN+l = 111sN+1 
and 

·l 

(-21Ti)N+\ _1)1+1_1-
(21T)4! 

x r 11 d
4l

k , (16) JeAl dSl 1\ dS2 1\ ... 1\ dSN+1 

which is of the required form (10). 

Now, suppose SN+1 is a branch point off; we will 
assume (on an inductive basis) that the discontinuity 
off around this branch point will be given by 

(17) 

where l' is the number of loops, Nt the number of 
lines, g the product of amplitudes, and e A' the vanish
ing sphere corresponding to the graph Gt of which 
SN+1 will be a positive-rx arc. eB is now the van
ishing sphere on some sheet of the

l 

covering space of 
n~l Si'-"'; S 1'1+1' In Pham's notation his generaliza
tion of the Picard-Lefschetz formula takes the forms.9 

rx. e = e + ~ (_I)!(n-N+1)(n-N+2) 
1 f Bl f B} "" 

f' 

(18) 

Thus, in this case, in the situation of Fig. 6(b), (7) 
is equal to (10) together with 

(20) 

So, if G" is the graph obtained by inserting G' into G 
(so that, in Pham's notation,6 the sequence G'-
Gil __ G is exact), combining (17) and (20), we find 
that the additional term into (10) will be 

(21) 

where s; = St' 1 =::;; i =::;; N, s;+N = s., 1 =::;; i =::;; Nt, 
Nil = N' + N, l" = l' + I. Further by comparison 
with Ref. 6 (p. 150) one sees that the fibration of the 
ball aUV ) • •••• o(l)eA

l 
by the sphere eA' is the sphere 

eA' and, thus, (21) is of the form (10). This concludes 
our discussion of the second of the two effective 
contact situations described at the end of Sec. 3. 
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FIG. 13. 

To discuss what happens when a subset of the Si' 
1 $; i $; N, pinch, change notation so that (10) 
becomes 

(22) 

and the pinching subsets are Si' 1 $; i $; N < Nfl. 
Then, (22) can be written in the form (21). Referring 
to Fig. 11, but moving in the opposite direction to that 
indicated there, after the effective contact the appro
priate vanishing cell will be e As rather than e A

l
• Using 

eA + eA = eB as elements of H(e4
!, UN+! Si)' we 

ha~e a(N)S. ••• • a(l)eA = - a(N). ••• . a(1)e A ; (22) 
1 S 

will be changed by having e A" replaced by e As"' where 
the subscript 2 indicates that this is the sphere appro
priate to the other side of the contact and that there is 
an over-all change of sign. This minus sign is respon
sible for the cancellation mechanism discussed in I and 
to be rederived in the next section. 

(0.) 

(c) 

FIG. 14 

5. APPLICATION TO DISTORTION BY THE 
TRIANGLE SINGULARITY: THE CANCELLA

TION PROCESS 
We consider the situation discussed in Sec. 5 of 1. 

In Eq. (1) the amplitude now has, instead of a pole, a 
t-channel cut corresponding to a triangle anomalous 
threshold with the discontinuity 

E
m, + ~I ~, ~I 

disc. = A . (23) 

m2 fA] m 2. ~3 fA 2. 

Figure 13 shows the extreme situation (analogous to 
Fig. 5) in which we can infer that there is no distortion. 
We shall assume that the threshold of (23) is singular, 
satisfies the positive-IX condition, and has the dis
continuity (23) in line with the consistency arguments 
of Sec. 2. Assuming the positive-IX condition for the 
distorting triangle singularity means that we do not 
have to consider coincidences between the Landau 
surfaces of Figs. 14(a, b). We can pass from the situa
tion of Fig. 13 to any positive-IX situation for Fig. 14(a) 
(see Fig. 15), with only a coincidence of the thresholds 
of Figs. 14(a, c) occurring. Thus, from the discussion of 
the last section, the appropriate form for (1) just 
above the (#1 + #2)2 threshold in the positive-IX 
situation is 

=8= =0= 
=Bl»1tG, 

(24) 

which is the desired form for consistency. But we must 
also discuss the appropriate form for (1) in the situa
tion illustrated in Fig. 16. Consideration of this 
diagram indicates that the extended unitarity equation 
(1) should sometimes contain a 3-particle unitarity 

FIG. 15 
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FIG. 16. 

integral corresponding to the (ftl + 'P2 + 'Pa)2 threshold 

~~ 
~-~ 
"'2. )olo2 n'lz. .fJ-z. 

~'~' 
=~+~. 

rnl. ~2 }Az m,., V3 ""-:1. 

(25) 

We must consider the continuation of this unitarity 
integral as well and coincidences of the thresholds of 
Fig. 14 with those of Fig. 17. To get from a situation 
in which the 3-particle integral is undistorted to the 
situation of Fig. 16 we must first pass through (or 
rather avoid by a complex detour) a coincidence of the 
thresholds of Figs. 17(a, b). If the masses are in the 
proportions indicated by Fig. 15, Fig. 17 (b) .,,:ould 
have positive (X's and there would be an addItIOnal 
term (26) in the extended unitarity equation (25): 

(26) 

To go from Fig. 15 to Fig. 16 we must avoid a coin
cidence of Fig. 14(a) with Fig. 17(b). If we use 
expressions such as (26) to denote the precisely defined 
Cutkosky integrals of Sees. 3 and 4 and if we apply the 
last part of the latter section, we see that, in the situa
tion of Fig. 16, the distortion of the 2-partic1e integral 
by the triangle threshold will give rise to a term which 
is minus the Cutkosky integral, whereas there is a 
double distortion term from the 3-particle integral 
which is just the Cutkosky integral. These terms cancel, 
leaving in the extended unitarity relation just one 
integral for each positive ex anomalous threshold, 

over a contour which vanishes at this threshold. 
Labeling the thresholds as indicated in the Figs. 14 
and 17, we draw a table of diagrams in Fig. 18 to 
indicate the continuation between the situations with 
the various signs for the (X's. The 2-particle continua
tion to Sw in Fig. 18(d) illustrates the path that 
introduces an extra minus sign relative to the 3-
particle distortion in this situation. 

Note that in a full analysis one still has to discuss 
stable values of the masses which do not give real roots 
for Sw (as in I, Sec. 6, for example). However, this part 
is completed when one notes that one can continue 
to such values from mixed-ex arcs without coinci
dences of thresholds occurring. Thus, the approach 
outlined in Sees. 2-4 has reduced the problem to one 
of plane Euclidean geometry for these thresholds. 

6. APPLICATION TO THE THRESHOLDS OF 
FIG. 19 AND FIG. 23 

We now apply the above method to a case not 
considered in I (Fig. 19). While this threshold would 
be very difficult to discuss from the point of view of 
the previous paper, it is a simple application of the 
new method. Figure 20 indicates an extreme position 
in which we can infer the absence of distortion in the 
3-particle integral. Figure 21 shows thresholds whose 
coincidences with that of Fig. 19 must be avoided. 
We indicate the transition from the situation of Fig. 19 
to any positive-ex situation in a series of diagrams like 
those of Fig. 18 (see Fig. 22). Thus, there are no 
cancellation processes associated with Fig. 19. We 
can now consider distortion by such a threshold in the 
crossed channel (Fig. 23). This will be discussed in a 
little detail; the new features it possesses are also 
found in the next section. Assuming the positive-ex 
condition for the distortion threshold (Fig. 19, 
crossed), establishing the required correspondence 

( 0.) >E =::::>< 

(b) 

S'1. 
FIG. 17. 
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a. 

b 

c 

FIG. 18. Appropriate versions of Figs. 15 and 16, appropriate versions of dual diagram of Fig. 17b, and continuation paths (2- and 3-
particle unitary integrals in the physical region), from left to right, respectively; detours taken to avoid a coincidence of: (b) SI and N3 ; 

(c) Sw and N 2 ; (d) Sw and SI . 

( 0.-) 

FIG. 19. 

( b) 

FIG. 20. FIG. 21. 
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a 

b 

c 

d 

FIG. 22. Appropriate versions of dual diagrams of Figs. 19, 21a, and 21b, and continuation paths (physical region), from left to right, 
respectively; detours taken to avoid a coincidence of: (b) SI2 and Ns ; (c) SIt and Ns ; (d) SI2 and Sv' 

FIG. 23. 

FIG. 24. 

FIG. 25. 

between the positive-IX condition for Fig. 23 and the 
extended unitarity relations involves considering 
cancellations with distortions of the distortion term 
associated with the threshold of Fig. 24. This term 
itself is involved in cancellation effects in the thresholds 
of Fig. 25. Figure 26 illustrates values of the masses 
for which both cancellations are taking place. We can 
get to this situation from a nondistortion situation by 
detouring the following coincidences of thresholds in 
this order: first between Fig. 25 and the 4-particle 
normal threshold, then between Fig. 24 and the 3-
particle normal threshold, and finally between Fig. 23 
and the 2-particle normal threshold. This gets one into 
a situation in which all IX'S are positive. To get to 
Fig. 26, it remains to detour contacts between Figs. 23 
and 24 and between Figs. 24 and 25. Thus, in terms 
of distortions, the 4-, 3-, and 2-particle unitarity 
integrals produce distortions corresponding to Figs. 
25, 24, and 23, respectively, the distortion of the 2-
particle integral is then cancelled by a distortion of the 
distortion of the 3-particle one, and then the distortion 
of the 3-particle integral is itself cancelled by a 
distortion of the 4-particle integral leaving only the 
term corresponding to Fig. 25, which is the only 
threshold satisfying the positive-IX condition. So the 
cancellation effects are quite subtle, and a general 
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/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

/ 

FIG. 26. 

proof of the consistency of the Cutkosky discontinuity 
formula and the positive-ex. condition for, say, fixed 
s-anomalous thresholds on some sort of "inductive" 
basis would have to encompass all such possibilities. 
A further obstacle to this project is provided by the 
case considered in the next section. 

7. DISTORTION BY THE ACNODE CURVE 

The "inductive" idea referred to at the end of the 
last section is that the "consistency" should have 
already been proved for the distorting singularity. 
However, the case we now consider shows that this 
sort of induction is not possible if we only discuss 
fixed s-singularities (and use crossing). The acnode 
diagram (see Eden et al., Ref. 3, Sec. 2.8) is an example 
of a curve depending on both sand t which enters the 
Euclidean region. Figure 27 illustrates an anomalous 
threshold corresponding to distortion of a 2-particle 
integral by the acnode curve and Fig. 28 a dual dia
gram of Fig. 27, which is Euclidean and satisfies the 
positive-ex. condition (note that the distorting singu
larity has a Landau curve which is not a manifold 
because it has cusps). Figure 27 has to be considered 
in conjunction with Fig. 29 because of cancellations. 
This, in turn, requires the consideration of Fig. 30. 
Figures 27, 29, and 30 are in a similar relation to 
Figs. 23, 24, and 25, and one gets the same compli
cated structure of cancellation effects in certain cases; 
the analysis goes through as in the last section. 

FIG. 27. 

FIG. 28. 

8. COMMENTS 

In Sec. 7, we assumed that the distorting singularity 
belongs to the positive-ex. arc of the acnode curve and 
has the appropriate discontinuity. The verification of 
the consistency of these assumptions, so far discussed 
only for fixed s threshold, would require a generaliza
tion in the application of the methods of Sees. 2-4. 
This will be the subject of a further paper. 

FIG. 29. 

The methods developed in this part make a much 
wider range of cases accessible than those of I. They 
appear capable of effecting the test of consistency of 
the Cutkosky discontinuity formulas (with vanishing 
contours) and the positive-ex. criterion, for, at least, 
fixed-s Euclidean region thresholds. They reduce this 
problem of distortion of multidimensional complex 

FIG. 30. 
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FIG. 31. 

integrals to one in plane Euclidean geometry; but the 
geometry can get very complicated and so far neither 
a counter example nor a general proof has been found. 
In addition to the examples considered above, a 
nonplanar diagram (Fig. 31) has been considered. No 
new problems arise here apart from the great increase 
complexity of the dual diagram geometry. 

As in I, all the examples we have considered are 
consistent with the conjecture that the condition that 
physical sheet singularities have discontinuities, given 
by a Cutkosky-type expression integrated over a "flat" 
or vanishing contour, is equivalent to the condition 
that the physical sheet singularity structure is identical 
with that given by finite-order perturbation theory. 
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An exactly soluble three-level model for a system of fermions with Hamiltonian formed from genera
tors of the group SU(3) is studied. A basis for the representation of which the ground state is a member 
is constructed. It is demonstrated that in this representation, the generators can each be expanded in a 
series as functions of a pair of "kinematical" boson operators; the series are uniquely determined to 
satisfy the operator algebra and the invariants of the representation by a method of Marumori. It is seen 
that the lowest anharmonic approximation to the Hamiltonian and other operators yields excellent 
numerical agreement with exact results for all regimes of interaction strength considered. An alternative 
description of the system in terms of a dynamically more meaningful boson, called the "physical" 
boson, is shown to be appropriate for relatively weak coupling where one has a near harmonic spectrum. 

I. INTRODUCTION 

This paper represents a contribution to the problem 
of the description of the low-lying excitation spectrum 
of a system of fermions by means of boson variables. 
Within the context of nuclear physics, which provided 
the stimulus for the present study, a method for the 
expansion of fermion-pair operators as series of 
boson operators was first suggested by Beliaev and 
ZelevinskyI (BZ). This method has been generalized 
by S0rensen2 and applied by him to the physically 
most important case of quadrupole vibrations of 
heavy nuclei. A modified method, developed by 
Marumori et al.,3.4 takes more accurate account of 
the restrictions of the Pauli principle by transforming 
the fermion space into a truncated boson space 
through a nonunitary transformation. 

Insight into the connection between the two methods 
was provided in a study by Pang, Klein, and Dreizler5 

of an exactly soluble model6 of Meshkov, Glick, and 
Lipkin (MGL). For this model, it was shown that the 
two expansion methods, when completely formulated, 
gave exactly the same series expansions and yielded 
quite satisfactory approximations to the exact 
solution. From this model, from the present work, 
and from additional studies in course, we can give 
the general formulation of the problem that follows. 

The commutators of fermion-pair operators define 
a Lie algebra; the first task is to obtain a representa
tion of the generators of this algebra in terms of 
boson operators, the latter always fewer in number 
than the generators themselves. The solution deter
mined solely by the condition that all the commutators 
be satisfied must contain arbitrary constants, at least 
sufficient in number to specify any representation of 
the Lie algebra accessible to pairs of fermions. The 

values of the constants should, in this case, be uniquely 
determined by the independent Casimir invariants 
of the algebra. (This last statement is missing from the 
work of BZ and S0rensen, but is necessary and 
sufficient to establish its equivalence to that of 
Marumori et al.) The problem of boson representation 
can be completely settled by the purely "geometrical" 
considerations described above; we refer to the 
resulting boson operators as kinematical. 

Having determined one such representation without 
any reference to dynamics, one may subject it to 
unitary transformation. Thus, the well-known boson 
of the random phase approximation is linearly related 
to the kinematical boson. The problem of diagonal
izing the Hamiltonian can, more generally, be 
interpreted as the introduction of a nonlinear trans
formation in the boson space. These alternative boson 
representations always contain more than the mini
mum number of constants, the additional parameters 
to be determined by dynamical requirements. 

In the present work, we use Marumori's method 
for an exactly soluble model with SU(3) symmetry 
which contains the model of MGL as a limiting case.? 
Some of the properties of the model are described in 
Secs. II and III. In Secs. IV and V, Marumori's 
method is used to obtain kinematical-boson expansion 
series for the Hamiltonian and for various transition 
operators. By contrast, we introduce in Sec. VI the 
concept of "physical" boson, which provides a 
straightforward way of measuring the anharmonicity 
of a vibrational Hamiltonian. 

In Sec. VII, we discuss and compare our various 
numerical results. These include: (i) exact diagonaliza
tion of the Hamiltonian for the SU(3) representation 
containing the ground state; (ii) diagonalization of a 

975 
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quartic approximation in the kinematical bosons; 
(iii) discussion of limits of validity of a vibrational 
picture. 

II. THE SU(3) MODEL 

Assume three N-fold degenerate single-particle 
shells with energies EI , E2, and E3 , respectively. A 
single-particle state is, therefore, specified by two 
quantum numbers m and cr, where m = 1,2, ... , N 
numbers the substates within a shell and cr = 1,2,3 
is the quantum number designating the different shells. 
It is also assumed that the two-body interactions 
V12 , V13 , and V23 , existing between shells, are of 
monopole-monopole type which scatter pairs of 
particles, change the quantum number cr, but keep m 
constant. This assumption about the interaction, as 
will be seen in the following, allows one to write the 
Hamiltonian in terms of SU(3) generators and is, 
therefore, an essential assumption in the construction 
of the model. 

With the above assumptions, the Hamiltonian is 
taken as 

H = I Eaa~"aml1 + (V12 I a~2a~'2am'laml + h.c.) 
ma mm' 

+ (V13 I a~3a~'3am'laml + h.c.) 
mm' 

+ (V23 I a~3a~'3am'2am2 + h.c.), 
mm' 

(1) 

where ama and its Hermitian conjugate a~a are second
quantized fermion operators which satisfy the anti
commutation relations 

(2) 
and 

(3) 

Next, if one defines the operators 

(4) 

then, from (2) and (3), one obtains the following 
commutation relations: 

[GlXp , Gyp] = ()pPIXP - ()lXpGyp • (5) 

The nine operators G aa', cr, cr' = I, 2, 3, are conse
quently the generators of a U(3) algebra which 
becomes an SU(3) algebra if we remember the con
dition of particle-number conservation, 

(6) 

With (6), we definitely restrict ourselves to particle 
number equal to the degeneracy of one of the shells. 

Finally, if the Vii are assumed to be real as well as 
Hermitian, i.e., 

Vii = Vi': = Vii' 

then the Hamiltonian (1) will have the form 

H = I EaGaa + V I2(G:1 + G~2) 
a 

+ V13( G:I + Gi3) 

+ V2l G:2 + G~3)' (7) 

It is thus an SU(3)-model Hamiltonian which has no 
matrix element between states belonging to two 
different irreducible representations of SU(3). 

III. THE GROUND-STATE BAND 

In this section, the irreducible representation of 
SU(3) to which the ground state belongs is discussed, 
and we find all the states belonging to that representa
tion. For this purpose, the SU(3) ::::> SU(2) ::::> SU(l) 
classification is used for the states of a given irreduc
ible representation. Also the standard notation used 
by Moshinsky8 is adopted here. In this notation an 
irreducible representation of SU(3) corresponding to 
the Young tableaux, 

will be denoted as [h I3 , h2S , hss]. A state belonging to 
this representation and classified according to SU(3) ::::> 

SU(2) ::::> SU(l) will be written as 

h1s h2s hsa ~ 
h12 h22 /. 

hn 

The weight of the above state is defined to be the set of 
numbers (hn, h12 + h22 - hn, h13 + h23 + haa -
h12 - h22) which are actually the eigenvalues of Gn , 
G22 , and Gaa operating on the state. The highest weight 
state or the generating state in the representation 
[h1a , h23 , haa] is the state 

(8) 

which has the property 

G12 Ih13 h2a haa) = G13 Ih13 h2S hss) 

= G2a Ih13 h2S hss) = O. (9) 

A. The Ground State 

According to the model described in Sec. II, in the 
absence of interaction an N-particle system will have 
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the ground state 

t ttl ) IN) = alla21 ••• am 0, (10) 

where 10) is the vacuum state. By using the anti
commutation relations (2) and (3), one has 

GnIN) 

=NIN). (11) 

Similarly, one can show that 

G22 IN) = G33 IN) = 0 (12) 

and 
G12 IN) = G13 1N) = G2s IN) = O. (13) 

From (11) and (12), one thus concludes that the 
ground state has the weight (N 0 0) and, there
fore, can only belong to the representation [N 0 OJ. 
From (13) one also sees that IN) is the generating 
state in that representation. 

B. The Ground-State Band 

Using the SU(3) ::> SU(2) ::> SU(l) chain, one may 
represent a general state in [N 0 0] as 

N 0 O~ 

h12 0 /' 
hn 

which can be derived from the generating state 

N 0 0", 

IN) == NO,> 
N / 

by the lowering operators8 

L21 = G21 

and 
L31 = G31(G11 - G22 + 1) + G21G32 • 

The commutation relation 

[Lu, G12] = 0 

(14) 

(15) 

(16) 

is easily proved from Eq. (5). This means that L 31 , 

when applied to a state of highest weight in the 
subgroup SU(2), gives a new state also of highest 
weight in SU(2). Thus, we have 

I
N 0 0)= N 0 O~ 

h 0 - h12 0 / 
12 h 

12 

where J{' h12 is a normalization factor 

.N' _ (h12 + 1)1( h121 )t (18) 
hu - (N + I)! N! (N - h12)! . 

In this way, a general state is, therefore, given by 
the formula 

N 0 0"" IN 0 0\ 
h 0 /" = J{'hi2(L )"12-hn / 12 hu 21 h 0 

h 
12 

11 

with 

J{'h12 _ ( h11! )t 
hll - . 

(h12 - hll)! h12 1 
(20) 

Evaluation of the commutator [Lu, Lal] shows that 
it is not zero. Consequently, in Eq. (19) there are two 
noncommuting operators. However, by using the 
commutation relation (5) and the property of the 
ground state, one can put (19) into a form quite 
suitable for the start of a boson expansion. 

From the equations starting with 

L3l IN) = [G31(Gll - G22 + 1) + G21GS2] IN) 

= G31(N + 1) IN), 

L;lIN) 

= [G31(Gll - G22 + 1) + G21G32]L3lIN) 

= [G3l(GU - G22 + 1) + G21G32]GSl(N + 1) IN) 

= G:l (N + I)N IN), 

and continuing in a now obvious way, we have finally 

L~-h12IN) = G~-"12(N + l)N· .. (h12 + 2) IN) 

= (N + I)! GN-h12IN). (21) 
(h12 + I)! 31 

Thus, 

with 

C(h h) - (N + 1)! Xh12,N' 
11 , 12 - h11 h" 

(h12 + 1)! 

( 
hll! )t - (23) 

- (h12-hll)!(N-h12)!N! . 

We have thus reached an expression of the ground
state band in terms of the generating state and two 
commuting operators. Equation (22) will be the basis 

=.N' (L )N-hn IN) h12 31 , 
(17) of a boson expansion. 
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IV. THE BOSON EXPANSION 

A. Association with a Harmonic Spectrum 

If we write a state in [N 0 0] as 

N 0 O~ 
Ipq) == h12 0 / 

hll 

with P = h12 - hll and q = N - h12' then Eq. (21) 
becomes 

Ipq) = c(p, q)(G{2Y(G{3)Q IN), (24) 
where 

C _ (N - p - q)!)t 
(p,q)- N'" . . p. q. 

(25) 

Accordingly, the states belonging to [N 0 0] 
will have a one-to-one correspondence to a subset 
of 2-dimensional harmonic oscillator eigenstates, i.e., 
the set defined by 

Ipq)B = (+r)~AtPBtq IN)B' (26) 
p.q. 

where A and B are two commuting boson operators 

[A, At] = [B, Bt] = 1, 

[A, B] = [A, Bt] = 0, 

and the sum of p and q in (26) is restricted by the 
inequality 

o ~p + q ~ N. 

B. The Purpose of Boson Expansions 

The Hamiltonian in Eq. (7) is diagonal when we 
set V12 = V13 = V23 = O. In other words, when all 
the interactions are turned off, the Hamiltonian has a 
pure harmonic spectrum, with eigenstates (24) or its 
image (26). Therefore, with this correspondence in 
mind, if we assume, for example, the expansion 

(fJ 

Gt - At ~ d AtiAiBtjBj 
12 - £.. ij , 

i,i=O 

along with similar expansions for the other generators 
Gua., and consequently for the Hamiltonian itself, 
then it can be expected that, at least for small inter
actions, these series will converge rapidly. Hence, 
one can cut off at low-order terms and, thus, greatly 
simplify the problem and at the same time have an 
accurate solution. 

In the following a method due to Marumori3•4 is 
used for getting the boson expansions of the various 
operators in the SU(3) model. 

C. Marumori's Method of Boson Expansion 

We first introduce an image transformation U 
between states in the SU(3) fermion space (24) and 

states in the boson space (26) such that 

Ipq)F = Ut Ipq)B' P + q ~ N, (27) 

0= Utlpq)B' P + q > N. (28) 

An operator in the SU(3) space will then have an 
image in the boson space 

e B = ueFut. (29) 

We have to notice, however, that the operator U has 
no inverse and that the matrix element 

B(pql e B Ip'q')B 

is not zero only for p + q and p' + q' ~ N. There
fore, in a sense, we are dealing with the whole fermion 
space but only a subspace of the entire boson space. 

From (27) and (28), one can construct U as 
N N-q 

U =:2 L Ipqh F(pql 
q=O P=O 

== L Ipqh F(pql 
(p,q) 

AtpBtq 
= L --t IN)B F(NI c(p, q)G~3Gf2' (30) 

(p,q) (p! q!) 

and (29) becomes 

en = ueFu
t 

with 

epa,rs == (pql0F Irs>F' 

Next, we assume that the operator IN)B llNI can be 
expressed in the form 

ao 

IN)BB(NI = I cm"AtmAmBtnBn. (32) 
m,n=O 

Substituting into the completeness relation 

f AtPB
ta 

INh B(NI BIlAP = 1 
P,Il=u (p! q!)t (p! q!)t 

or, equivalently, 
(fJ A tp AP 

I N)IJ B(NI = 1 - :2 -t IN)B B(NI-t p=l (p!) (p!) 

(fJ B tq Bil - L -IN)]J H(NI-
q=1 (q !)* (q !)* 

ao 00 AtPBtll BqAP 
-:2 :2 t I N)BB(NI t 

p=1q=1 (p! q!) (p! q!) 

and equating the corresponding terms, we get 

(i) Coo = 1, 

(ii) i cmoAtmAm = - i i CmO (At)p+mAp+m. 
m=1 p=1 m=O p! 

(33) 
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Applying the transformation V. EXPANSIONS OF THE HAMILTONIAN 

u =p + m, v = m 

to the right-hand side, we get 

(34) A. Matrix Elements of Operators in the Hamiltonian 

_ I [II CvO JAtuA U
• 

u=l v=o(u - v)! 
A recurrence relation, 

m-1 
'" CvO emo = - k ' 
v=o(m - v)! 

m 21, (35) 

is thus obtained. We have 

00 t ooOOc t 
(iii) I conB nBn = - L I ~ (B )HnBHn. 

n=l q=ln=Oq! 

By a transformation similar to (34), we have 

~1 Co. 
COn = - £., , 

.=0 (n - v)! 
n21. (36) 

With 
00 00 

(iv) I ~:CmnAtmAmBtnBn 
m=l n=l 

= - i i iCmn(At)p+mAP+mBtnBn 
p=l m=O n=l p! 

- iii Cmn AtmAm(BtrnBHn 
Q=l m=l n=O q! 

-i i i i~ 
p=l Q=l m=O n=O p! q! 

X (At)p+mAp+m(Bt)q+nBHn, 

and using the same transformation (34) in each term, 
we finally get 

ffl-1 
~ C. n 

C =-£., 
mn .=0 (m - v)! 

n-1 _! Cm • 

v=O (n - v)! 
m-1 n-1 

- I I C
H

' m, n 2 1. (37) 
v=O v'=o(m - v)! (n - v')! ' 

Matrix elements of SU(3) generators between states 
belonging to the SU(3) ~ SU(2) ~ SU(l) chain have 
been calculated by Moshinsky. 8 They can be expressed 
in terms of the quantum numbers p and q as follows: 

F(pqi Gn irs)F = ~pl)as(N - p - q), 

F(pqi G22 /rs)F = oprOqSP' 

(39) 

(40) 

F(pqi G33 irs>z" = ~pr~asq, (41) 
1 

F\pqi G12 /rs)F = 0pH.rOqs[(P + 1)(N - p - q))", 

(42) 

F(pql G21 lrs)z" = 0p-1,roas[p(N - P - q + 1)]k, (43) 

F(pqi G13 irs)F = OprOHl,.[(q + l)(N - P - q)]i, 

(44) 

F(pqi G31 irs)F = OprOq-l,s[q(N - p - q + I)]!, (45) 

F(pqi G23 ir s)F = 0p-1,rOHl,.,[P(q + 1)]~, (46) 

F(pq\ G32 \rs)F = OPH"bq-1,s[(p + l)q]i. (47) 

Using (39) in Eq. (38), one can then expand Gll as a 
series in the boson operators A and B: 

(Gll)B = I'IP i: cmn(N - p - q) 
p=Oq=O m,n=O p! q! 

x (Aty+mAP+m(Bt)HnBHn. (48) 

Since B(Pq\ Gllip'q')B vanishes if either p + q or 
p' + q' exceeds N, all the terms in (48) with p + q + 
m + n > N actually have no effect at all. For con
venience of calculation, we can, therefore, extend all 
the summations in (48) to infinity, but at the same 
time keep a record of the above-mentioned restriction 
by using a prime on the summation symbol, as in the 
following equation: 

Substituting Eq. (32) into (31) yields the basic 00 ( 

equation for boson expansions, (Gn)B = I' C
mn N - P - q) 

0]] = I i cmn0 pa ,rs 
(p,a)!r,s) m,n=O (p! q! r! s !)t 

X (At)p+mAH>n(Bt)a+nBHn, (38) 

in which the coefficients Cmn are given by Eqs. (33), 
(35), (36), and (37). Note that cmn = Cnm . 

Some of the values for Cmn are listed below: 

Coo = 1, COl = -1, C02 = !, 

c10 = -1, C20 = t, 
Cn = 1, c12 = C21 = -to 

p,a,m,n=O p! q! 

x (At)p+mAP+m(Bt)a+nBHn. (49) 

After applying Eq. (32) together with the complete
ness relation in boson space, the above equation 
reduces to a simple form 

(Gll)B = N - AtA - BtB. (50) 

By the same method, we also find 

(G22)B = AfA, (51) 

(52) 
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Next, the matrix element for G1; can be derived 
from (42): 

F(pql G1i Irs)F 

= [(p + 2)(p + l)(N - P - q)(N - P - q - 1)]~ 

Again substituting into (38), we get 

OC) cmn[(N - p - q)(N - P - q - 1)]1 
(G1;h = I' 

p,Q,m,n=O p! q! 
X (At)p+mAJl+m+2(Bt)Q+nBHn 

where 

= (}:' ,/;;AtiAiBt;Bi)A2, (53) 
',J=O 

iii = i f (C mn( N + m + n -: i - j)(N + m + n - i - j - l))! 
m=O n=O (I - m)! (j - n)! 

and the first few values of /ii are 

/00 = [N(N - l)]~, 

/01 = [(N - l)(N - 2)]! - [N(N - 1)]~ = ho, 

/02 = H(N - 2)(N - 3)]! - [(N - l)(N - 2)]! 

+ HN(N - J)]! = /20' 
hI = [(N - 2)(N - 3)]1 - 2[(N - 2)(N - 2)]l 

+ [N(N - l)]l. 

Similarly, we obtain the expansion for G1i, 

and G:a , in which case the series can be summed up 
to give a closed form 

(G2~hJ = Af2B2. (55) 

Also expansions for the conjugate operators are 
found to be 

C. The Harmonic Approximation 

If we include terms in (57) up to the second order 
of the operators A and B, then we have the harmonic 
approximation 

H~;) = E1N + (€2 - €l)A tA + (€3 - €l)B
t
B 

+ [N(N - 1)]!V12(A t2 + A2) + V13(Bt2 + B2). 

(58) 

It is always possible to set €1 = 0 and €2 - £1 = 1, 
the latter corresponding to measuring the energy in 
units of £2 - £1' Using the following parameters, 

e == (€3 - £1)/(€2 - €1) = £a, e> I, 

x == NV12/(£2 - €1) = NV12 , 

y == NV13/(£a - €1) = NV1a/e, 

M2 = x[l - (l/N)]!, 

Ma = y[1 - (l/N)]!, 

in Eq. (58) gives 

(59) 

(60) 

(61) 

(62) 

(63) 

(G2~hJ = (Gi~)B = (G~2)1J' (56) Hjt) = AtA + M 2(A h + A2) 

B. The Hamiltonian as a Boson Expansion + e[BtB + MaCBt2 + B2)]. (64) 

From Eq. (7) we have, after utilizing Eqs. (50)-(56), 
the transformed Hamiltonian in the boson space 

Hu = €l(N - AtA - BtB) + £2AtA + €3 BtB 

+ (V12Atz + Vla Bf2)(?' JUAtiAiBtiBi) 
',J 

+ (?' f~;AtiAiBt;B;)(V12A2 + VlaB2) 

'" + V23(A
t2B 2 + A 2B t2 ). (57) 

In practice, it is only possible for one to calculate a 
few leading terms in the above expansion and compare 
the result with the exact solution of Eq. (7). We shall 
examine the extent to which the simplest approxima
tions agree with the exact solution as a function of the 
relevant coupling parameters. 

The two operators A and B do not couple together 
in the harmonic approximation. Eigenvalues of (64) 
can be obtained either by two separate canonical 
transformations or by a straightforward diagonaliza
tion process. 

D. The Quartic Approximation 

Including the fourth-order terms in A and B gives 
us the quartic approximation 

H<:) = AtA + M 2(A
t2 + A2) + L 2(A

taA + AtAS
) 

+ e{BtB + Ms(Bt2 + B2) + Ls(BtsB + BtBa)} 

+ LlAhBtB + BtBA2) 

+ Lae(Bt2AtA + AtAB2) 

+ iCK2 + eKs)(At2B2 + Bt2A 2), (65) 
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in which the parameters z, L2 , etc.,are defined by 

z = NV23!(E2 - EI) = NV23 , 

L2 == M 2[1 - (2IN) - l]t, 

L3 == Ma[1 - (2IN) - 1]1, 

K2 == (zIN) = V23 , 

K3 == (zINe) = (V23/e), 

along with the definitions (59)-(63). 
In (65), A and B are coupled together in several 

terms. Therefore, the best way to get eigenvalues is to 
diagonalize (65) directly. 

E. The Expanded Quartic Approximation 

It may be interesting to calculate the coefficients in 
(65) up to the order of liN and then compute the 
eigenvalues. This is because in some realistic cases it 
may not be possible to calculate these coefficients 
exactly. One can probably only expand them in powers 
of liN and take a few leading terms. Thus, one will 
have the expanded quartic approximation which is 
essentially the same as Eq. (65) except that all the 
coefficients are computed to the order liN: 

Hj;1 = AtA + x(i - 1/2N)(At2 + A2) 

- (2jN)x(A taA + AtA3) 

+ e{BtB + y(l - 1/2N)(Bf2 + B2) 

- (2IN)y(B taB + BtB3)} 

- (2IN)(A f2BtB + BtBA2) 

- (2e/N)(Bh A tA + AtAB2) 

+ (zIN)(A t2B2 + BhA2). 

VI. THE PHYSICAL BOSON 

(66) 

It will be seen later that the boson expansion series 
in Sec. V actually turn out to be very good expansions. 
We shall call the boson operators A and Bin Eq. (26) 
the "kinematical" bosons, since their definitions have 
nothing to do with the dynamics of the Hamiltonian. 
In fact, with these bosons the quartic approximation 
(65) already gives almost exact energy eigenvalues 
over an extremely wide range of interactions. 

In this section, we want to introduce by contrast the 
concept of "physical" boson and describe some of its 
properties. It should be emphasized that the reason 
for the name is that, if our model corresponded to an 
actual physical system, then this is the boson which 
we would introduce phenomenologically if the 
experimental low-lying spectrum is nearly harmonic. 
The conditions for the validity of such a description 
will emerge from our results. 

A. The Definition of Physical Boson 

We notice that when all interactions in the Hamil
tonian (7) are turned off, i.e., when Vl2 = Vl3 = 
V23 = 0, the exact energy eigenstates are just the 
states Ipq) in (24), and they have a one-to-one corre
spondence to the harmonic basis Ipq)B in (26). As 
interactions are gradually turned on, this kind of 
association will still be possible. Therefore, one can 
label the exact eigenstates as Ipq)p with the two 
quantum numbers p and q. The physical-boson 
operators 0( and (3 are now defined by the following 
equations: 

IpQ)l> = (p! q!)-!O(tPptq 100)p, (67) 

[O(,O(t] = [P, pt] = 1, (68) 

[0(, (3] = [O(t, (3] = O. (69) 

As we have mentioned, the physical-boson opera
tors are identical with those kinematical-boson op
erators in the limit when Vl2 = V13 = V23 = o. 
Consequently, the deviation between the physical and 
the kinematical bosons, as interactions are turned on, 
is a measure of the anharmonicity of the spectrum. 

B. The Hamiltonian 

Since the states !pq)l> are exact energy eigenstates, 
the Hamiltonian is diagonal in that basis. The most 
general form of the Hamiltonian, in terms of 0( and p, 
must then be 

H = hoo + (h10O( t IX + h01P t P) 
+ (h200( h0(2 + hllO( t rx(3t (3 + hoa(3hp2) 

+ ... + (hNOO(tNO(N + hN- 1•1 

x O(tN-IO(N-IP{J + ... + hONPtNPN) 
N N-u 

= 2 2 huvO(tuO(u(3tvpv. 
u=Ov=O 

(70) 

There are exactly teN + l)(N + 2) constants huv to 
fit the teN + 1 )(N + 2) energy levels. An exactly 
harmonic spectrum would give the result huv = 0 for 
all u + v > 1; hence, for a nearly harmonic spectrum 
we will expect that 

hlO' hOI» h20 , hll' h02 » ... » hNO ' hN- 1,l ••• hoN ' 

(71) 
C. The Transition Operators 

Because of the form of the model Hamiltonian (7), 
the energy eigenstates are always separated into four 
independent subsets such that the Hamiltonian itself 
has no matrix element between two eigenstates belong
ing to two different subsets. These four subsets are 
connected to each other by the three operators G12 , 

G13 , and G23 , together with their Hermitian con
jugates. If we define transition operators T1 , T2 , and 
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Ta as 

T1 == H G12 + G2l), 

T2 == H G13 + G3l), 

T3 == H G23 + G32), 

(72) 

(73) 

(74) 

then their kinematical boson expansions are readily 
obtained from Eqs. (38), (42), and (44). In terms of 
physical bosons, Tl , for example, has the form 

1"-t = Q(t[~~~) + (~WQ(t1X + ~~~)fJtfJ) 
+ (~~~)iXhoc2 + ~i~)octocfJt fJ + ~~Wt2fJ2) 
+ ... + (em octN-locN-1 + ell) octN-2Q(N-2fJtfJ "N-l,O "N-2,l 
+ ... + ~ci~k_1fJtN-lfJN-l)] 
+ Q(t3[~~~) + (~l~)octQ( + ~~~)fJtfJ) 
+ ... + (l:(1I) Q(tN-3Q(N-3 

"2\"-3,0 

+ ... + ~~~1_3fJtN-3fJN-3)] . 
+ ... + (o/)2[!Nl+1~~~[!NJ+l) + h.c. 

[iN] 
== I [(OCt)2HlXW + X(j)*oc2i+1], (75) 

1=0 

with 
N-(21+1) N-(2Hl)-u 

X(f) == I I ;~;Q(tuQ(uBtvBv, (76) 
u=o v=O 

where ~~~ are constants and [tN] is the largest integer 
less than iN. 

Two energy eigenstates differing by an even number 
of iX-quanta will belong to the same subset mentioned 
before and are not connected by T1 • This explains 
why there are no terms like (Q(t)2i in the expansion (75). 

The constants ~~~ are determined by fitting the 
physical transition amplitudes, e.g., 

~W = 1l(101 Tl 100)1l' 

~W = 1l(201 Tl110)p - ;W, 
~~~) = p(301 T1 100)p/.j6, 

~W = (p(401 Tl I10)1l/.j6) _ ;~~l, 

(77) 

etc. The number of constants is just the same as the 
number of physical transition amplitudes. In this way 
we have, as in Eq. (70), a theoretically exact fit. 

For the sake of completeness, we will write down 
the physical boson expansions for T2 and T3 as well. 
The meaning of these equations should be self-evident: 

[lNJ 
Tz = L [(pt)21+l yW + yUl*fJ2i+l], (78) 

1=0 

N-(2Hl) N-(21+1)-u 

yW == I L 'YJ~~{Jtu{JuQ(tvQ(v, 
u=o v=o 

[!N) !iNl-i 
T3 = L L [(OCt )2i+1Z(;j)f12H l 

;=0 j=O 

(79) 

(81) 

VII. DISCUSSION OF RESULTS 

We have developed both kinematical- and physical
boson representations for the SU(3) model. We shall 
here describe some of the numerical results obtained 
from the application of these forms to the Hamiltonian 
(7). 

In Sec. IV.C we have noted that the exact energy 
eigenstates always separate into four independent 
subsets, namely, 

I: {Jpq)p; p even, q even}, 

II: {Ipq)p; P odd, q even}, 

III: {lpq)ll;P even, q odd}, 

IV: {lpq)ll; P odd, q odd}. 

As an example, Fig. 1 shows the SU(3) states Ipq) 
divided into such four subsets, which are eigenstates 
of the unperturbed Hamiltonian 

with e = (€3 - €1)/(€2 - €1) = 2.5 and N = 6. Here 
N reminds us of the fact that these states belong to the 
SU(3) representation [N 0 0]. Otherwise, one would 
not be able to describe these states by using only two 
quantum numbers p and q. 
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FIG. 1. Level scheme of the zero-order Hamiltonian for N = 6, 
e = 2.5. 
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TABLE I. Exact and approximate energy values for a subset of eigenstates ipO) with p = 0, 1, ... , N, which 
correspond to MGL eigenstates. 

(a) N = 6, Y = z = 0 

x = 0.05 

Expanded 
Exact Harmonic quartic Quartic 

solution approx. approx. approx. 

6.00208 5.98956 6.00234 6.00221 
5.00416 4.99373 5.00433 5.00420 
4.00290 3.99791 4.00275 4.00279 
3.00000 2.99373 2.99987 2.99995 
1.99709 1.98956 1.99700 1.99708 
0.99583 0.99373 0.99578 0.99583 
0.00208 -0.00208 -0.00210 -0.00208 

x = 0.25 

6.05233 5.72439 6.05872 6.05545 
5.10158 4.83463 5.10564 5.10257 
4.06845 3.94487 4.06462 4.06561 
3.00000 2.75498 2.99620 2.99867 
1.93155 1.72439 1.92944 1.93127 
0.89841 0.83463 0.89710 0.89838 

-0.05233 -0.05512 -0.05279 -0.05233 

A. Reduction to S U(2) Model 

The SU(3) model reduces to the SU(2) model of 
MGL6 if we set VI3 = V23 = 0 in Eq. (7). Among the 
energy eigenstates /pq)p, a subset /pO)p with p = 
0, 1, ... , N will correspond to the energy eigenstates 
of this model. Table I(a) gives the exact energy eigen
values together with the harmonic approximation 
[Eq. (64)], the expanded quartic approximation 
[Eq. (66)], and the quartic-approximation [Eq. (65)] 
eigenvalues of these states for N = 6, x = 0.05 and 
0.25 (corresponding to b = 0.1 and 0.5, respectively, 
in Ref. 5), and y = z = O. Table I(b) gives the same 
results for N = 14, x = 0.05, and y = z = O. They 
are in agreement with the results in Ref. 5, except 
that here we find more accurate quartic and expanded 
quartic results than those in Ref. 5. This is because 
we have obtained these values from Eqs. (65) and (66) 
through direct diagonalization rather than by first 
making a canonical transformation. The latter pro
cedure introduces numerical errors associated with 
the incorrect use of the same vector space for the 
transformed boson as for the kinematical boson. In 
our procedure, the vector space of the kinematical 
boson is a simple image of the space of the SU(3) 
representation. (This is the expression of the Pauli 
principle.) Further canonical transformation in the 
boson space "distorts the shape" of this vector 
space. If we continue to use the shape appropriate 
to the kinematical boson in subsequent diagonal
ization procedures, we introduce errors which 
become appreciable, particularly for the high-lying 
energy levels. 

(b) N = 14, Y = z = 0 

x = 0.05 

Expanded 
Exact Harmonic quartic Quartic 

solution approx. approx. approx. 

14.00232 13.96975 14.00261 14.00255 
13.00597 12.98371 13.00621 13.00614 
12.00778 11.99768 12.00769 12.00766 
11.00804 10.99301 11.00798 11.00796 
10.00710 9.99768 10.00703 10.00704 
9.00524 8.99301 9.00518 9.00519 
8.00277 7.99767 8.00272 8.00274 
7.00000 6.99301 6.99995 6.99998 
5.99722 5.98836 5.99718 5.99721 
4.99476 4.98371 4.99472 4.99475 
3.99289 3.97905 3.99287 3.99289 
2.99195 2.98371 2.99193 2.99195 
1.99222 1.98836 1.99220 1.99222 
0.99402 0.99301 0.99401 0.99402 

-0.00232 -0.00232 -0.00232 -0.00232 

TABLE II. Energy spectra for e = 2.5, N = 6, 
and x = y = z = iN3 = 108. 

Exact 
solution 

776.55 
753.91 
603.55 
601.70 
457.82 
353.61 
297.45 
247.51 
245.32 
116.36 
103.13 
98.306 
82.371 
49.031 

-100.91 
-118.98 
-150.48 
-150.70 
-194.50 
-276.44 
-281.65 
-286.06 
-304.54 
-383.90 
-472.86 
-474.57 
-690.02 
-704.81 

Expanded 
quartic 
approx. 

791.17 
763.51 
619.18 
609.46 
470.07 
359.51 
301.71 
250.85 
250.73 
123.34 
105.81 
97.016 
83.140 
48.541 

-109.13 
-119.48 
-150.87 
-155.17 
-198.31 
-280.67 
-285.51 
-290.52 
-309.74 
-393.05 
-481.81 
-486.15 
-699.34 
-718.27 

Quartic 
approx. 

781.72 
755.77 
610.20 
603.33 
463.11 
355.03 
299.31 
248.68 
246.65 
119.56 
104.43 
97.837 
82.838 
48.847 

-105.09 
-119.11 
-150.74 
-152.80 
-196.44 
-278.01 
-283.31 
-287.05 
-305.77 
-387.70 
-476.03 
-478.20 
-691.78 
-709.31 

983 
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TABLE III. A comparison between the eigenvalues of the exact Hamiltonian and the physical
boson expansion for e = 2.5, N = 6. 

, (a) x = y = z = 0.1; the values of the 
parameters of Eq. (82) are hoo = -0.02885, 
h,O = 0.9990, hO' = 2.4824, h20 = 0.00545, 
hll = 0.01363, h02 = 0.01644. 

Exact solution 

15.027 
13.525 
12.545 
12.017 
11.032 
10.505 
10.031 
9.5170 
8.9962 
8.5136 
8.0051 
7.5000 
7.4936 
6.9994 
6.5016 
6.0023 
5.9862 
5.4958 
5.0119 
4.9689 
4.4821 
4.0071 
3.4662 
2.9944 
2.4536 
1.9800 
0.97014 

-0.028845 

Physical-boson expansion 

15.359 
13.779 
12.712 
12.216 
11.152 
10.669 
10.098 
9.6077 
9.1393 
8.5569 
8.0803 
7.6257 
7.5171 
7.0323 
6.5694 
6.1286 
5.9951 
5.5241 
5.0751 
4.9689 
4.4897 
4.0325 
3.4662 
3.0008 
2.4536 
1.9800 
0.97014 

-0.028845 

B. The Kinematical-Boson Expansions 

(b) x = y = z = 0.5; the values of the 
parameters of Eq. (82) are hoo = -0.6710, 
h,o = 1.0422, ho, = 2.2285, h20 = 0.04015, 
hll = 0.21403, h02 = 0.32315. 

Exact solution 

15.670 
14.122 
13.555 
12.403 
11.772 
10.658 
10.630 
9.9129 
8.8924 
8.8526 
8.0902 
7.5450 
7.2784 
7.0271 
6.4064 
6.0045 
5.8020 
5.3028 
5.1589 
4.4322 
4.0872 
4.0270 
2.8137 
2.8057 
1.5575 
1.4937 
0.37117 

-0.67103 

Physical-boson expansion 

22.394 
19.047 
16.934 
15.998 
14.019 
13.247 
12.121 
11.402 
10.795 
9.6376 
9.0839 
8.6416 
7.9533 
7.4531 
7.0642 
6.7867 
5.9025 
5.5670 
5.3430 
4.4322 
4.1502 
3.9796 
2.8137 
2.6965 
1.5575 
1.4937 
0.37117 

-0.67103 

For the SU(3) model, the kinematical-boson repre
sentations again prove to be remarkably good expan
sions. The harmonic approximation, equivalent to 
the random phase approximation, breaks down for 
max (lxi, Iyl, Izl) > 0.5. But, because the Hamiltonians 
(65) and (66) are diagonalized directly, the expanded 

quartic approximation turns out to be a good approxi
mation even for larger interactions, contrary to the 
statements in Ref. 5. The result shows that within the 
range max (lxi, Iyl, Izi) ~ tN3, for N = 6, the dis
crepancy between quartic approximation and exact 
solution is less than 0.7%, and that between expanded 
quartic approximation and exact solution is less than 

TABLE IV. A comparison between some exact values and the corresponding physical-boson approxima
tions of the transition amplitudes for e = 2.5, N = 14. 

1.(301 T, 120).1 
1.(401 T, 130).1 
1.<211 T, 1l1).1 
1.(411 T, 111).1 

(a) x = y = z = 0.1; the parameters 
of Eq. (84) are 
~~~I = 3.4079, ~i~1 = -0.07711, 
~i~1 = -6.7199, ~~~I = 0.00283, 
~i~1 = 0.0019468, ~~~I = -0.0006029. 

Physical-boson 
Exact value approx. 

5.620 5.635 
6.301 6.353 
4.562 4.793 
0.00909 0.0204 

(b) x = y = z = 0.5; the parameters 
of Eq. (84) are 
~~~I = 2.3220, ~~~I = -2.3230, 
~~;I = -6.7480, ~~~) = 0.000119, 
~~~) = -0.000176, ~~~l = -0.27783. 

Physical-boson 
Exact value approx. 

2.553 4.025 
3.608 9.294 
2.736 9.544 
0.697 1.361 
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3 %. For larger N the agreement is even better. Table 
II shows the result for N = 6, e = 2.5, and x = y = 
z = tN3 = 108. The rapid convergence of the quartic 
approximation even for exceedingly large coupling 
constant was initially a complete surprise, since it can 
be shown that,in contrast to the weak coupling limit, 
all terms in the series for generators and Hamiltonian 
are of the same order in N. The reason for the con
vergence is that we encounter alternating series in the 
essential places. A detailed discussion of this point will 
be given in connection with a separate study of the 
strong coupling limit. 

C. The Physical-Boson Expansion 

To see whether the exact energy spectrum is a 
nearly harmonic one, we take the first six terms in 
Eq. (70): 

H p = hoo + (hlOOC t oc + hOlfJ t fJ) 

+ (h20OC t2OC2 + hll oc t ocfJt fJ + h02 fJt2fJ2). (82) 

The lowest levels in the exact energy spectrum are 
used to get the six constants in (82). For a nearly 
harmonic spectrum we expect 

Next, the entire spectrum of Hp is calculated using 
these values in (82). It is found that, for max (lxi, 
Iyl, Izl)"; 0.5, Eq. (82) gives fairly good results, but 
somewhere in the domain 0.5 ,,; max (lxi, Iyl, Izl) ,,; 1, 
i.e., past the point where RPA breaks down, the 
condition (83) breaks down and Eq. (82) is no longer 
meaningful. Results for N = 6, e = 2.5, with x = 
Y = z = 0.1 and 0.5, are given in Tables III (a) and 
III(b), respectively. 

A similar situation is found for the transition 
amplitude when we use the approximation 

Tl r--' oct[~~~) + (~~~)octoc + ~M)fJtfJ)] 
+ octa[~~~) + (~~~)octoc + ~~~)fJtfJ)] + h.c. (84) 

with a criterion similar to (83). Tables IV(a) and IV(b) 
list the values of the six constants in (84) as well as 
some of the transition amplitudes under the conditions 
N = 14, e = 2.5, with x = y = z = 0.1 and 0.5. 
Also, the exact values of those transition amplitudes 
are given for comparison. They are calculated by 

using the formula 

p(pql T1Ip'q')p 
N N-u N N-u' 

= I I I I (uvl t(G12 + G21) lu'v') c<:"q)· c::.;r) 
u=ov=o u'=Ov'=O 

= t I c<:"q)· {c~G[(u + l)(N - u - v)]t 
(u,v) 

+ c~~i:~[u(N - u - v + I)]!} 
= 1 '" (c(pq)·c (p'q') + c(pq)·c(p'q'» 

2 k uv u-l,v u-l,v uv 
(u,'v) 

X [u(N - u - v + I)]!, (85) 

where Ipq)p are exact eigenstates, luv) are SU(3) 
states, and 

N N-u 

Ipq)p = I I c<:"q) luv), (86) 
u=ov=o 

. with c<:"q) obtained through diagonalization of the 
exact Hamiltonian (7) in the SU(3) basis. 

In summary, we have studied two boson representa
tions of an exactly soluble model. The kinematical 
boson, most closely tied to the group-theoretical 
structure, has no dynamical significance except in the 
limit of vanishing coupling; it provides, nonetheless, 
excellent dynamical approximations when used beyond 
the leading order. On the other hand, the physical
boson representation has been seen to represent a 
possible physical interpretation of the model when the 
coupling constants are not too large, approximately 
below the limiting values for validity of the random 
phase approximation. This is the region of small 
anharmonicity in which the physical boson clearly 
represents a vibration degree of freedom. Detailed 
study and physical interpretation of the strong 
coupling limit will be considered in a separate paper. 
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T~e detail~d time dep~~d~nce o~ the traject~ry, and particularly of the acceleration, of a charged 
particle movIng nonrelatlVlst,lcally In a we~kly I~homogeneou~, slowly varying electromagnetic field is 
calculated by a m~thod that Inv?lves supenmposIng a conventIOnal perturbation expansion in the weak 
fiel? ~n the e~p~nslOn of Berkowitz an? Gardner and ofK~uskal, the latte~ expansion being asymptotically 
valid III the limit of small Larmor radIUs and slowly varyIng fields. Founer transforms are introduced to 
facilitate isolation of rapidly varying terms from the most general solutions for the coefficients in the 
expansion. T,he calculation~ are carried t? first or?er in the weak inhomogeneity and (at least formally) 
to all orders In Larmor radIUs. The resultIng velocity reproduces the familiar transverse drift velocities of 
first-order orbit theory, emphasizes that in the presence of fields varying slowly in time the polarization 
and curvature drifts are to be calculated from the time derivative of the fields as seen from a frame of 
reference fi~ed -:vith respect t? the gu!~ing cente,r of,the particle's orbit, and permits calculation of higher
order contnbutlOns t? the dnft ve,locltles, contnbutlOns of second order in Larmor radius being explicitly 
evaluated; the resultIng acceleratIOn prepares the way for a study of the effect of weak inhomogeneities 
on the radiative output of single particles. 

I. INTRODUCTION 

The radiation emitted by a plasma has been calcu
lated by a variety of methods and with a variety of 
different approximations.L2 Under suitable condi
tions,3-5 some of this radiation can be interpreted as 
the incoherent superposition of radiation from in
dividual charged particles accelerated by their inter
action with whatever electromagnetic fields are present 
within the plasma. The radiation emitted by a single 
particle, however, is calculated most directly from 
knowledge of its trajectory as an explicit function of 
time. 6 This paper presents a calculation of the tra
jectory of a charged particle moving nonrelativistically 
in a uniform magnetic induction field on which is 
superimposed a weak and slowly varying electro
magnetic inhomogeneity. The resulting velocity repro
duces the well-known drift velocities; the resulting 
acceleration prepares the way for a study of the effect 
of weak inhomogeneities on the radiative output of 
single particles. 7 

The condition of slow variation imposed on the 
fields assures the validity of an approach based on the 
concept of a guiding center and enters the calculation 
in the following way: An expansion of the trajectory 
in a perturbation series in the weak inhomogeneity is 
sought. To avoid the appearance of terms that are 
valid only for times that are short compared to the 
gyroperiod, however, a perturbation expansion more 
involved than the most straightforward expansion 
must be adopted. The starting point of the present 
approach is an expansion that has been described by 
Berkowitz and GardnerS and by Kruskal,9 an ex
pansionthat is valid only for fields varying slowly both 

in space and in time. Consequently, the fields here 
considered must be so restricted. 

In this paper, trajectories are calculated by super
imposing a conventional perturbation expansion in 
the weak inhomogeneity on the expansion of Berko
witz and Gardner and of Kruskal. In Sec. II, the 
theoretical background is summarized and equations, 
correct to all orders in the Larmor radius, are obtained 
for the coefficients in a general expansion. Appro
priate boundary conditions are enumerated and, in 
particular, the need to eliminate rapidly varying terms 
from the solutions is inferred. For the constant magnetic 
induction field treated in Sec. III, the general equations 
decouple and their solution provides both a didactic 
example and the zeroth-order approximation for the 
weakly inhomogeneous field. The trajectory in a 
weakly inhomogeneous field is considered in Sec. IV. 
Terms varying rapidly with time are isolated by intro
ducing Fourier transforms of the fields. 

II. BASIC THEORY 
Fundamental Equation for the Trajectory 

The position vector r of a particle (charge e, mass m) 
moving nonrelativistically in a specified electromag
netic field E(r, t), B(r, t) satisfies10 

€r(t) = i'(t) x B(r(t), t) + cE(r(t), t), (1) 

where c is the speed of light, t is time, and 

€ = me/e. (2) 

Equation (1) is to be solved subject to the general 
initial conditions 

reO) = ro, i'(0) = vo. (3) 

986 
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Because the total energy radiated per cycle by a 
particle gyrating nonrelativistically, even in magnetic 
fields as large as 106 Gauss, is a very small fraction of 
the kinetic energy of the particle,ll the emitted radia
tion can be calculated using a trajectory determined by 
assuming no radiation. Forces arising from the radia
tion reaction may therefore be omitted from Eq. (1). 

A dimensionless presentation of Eq. (1) can be 
accomplished by introducing a length L, characterizing 
the distance over which the fields change appreciably, 
and by defining Bo to be a typical magnitude of the 
magnetic induction field. If the dimensionless quanti
ties rlL, votlL, BIBo, EIBo, and clvo are introduced into 
Eq. (1) and each dimensionless quantity is represented 
by the same symbol as is used for its dimensional 
counterpart, the resulting equation is formally identi
cal with Eq. (1) except that the symbol E now repre
sents the dimensionless parameter mcvoleBoL. Thus, 
€ measures the ratio of the Larmor radius ("":j mcvol 
eBo) to the characteristic distance L. Apart from mak
ing clear the physical significance of the parameter E, 

the dimensionless presentation has no particular 
advantage and Eq. (I) will be considered directly in 
dimensional form.12 

Expansion in Larmor Radius 

According to Berkowitz and GardnerS and to 
Kruskal,9 the seriesl3 

in which the Rn are coefficients to be determined, 

f = exp (iwo'T), 

Wo = BO/E, 

T(t) = {[B(Ro(t', f), t')/Bo] dt', 

and i = .J - 1, 

(4) 

(5) 

(6) 

(7) 

expresses a solution to Eq. (1) that is asymptotically 
valid when f --+ 0, or, in view of the discussion of the 
previous subsection, when 

E = mcvo/eBoL « I, (8) 

or when the Larmor radius is small and the fields vary 
slowly in space. 

In this expansion, B(Ro, t) = IB(Ro, t)1 and each 
Rn{t, E) can itself be expanded in a power series in E 
beginning with a term of zeroth order. Reality of ret) 
implies that 

(9) 

and in particular that Ro(t, f)-identifiable as the 
position of the guiding center14.l5-is real. Correctness 

of the expansion presupposes further that the fields 
satisfy16 

E(Ro, t). B(Ro, t) = O(E) (10) 

and that the fields vary slowly in time. [See Eq. (20).] 
In Eq. (10), the symbol O(f) stands for terms of order 
E and higher that are omitted. 

Equations for the Coefficients 

Following the procedure used by Kruskal, one finds 
equations determining the functions Rn by substituting 
Eq. (4) into Eq. (I), expanding the fields in a Taylor 
series about Ro, and equating separately the coeffi
cients of each power off Appropriate expressions for 
t and r, obtained by differentiating Eq. (4), are 

(11) 

and 

(12) 

where the operatorl7 

ffi fd.B 
.un = - - + In-

Eo dt Eo 
(13) 

has been introduced. A suitable expansion of B(r, t) 
about Ro can be obtained from the Taylor series18 

B(r, t) = B(Ro + I' E,n'rR", t) 

= exp (I' flnlfn~n)B(y, t), (14) 

where 

~n =·Rn • Vy (IS) 

and Vy involves differentiations with respect to the 
components of y; y is to be set equal to Ro after the 
derivatives have been evaluated.l9 As is explored in 
greater detail in the Appendix, the terms of the 
familiar expansion of the exponential in Eq. (14) may 
be rearranged to display explicitly the coefficient of 
each power off; the result is 

B(r, t) = 2 EllI~fnLA(,n{B}, (16) 

where Jl(,n is a differential operator that does not 
contain f but that does depend on Rn , Vy , and f. The 
operators Jl(,n are linear, mutually commuting oper
ators displaying in particular the property 

.;\(,! = .;\(,-11' (17) 

In Eq. (16) and subsequently, the symbol .;\(,n{B} 
represents a sequence of steps in which B is first 
evaluated at an auxiliary argument y and then, after 
differentiations with respect to the components of y 
have been performed, y is replaced with Ro. The 
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expansion 

E(r, t) = I €ln~"n.A{,n{E} (18) 

follows directly from Eq. (16). 
Equations (11), (12), (16), and (18) can now be 

substituted into Eq. (1). After a rearrangement of the 
summation indices in the term t x B, the coefficient of 
fn may be extracted to provide the equation20 

(j),YR" = (€c/Bo).A{,n{E/Bo} 

+ 2>lml-lnl+ln-ml(~)mRm) x c~n_m{B/Bo} 

(19) 

satisfied by R". Separation of Eq. (19) from the general 
equation, however, can be justified only if there are 
no terms in Eq. (19) that vary with a frequency 
comparable to that off, for the presence of such terms 
in Eq. (19) for any n would compel rejection of the 
method by which the coefficients of r were identified. 
If Bin Eq. (7) varies slowly in time, the integral may 
be evaluated approximately for short times by setting 
B = Bo; the variation of f is thus characterized 
approximately by the frequency OJo and correctness of 
Eq. (19) therefore requires (1) that the fields be 
restricted by the condition 

(20) 

where OJ1 characterizes the frequency of the field 
variation, and (2) that the solutions for Rn contain no 
terms varying with frequencies comparable to or 
larger than OJo. As will be later confirmed, elimination 
of rapidly varying terms in Rn provides the proper 
number of constraints to determine the additional 
constants that have arisen unavoidably in the replace
ment of a single second-order differential equation 
[Eq. (1)] by several such equations [Eq. (19)]. 

Summary of Procedure 

In summary, the method adopted involves solving 
Eq. (19), subject to the initial conditions of Eq. (3) and 
to the constraint that all terms in Rn vary slowly com
pared to the gyroperiod. The initial conditions cannot 
be imposed until after the R" have been substituted into 
Eq. (4), and the entire procedure is meaningful only 
when the fields vary slowly over distances comparable 
to the Larmor radius and over times comparable to the 
gyroperiod. 

III. THE CONSTANT FIELD 

Although the solution for the trajectory of a charged 
particle moving in a uniform magnetic induction field 
can be obtained more easily by much less powerful 
methods, a full solution for this almost trivial case 
provides a prototype calculation in which the method 

is not obscured by the details of algebraic manipula
tion. The appearance and elimination of rapidly vary
ing terms can be illustrated in a simple context. 
Furthermore, the solution in a uniform field is the 
zeroth-order approximation for the solution in a 
weakly inhomogeneous field. 

Consider then the field 

B(r, t) = Bok, E(r, t) = 0, (21) 

where k is a unit vector in the direction of the magnetic 
field. The conditions (8) and (20) are clearly satisfied, 
for L is infinite and OJ1 is zero. Given Eq. (A6) in the 
Appendix, one finds that Eq. (19) reduces t021 

(8YZ,,(t) - bnZr/t) x k = 0, (22) 
where 

l' € d . 
l> = -- + tn. 

n Bo dt 
(23) 

The general solution of Eq. (22) is most conveniently 
written in the form 

Z = a e e-i(n+])wol + h e e- itn - 1 )Woi 
n n + n -

where 
e ± = i =F ij (25) 

and t and j are unit vectors that together with k define 
a right-handed Cartesian coordinate system. Suppres
sion of terms varying as or more rapidly than exp (iwot) 
requires all of the constants except co, do, go, ho, b1 , 

and a_I to be zero. Furthermore, Eq. (9) then implies 
that b: = a_I' Imposition of the initial conditions 
leads ultimately to values for the nonzero constants, 
and the solution assumes the final form 

Zo = ro + (€/Bo)vo x k + to/k, 

Zl = (Z_l)* = -i(vo_/2Bo)e_, (26) 

Zn = 0, Inl ~ 2, 

where Vo_ = Xo - iyo and xo , Yo, to are the compo
nents of Vo. Equation (26) leads to the familiar helix 
when substituted into Eq. (4). 

IV. THE WEAKLY INHOMOGENEOUS FIELD 

Equations for the First-Order Correction 

Let the electromagnetic field now consist of a strong 
uniform magnetic induction field on which is super
imposed a weak and slowly varying, but otherwise 
arbitrary inhomogeneity, i.e., let 

B(r, t) = Bok + bBI(r, t), 

E(r, t) = bE1(r, t), (27) 

where k is a unit vector in the direction of the strong 
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component of the field, IBI(r, 1)1 is of order Bo, and 
d is a (dimensionless) small parameter.22 Furthermore, 
let23 

Rn(t, €) = Zn(t, €) + dFn(t, €) + O(d2). (28) 

Then, the expansions 

B(Ro, t) = Bot{ + dBl(Zo, I) + O(d2), (29) 

E(Ro, t) = dEl(Zo, I) + O(d2), (30) 

B( Ro, t) = Bo + M 13(ZO, t) + O(d2
), (31) 

T(t) = t + d {[Bla(t')/Bo] dt' + O(d2), (32) 

where 
(33) 

can be derived. 24.25 Substitution ofEqs. (13), (28), and 
(31) into Eqs. (4) and (11) and evaluation ofthe results 
at 1 = 0 lead to the conclusion that Zn must satisfy the 
same initial conditions as were imposed on the solution 
to Eq. (22); initial conditions on Fn will be presented 
in Eqs. (44) and (4S). 

Equations determining Zn and F n are obtained by 
substituting Eqs. (28)-(31) into Eq. (19) and extracting 
separately the coefficient of each power of d; the results 
are 

(En)2Zn - EnZn x t{ = 0, (34) 

EnEn±lFn± = An±, (3S) 

(En)2Fn3 = Ana, (36) 

where the + and - components of any vector A are 
defined by 

A± = Al ± iA2 (37) 

and the vector itself has the expression 

A = tA+e+ + tA3_ + Aa'" (38) 

Since Eqs. (34) and (22) are identical and are both 
solved subject to the same initial conditions, the 
solution to Eq. (34) is given by Eq. (26). Thus, An 
may ultimately be written as follows: 

Ao(1) = (€/Bo)Jfo{L/Bo} - i€2[Z_1 x .N\{BI/Bo} 

- Zl x oN' _l{Bl/Bo}], (39) 

Al(l) = -iZlEl{B13/Bo} + (€/BO)oN'l{L/Bo} 

-i€2Z_1 x .N\{B1/Bo} + iZl x oN'O{Bl/Bo}, (40) 

An(t) = (€/Bo)oN' n{L/Bo} - i€2Z_l X oN' n+1{BI/Bo} 

+ iZl X oN'n_l{Bl/Bo}, n ~ 2, (41) 
where 

(42) 

In Eqs. (39)-(42), oN' n is the operator obtained from 
.A(,n by replacing Rn with Zn; the notation .N' n {BI } 

implies the following sequence of steps: (1) evaluate 
Bl at r = y; (2) perform the differentiations implicit 
in oN' n; (3) set y = Zo. Explicit evaluations of oN' n are 
presented in the Appendix. Finally, initial conditions 
to be imposed on F n' determined by substituting 
Eqs. (13), (28), and (31) into Eqs. (4) and (11) and 
evaluating the results at t = 0, may be expressed in 
the form 

I €lnIFnCO) = 0, 

I €lnl-IEnFn(O) = -VOl.B13(0)/B~, 

(44) 

(4S) 

where VOl. = xol + Yol is the (vector) component of 
Vo perpendicular to the uniform field. In Eq. (4S) and in 
similar occurrences hereafter, En acts on F n before the 
indicated evaluation at t = O. 

Solution for the First-Order Correction 

In this subsection, the solution of Eqs. (3S) and (36) 
subject to the two requirements, (1) that no rapidly 
varying terms appear and (2) that the initial conditions 
of Eqs. (44) and (4S) be satisfied, is obtained. Partic
ular solutions to Eqs. (3S) and (36) are conveniently 
expressed in terms of an operator (En)-l whose action 
on a function !p(I) is defined by26 

where g;(w) is the Fourier transform27 of q.;(t) 

q.;(t) = (27T)-lJ dwe-i(ro-illltg;(w). (47) 

(A limit It - 0+ is implied but not written; the func
tion of It is to assure convergence of the integral for 
1 > 0.) The definition of Eq. (47) is consistent with the 
requirement that En(En)-lq.;(t) = q.;(t). Furthermore, 
(En)-l so defined is a linear operator and commutes 
with Em and (Em)-l for all m. Particular solutions to 
Eqs. (3S) and (36) now assume the forms 

Pn± = (En)-l(En±l)-lAn±, (48) 

Pna = (En)-2Ana , (49) 

respectively, which may be combined after the manner 
of Eq. (38) to produce 

Pn = (En)-2Anll + (En)-l(En_l)-l(En+1)-l 

x [Anl. x t{ + K"Anl.]' (SO) 
L = eEl + iot{ x Bl 

and An for n < 0 can be obtained from 
In Eq. (SO), Anll is the portion of An parallel to the 

(43) uniform field and Ad = An - Anll . 



                                                                                                                                    

990 DAVID M. COOK 

The general solution to Eqs. (35) and (36) is found 
by adding to each particular solution an arbitrary 
solution to the corresponding homogeneous equation. 
These complimentary solutions are readily determined 
by standard means, and one finds finally that 

F - P + A e-inroot + C e-i (n±l)root (51) n± - n± n± n± , 
F n3 = PnS + (An3 + Knwot)e-inwot, (52) 

where An±, Cn±, An3 , and Kn are integration constants. 
It will now be argued that (&n)-I!p(t) is slowly vary

ing (in time) if !p(t) is itself slowly varying. If Eq. (46) 
defining (&n)-I!p(t) is evaluated as a contour integral for 
t > 0 (the only region of interest), the contour must be 
closed in the lower half w plane. The obvious singu
larity of the integrand, however, lies in the upper 
half w plane. Thus, only the singularities in ip(w) that 
occur in the lower half w plane will contribute. If !pet) 
is slowly varying, the Fourier transform ip(w) must be 
small, except when Re w is itself small. The only 
significant values of w in the integral of Eq. (46) are 
small and (&n)-I!p(t) is therefore slowly varying 
(Q ED). 

Since the fields and Zn(t) are slowly varying, An, 
which depends on the fields and on Zn, must be 
slowly varying. Applying the arguments of the previous 
paragraph to Eqs. (48) and (49), one concludes that 
Pn must be slowly varying and finally that Eqs. (51) 
and (52) display explicitly the rapidly varying terms in 
the general solution for F n' Suppression of these terms 
is accomplished if all constants except Ao±, CI _, 

C_1,+, Aoa , and Ko (hereafter, A±, C_, C+, As, and 
K) are zero. The most general solution for F n con
sistent with the absence of rapidly varying terms is 
therefore given by 

Fn = Pn + [A + KWotk]On.o 
+ tC_e_on.1 + tC+e+on._1 , (53) 

where 0 m is zero if n :;e m and one if n = m. Sub-n. 
stitution ofEq. (53) into Eqs. (44) and (45) leads to the 
expressions 

C = [B13(0)BQ2vo + L e1nH&nP"(0)] x k, (54) 

A = -eC - ~>lnIPn{O), (55) 

K = - L e1nl&nPn3(0), (56) 

for the constants C, A, and K. 
Taken together, Eqs. (39)-(41), (50), and (54)-(56) 

permit the solution of Eq. (53) to be expressed directly 
in terms of the field inhomogeneities; the result is the 
goal of this subsection. 

Position, Velocity, Acceleration 

In this subsection, some of the results for the posi
tion, velocity, and acceleration of the charged particle 

will be compiled and a few of them will be expanded 
to obtain the first few terms in a power series in e. 
When Eqs. (53) and (26) are substituted into Eq. (28). 
one finds 

Ro = Zo + o[Po + A + KWotk], (57) 

Rl = (R_1)* = OPI + De_, (58) 

Rn = oPn' Inl 2 2, (59) 
where 

2D = -(ivO-/Bo)[1 - O(BIS(O)jBo)] 

+ iO L e1n l-1&nPn_(0), (60) 

for the coefficients in Eq. (4). The coefficients in Eqs. 
(11) and (12) then have the expressions 

j)oRo = o&oPo + k[(eio/Bo) + oK], (61) 

j)lRI = (j)-lLI )* 

= O&IPI + iD[1 + O(B13/BO)]e_, (62) 

j)nRn = b&nPn, Inl 2 2, (63) 

(j)n)2Rn = o(&n)2Pn, n:;e ± 1, (64) 

(j)1)2R1 = [(j)_1)2L1]* 

= O(&1)2PI - D[1 - iO&2(B13/Bo)]e_. (65) 

Substituted into Eqs. (4), (11), and (12), Eqs. (61)
(65) lead to expressions for r, t, and r as explicit 
functions of El and BI . In this context, f is obtained 
from Eqs. (5) and (32). The results at this point include 
terms of all orders in e but only of zeroth- and first
order in O. 

Certain of these results are more useful when ex
panded in powers of e. The resulting double expansion 
in the two parameters € and 0 can be justified only if 
e and 0 are independent. Now, e as given by Eq. (8) 
depends on Bo and L (which might depend on 0) but 
also depends on Vo. Since Vo is certainly independent of 
the field, e is independent of 0 (which is determined 
exclusively by the field) as required. 

A few preliminary expansions facilitate the later 
expansion of Eqs. (64) and (65). With reference to 
Eqs. (10), (39)-(41), and (A 10) , one finds first that 
E13 = O( e) and then that 

(BoMAo = (I + e2{{*)(L/Bo) 

- He IVo.l.12/B~)VB13 + 0(e3
), (66) 

A = _ iVO-(B k _ ie dBl3 e_} 
I 2B~ 1+ Bo dt 

+ ;2 ,(L) + 0(£02
), (67) 

o 

An = (n !)-1{n-l[t(ivo_n/B~)(B13e_ - B1+k) 

+ (EIB~)'(L)] + 0(e2
), n ~ 2. (68) 
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Equation (43) permits determination of An for n < O. 
In Eqs. (66)-(68), all fields are evaluated at (Zo, t), 
V differentiates with respect to the components of ro, 
and ,= _ iV6_(~ + i~). (69) 

2B6 aX6 aY6 

The Maxwell equation V • B = 0 was used in obtaining 
Eq. (67). Furthermore, Eq. (23) supports the ex
pansion 

(Sn)-l = _ ~ f (~)m (!f)m 
n m=6 nB6 dt 

(70) 

when n ~ 0, and Eq. (46) leads to 

(S6)-lrp(t) = (B6M {rp(t') dt' + (E6rlrp(0), (71) 

where the second term on the right is simply a constant 
whose value is related to the behavior of rp(t) for t < 0; 
the disappearance of constants of this sort from all 
expressions having physical significance supports an 
earlier conjecture (Footnote 27) that the results are 
insensitive to the manner in which the electromagnetic 
field is established. If the quantities 

cx(t) = eE13 _ IV6l.12 aB13 , 

E 2Bo. azo. 
(72) 

can be obtained from Eqs. (50) and (66)-(68); the 
Maxwell equations V • B = 0 and V x cE = -aB/at 
have been freely used. Finally, Eqs. (75)-(79) lead to 
the expansion 

- c5 L_(O) + O(Ec5) (80) 
2B~ 

when substituted into Eq. (60). 
The expansions of the previous paragraph now can 

be combined with Eqs. (64) and (65) to yield ultimately 
the expressions 

t'J)I)2R1 = X[-b B1+ k + e_(1 + t c5 B13 - B13(0) 
Bo. B6 

- J! t~(t') dt') + O(Eb)] + 0(b2
), (82) 

2Bo. Jo 

~(t) = eV • El - io.(V X Bl)3, (73) where Eq. (83) applies for n ~ 2 and 

Y n(t) = [n/(n - 1)]B13e_ - B1+~ 

are introduced, then the additional expansions 

Bo. 
- So.POl. 
E 

= L x ~ + ~ dLl. 
B6 B~ dt 

+ E /Vo.l.12 ~ x VB 
2B~ 13 

E21vo.l.12 d V B13 

- 2B~ dt l. B;; 

(74) 

+ E2( ,~* -~~ ::2)(~o. x ~) + 0(E3), (75) 

(Bo./E)So.Po.lI = (Eor1Ao (0) + k ltcx.(t') dt' + 0(E2), 

(76) 

SIPll. = -(ivo._e_/4B~)[ -iB13 + It~(t') dt' 

+ (E/Bo)(Eo.)-I~(O) + O(E»), (77) 

<' Vo.-1{(l iE d)B O( 2) °lPlll = - -2 + - - 1+ + E, 
2Bo B6 dt 

(78) 

EnP = (vo_n/2n! B~)~n-ly n + O( E), n ~ 2, (79) 

x = ivO- (1 + ,5 B13(0») + ,5 L_(~) . 
2Bo Bo 2Bo 

(84) 

Values for n < 0 may be calculated from the relation 

Substitution of Eqs. (81 )-(83) into Eq. (12) gives 
finally the acceleration of the charged particle as an 
explicit function of time. 

The Transverse Drift Velocities 

The familiar drift velocity of a charged particle can 
be extracted from the above results. The vector Ro. has 
already been identified as the position vector of the 
guiding center.28 The velocity of the guiding center is 
thus Ro and its component normal to the magnetic 
induction field-the drift velocity vd-is given by 

Expanded to first order in 0, this expression becomes 

V'i = U - 00POl. - Zo - + 0 u-). .I: (Bo <' • Btl.) (J;.9 
E Bo 

(87) 



                                                                                                                                    

992 DAVID M. COOK 

Substituting from Eq. (75), one then finds that 

Oe l' E O€e dEl.L O€ZO l' dBl.L 
Vd = - - K X Il + - - + - K X --

Bo B~ dt B~ dt 

O€ IVO.L12 l' VB 0€21 vOl12 d V BI3 + KX - --
2B~ 13 2B~ dt l Bo 

+ 0€2(a* - ~ d
2

2) (~x k) + 0(0€3, ( 2). 
Bo dt Bo 

(88) 

The first four terms on the right-hand side of Eq. 
(88) are to be compared with the usual first-order 
drifts. When expanded through terms of order (j in 
the weakly inhomogeneous field, Chandrasekhar's 
results29 for the electric and gradient drifts lead to 
expressions identical to the first and fourth terms in 
Eq. (88); his results for the polarization (p) and 
curvature (e) drifts become3o 

v = (j (€C dEl + O( €2») + O( (j2), (89) 
p B~ dt 

Vc = (j(€i~k x oBl.L + 0(€2») + 0«(j2). (90) 
B~ azo 

These results agree with the second and third terms in 
Eq. (90) if it is noted (1) that 

~ = ~ + zoJ... 
dt at oZo 

(91) 

when the time derivative acts on a field evaluated at 
space-time argument (Zo, t), (2) that Chandrasekhar's 
results are restricted to a static magnetic field 
(oB/ot = 0), and (3) that E13 is O(€), thereby per
mitting replacement of El with Ell in Eq. (89). On the 
basis of the present calculation one concludes that, 
when the fields vary slowly in time as well as space, 
both the polarization and the curvature-drift velocities 
are determined by the time derivative of the fields as 
seen from a frame of reference fixed with respect to 
the guiding center. 

The remaining terms in Eq. (88) express contri
butions to Vd that are second order in Larmor radius; 
the present result thus goes beyond the usual first
order orbit theory. In contrast to the first-order drifts, 
which involve first derivatives of the fields, these 
second-order terms involve second derivatives of the 
fields. 

A Constant Inhomogeneity 

An inhomogeneity in which Bl is constant and El is 
zero provides a second point of contact between the 
above results and exactly known solutions. No 
generality is lost by selecting a coordinate system in 

which the field Bl lies in the (y,z) plane. Thus,let 

B = (Bo + OB13)k + (jBI21, 
E = O. (92) 

With reference to Eqs. (39)-(41) and to the Appendix, 
one then finds that only A_I, Ao , and Al are nonzero. 
Upon substitution into Eq. (50), the values obtained 
for An lead to 

Po = [ZOB12(t - T)/Bol1, (93) 

PI = P~1 = - tVo_B12k/ Bg, (94) 

Pn = 0, Inl Z 2. . (95) 

Here the constant T arises from a term like the second 
term on the right in Eq. (71); its value is related to the 
manner in which the constant field is turned on and 
does not influence the final result for the trajectory. 
Substitution of Eqs. (93)-(95) into Eqs. (54)-(56) and 
(60) leads to an evaluation of the constants C, A, K, 
and D. Finally, all of these results can be substituted 
into Eqs. (57)-(59) to obtain, for the nonzero values 
of Rn , the expressions 

Ro = fO + (€/B~)[1 - o(BdBo)][(YoBo - OZoB12)1 

- ioBoJ + OioB12k] + zot[k + 0(BI2/Bo)j] 

+ (j Yot(BI2/ Bo)k + 0(02), (96) 

Rl = R~\ = -!(OVO_B12/B~)k 
+ te_[ -(lVo-/Bo)(1 - 0(BI3/BO» 

+ (OioBl2!B~)] + 0(02). (97) 

When evaluated via Eq. (32), the function T is 

T = t[1 + 0(BI3/BO)] + 0(02). (98) 

These results are correct to all orders in €. 

These same results can be obtained by applying Eq. 
(26) to the present field. The symbols in Eq. (26), 
however, must be interpreted in terms of a coordinate 
system defined by the total field rather than by the 
strong component of the field alone. Furthermore, 
the symbol Bo in Eq. (26) must be interpreted as the 
magnitude of the total field. With these recognitions, 
one can expand Eq. (26) in a power series in (j to obtain 
Eqs. (96) and (97). With similar treatment, Eq. (7) 
leads to the same function f as does Eq. (98). 

V. SUMMARY 

The object of the present paper has been to derive 
analytic expressions for the acceleration of a particle 
moving nonrelativistically in a (prescribed) weakly 
inhomogeneous electromagnetic field. The final solu
tion is obtained by substituting Eqs. (81)-(83) into 
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Eq. (12). The function I is determined by substituting 
Eq. (32) into Eq. (5). Incidental to the main objective, 
it has been pointed out that, in the presence of fields 
varying slowly in time, the polarization and curvature 
drifts involve total time derivatives of the fields as 
seen from the guiding center of the particle trajectory. 
Furthermore, expressions for the drift velocities to 
second order in Larmor radius have been presented 
[Eq. (88)]. 
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APPENDIX: EVALUATION OF THE 
OPERATORS .ALn AND .N'n 

Equations (14) and (16) together define .A(,n; as an 
operator relation, this definition is 

exp (L' e1n1r;n) = I eln~r.A(,n· (A 1) 

One basic property of .A(,n reflects Eq. (9). With refer
ence to Eqs. (5), (7), and (9), one finds first that 
1* = 1-1 and then that the left-hand side of Eq. (AI) 
is invariant to complex conjugation. Similar invariance 
of the right-hand side requires that 

,,1{,_n = .A(, ~ . (A2) 

Here, as elsewhere in this paper, the separate equating 
of coefficients of different powers of lis justified by the 
same conditions as are presented in the paragraph 
containing Eq. (19). 

Additional properties of these operators can be 
demonstrated more easily with reference to the 
equation 

00 

I e1n'fn.A(,n = L [(j !)-l(L' elp'fp~p)j], (A3) 
j=O 

obtained by expanding the exponential in Eq. (AI). 
The operator .A(,n is to be obtained by reordering the 
terms in the right-hand side of Eq. (A3) so as to sort 
out the coefficient of the quantity e1n!{n ,31 From this 
procedure and from the linearity of ~ n' one concludes 
that the .M,n will themselves be linear operators. 
Furthermore, because none of the coefficients in Eq. 
(A3) depends on the auxiliary variable y, the .M,n will 
commute among themselves. 

Still further features of the operators .A(,n can be 
inferred ifthejth power of the primed sum in Eq. (A3) 
is written as a j-fold sum 

(- . . )i = I' ... L' (€Iilpi'JIjP'1ti~P)' (A4) 
:PI Pi 

where the index i assumes values 1 5: i 5: j. The 
contribution of this term to the coefficient of fn in Eq. 

(A3) is composed of all terms in the multiple sum for 
which LiP; = n. Since Li Ipil and "i,iPi are both even 
or both odd, all terms in the coefficient of r will 
contain only even or only odd powers of e according as 
n is even or odd. Furthermore, since Ilpil 2 ILPil, 
the power of e appearing in each term that makes a 
contribution to the coefficient of fn is at least as great 
as Inl. These conclusions apply for allj. Consequently, 
the explicit appearance of a factor e1nl in the left-hand 
side of Eq. (A3) means that each .A(,n will be an even 
power series in € starting with a term of order eO. 

The explicit expansion of the right-hand side of Eq. 
(A3) in powers of e is facilitated by noting that all 
terms in thejth power of the primed sum involve e to a 
power at least as great as j(IPil 2 1) in Eq. (A4). 
Hence, the jth term in the right-hand side of Eq. (A3) 
will contribute only if the expansion is carried to order 
ei or higher. A more detailed evaluation of the first 
few operators leads to 

,,1{,o = 1 + e2~ICl + e4(~2~_2 + Hiel 

+ g~~-2 + M2e-l ) + O(e
6
), 

.A(,1 = ~l + e2(~2Cl + Hi~-l) + O(e4
), 

.M,2 = ~2 + Hi + e2(M~~_l + ~3Cl + ~2;1~-1) + O(e4
), 

.A(,3 = ~3 + ~2~1 + -gr + O(e2
), 

.,1(,4 = ;4 + ;:1;1 + H; + H2;i + UJ;~ + O(e2
). (AS) 

.A(,n for n < 0 may be found by using Eq. (A2). Since 
every term in .A(,n for n :;i: 0 and all but the first term in 
.A(,o contain at least one derivative (Le., one power of 
~), 

(A6) 

where C is a constant vector. 
The expansion of Eq. (A3) becomes particularly 

tractable when the Rn have the form given in Eq. (26), 
for the primed sum can then be raised easily to any 
power by the binomial theorem. Thus, 

(A7) 

where oN' n is the operator obtained from .A(,n when 
Rn is replaced with Zn and ~ = Z1 • VI/' Rearrange
ment of the summation indices leads ultimately to the 
expressions 

00 ys+r(y*)s-r 
M> _ '" 2s-12rl __ "'_,-"'-,-__ 
", 2r - k, e , 

s=Iri (s+r)!(s-r)! 
(AS) 

00 ,s+r+l(,*)8-r 
~() '" i s+1-12r+ll ---'----=--'-----", 2r+l = k, 

2s+1=12r+ll (s + r + 1)! (s - r)! 

(A9) 
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More explicitly, the first few of these operators are 

.N'o = 1 + €2{{* + !€4({{*)2 + O(€6), 

.N'l = { + t€2,2,* + O(€4), 

.N'2 = t{2 + i€2,3{* + O(€4), 

.N' n = (n!)-l,n + O(€2), n ~ O. 

(AlO) 

The operators oN' -n are obtained from those given 
through the use of Eq. CA2). 

* The work here reported was begun while the author was a 
predoctoral student at Harvard University and, in substantially 
different notation, was a part of his doctoral dissertation. Fellowship 
support from the National Science Foundation and from Harvard 
University during the author's graduate study is acknowledged. 
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The semigroup generated by the linear transport operator is approximated by the corresponding 
discrete linear transport process. It can be shown that, in the case of a 2-dimensional fl space (x, fl), 
the generating operators converge and the discrete linear-transport process is uniformly quasi bounded. 
A stability condition can be formulated. 

1. INTRODUCTION 

The transport of neutrons, electrons, ions, and 
photons in matter has the following common features: 
(1) These particles move on a straight line with constant 
velocity; (2) They can collide with particles of the 
supporting medium resulting in absorption, scattering, 
or multiplication. We are interested in the time 
development of the particle density-function n(x, v, t). 
This is a function in the 6-dimensional ft space of 
statistical mechanics: (x, v) E Ro, x = (Xl' xz, xa), 
and v = (VI' V2 , V3). Then n(x, v, t) is a solution of an 
equation of integro-differential type1 : 

on 
- = -(T + A)n, ot 

Tn = v grad", n, (Ll) 

An = v L (v) - Lv' Ls (v', v)n(x, v', t) dv'. 

The operator T corresponds to the motion on a 
straight line with constant velocity; the operator A 
corresponds to the collision process. L (v) is the total 
cross section for any collision process and Ls (v', v') is 
the differential scattering cross section, if no multi
plication occurs. If multiplication by fission occurs, 
then we have to add the corresponding term to Ls. 
We shall assume that the # space is not all R6 , but a 
compact subset of it: R x S, R being a bounded, 
closed, and convex subset of R3 , and S the 3-dimen
sional sphere with radius vmax • 

We shall choose as space of functions n(x, v, t) the 
Banach space X = P(R x S), P ~ 1. Then n(t) is a 
vector-valued function from t ~ 0 to X. If we replace 
the partial derivative by the strong derivative in X, we 
get the following abstract Cauchy problem2•3 

n(xB , v I) == 0, XB being a point on the boundary of R 
and VI pointing to the inside of R. This restriction 
corresponds to the situation that R is imbedded into 
a collision-free medium having no particles at t = O. 
The operator T + A with this domain is not normal. 
Because of this property it is very interesting to ask 
for the spectrum of T + A and for the semigroup 
V(t) = exp [- (T + A)t] generated by - (T + A). 
Another problem would be to find an approximating 
discrete semigroup Vn(hn ), because then we are able 
to decide whether a numerical calculation made on a 
computer makes Vn(kTn) converge to Vet), if n --+ 00 

in some sense. Problems of similar kind are treated in 
Refs. 3 and 4. Vn(hn) is defined and described in 
Sec. 4. 

The aim of this paper is to construct an approxi
mating sequence of discrete semi groups Vn(kr n) that 
converges to Vet) for n --+ 00 and to formulate the 
stability condition. We find it more convenient not to 
treat the problem in full generality, but to restrict to 
the monoenergetic problem of plane geometry with 
isotropic scattering: 

R = (x: Ixi sa), S = (ft: Iftl S 1), 

n = n(x, ft, t), 

Ii = -(T + A)n, 

nCO) = no E D(T + A), 

on 
Tn =11.

r ox' 

i+l 

An = n - ic n(x, ft', t) dft', 
-1 

c > o. 

(1.3) 

The operator T + A has as domain all functions that 
are absolutely continuous in x for all ft, such that 
(T + A)n EX, n( -a, ft > 0) == 0, and 

n( +a, ft < 0) == o. Ii = -(T+ A)n, 

nCO) = no E D(T + A). (1.2) The spectrum of the operator has been studied.5 

The domain of T + A consists of all n E X such that 
(T + A)n makes sense and (T + A)n E X. We restrict 
D(T + A) further to all n(x, v) E X such that 

Remark: If we substitute for n, 

n(x, ft, t) = e-tcp(x, ft, t), (1.4) 

995 
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then we get the problem 

if! = -(T + A1)cp, 

rp(O) = no E D(T + A1), 

ocp 
Trp=p,ox' (1.5) 

So the semigroup generated by -(T + A1) is written 
V1(t), and the corresponding approximating semi
group V1",(kT "'). The result of this paper is the con
truction of an approximating linear-transport process 
V1", or V", depending on the discrete time interval T "'. 

With this matrix V1n or Vn we can find the particle 
distribution at a certain time kTn (k = 1,2, ... ), if the 
initial distribution g at k = 0 was given. If the process 
tends to an equilibrium, we should calculate 

Vn(kTn)g = [V(TnWg 

for large k, like the neutron distribution in a critical 
reactor. The stability condition (5.24) is a sufficient 
condition for the convergence of the approximation 
procedure for Tn--+- 0 (n --+- 00). 

2. THE COLLISION-FREE TRANSPORT-

We have to show that, if g E X, then 

nEX= L'(R x S). (2.5) 

Substituting x - ~ = t, we get 

In(x,fJ,)1 :::;; f+"exp (- ~ t) Ig(x - t,p,)1 dt, 

for p, > O. (2.6) 

We define g(x, p,) = 0, if Ixl > a and so we can write 

In(x, p,)1 :::;; ; LX) exp ( - ~ t) Ig(x - t, p,)1 dt, 

for p, > 0, (2.7) 

A similar result holds for p, < 0 and so we get, for all 
the p, range, 

Ilnll ~ fJ- 1 Ilgll, 
II (T + A)-III ~ IRe (A)]-l. (2.9) 

OPERATOR T Next we shall prove that every J. with fJ = Re (J.) < 0 
If we choose p = 1 in X= P(R x S), then the belongs to the spectrum.Weconstructasetoffunctions 

norm of this Banach space equals the total number of depending on the parameter 15 > 0 with the properties 

particles in R x S, if n(x, p,) ~ 0: 

f
+1 f+U 

JlnlJ = -1 dp, -a dx In(x, p,)I· (2.1) 

Theorem 1: The operator - T decomposes the 
spectral plane in the spectrum L (- T) = (J.: Re (J.) ~ 
0) and the resolvent set P( - T) = (J.: Re(J.) > 0). 
For every J. E P( - T) we have 

(2.2) 

Proof" Take any J. with fJ = Re (J.) > o. We shall 
show it belongs to P( - T). The equation 

(T + A)n = g, g EX, (2.3) 

has the formal solution 

for fJ, > 0, 

1 f+u (A ) = - ; J" exp -; (x -~) g(~, fJ,) d~, 

for fJ, < o. (2.4) 

We defineS 

IJnb\l ~ C > 0 ,for 15 < 150 , 

lim \I(T + A)nd\l = O. (2.10) 

1 
nix, p,) = - exp [-(A/p,)(x - a)](x + a)/a, 

CJp, 

Then we get 

IIn~(x,p,)11 

=0, 

for CJ2 < p, < 15, 

otherwise. (2.11) 

=- d,u- exp --(x-a) --dx llb 1 ita (fJ ) x + a 
() b" P, -u p, a 

=! (<l{2 +L[exp (2a (J) -lJ}dP, 
15 J6" - (J OC{J2 P, 

>- --- dp, ll<l( 2 P, ) 
- 15 6" -{J a{J2 

= 2 (1 -15) - ~ (15 - ( 3
) --+-.1.- > 0, 

-{J 2a{J -{J 
for b--+-O. (2.12) 
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Then we have to calculate 

(T + A)nd = 1. exp (- ~(x - a»), 
<5a ft 

(2.13) 

and 

II(T + A)n611 

= - dft dxexp --(x-a) 1 Id i+a ({3 ) 
<5a ~z -a ft 

= _1 (6 ft(1 _ exp (2a (3)) dft 
- {3<5a Jb" ft 

S-1- (6p,dp,=_1_(d_<53)-+0, for <5-+0. 
-{3<5a Jb' -2{3a 

(2.14) 

Since ~ ( - T) is a closed set, it equals the set 
(A: Re (A) SO). QED 

So - T satisfies the condition of the Hille-Yo sid a 
theorem (Appendix A), and - T is the infinitesimal 
generator of a semigroup 

V(t)no(x, /1-) = e-Ttno(x, /1-) = no(x - /1- t, /1-). (2.15) 

Of course, this semigroup describes the collision-free 
motion of particles in /1- space. For the general T from 
(Ll) we would get the semi group 

V(t)no(x, v) = no (x - vi, v). (2.16) 

This has been known since the work of Case et al. 
{Ref. 6). 

3. THE TRANSPORT OPERATOR T + Al 

We are now interested in the solution of the abstract 
Cauchy problem with the infinitesimal generator 
- (T + AI)' We can try to regard Al as a perturbation 
to the operator T. 

Theorem 2: Al is a bounded operator equal to 
cP, where P is a projection in X 

Proof: If u = Alv, V E X, then 

u(x, /1-) = cPv(x, /1-), 

Pv(x, ft) = t L:IV(X, ft') d/1-', 

IIPvl1 S IIvll· 

(3.1) 

Taking vex, p,) == 1, we get IIPII = 1. For Al we have 

p2 = P follows from an easy calculation. 

(3.2) 

QED 

Due to the theorem of Appendix B, - (T + AI) is 
the infinitesimal generator of a semigroup 

Vit) = e-(T+Allt, 

II V1(t) II S e-ct
• 

Remark: For the operator A we get 

Vet) = e-(T+Alt = ete-(T+A1lt, 

(3.3) 

II V(t)1I S ell-cIt. (3.4) 

This is the best estimate for II V(t) II : Just choose as 
the initial distribution a cloud of particles having a 
finite distance from the boundary of R. Then the 
particles behave for a short time as if they are in an 
infinite medium, that is, 1\ V(t) II = e(l-C)t. 

4. THE DISCRETE TRANSPORT SEMIGROUP 

We are going to construct the discrete transport 
semigroup UnCh .. ) approximating VCt), and then the 
corresponding one Vn(hn) for Vet). The p, space 
R x S is divided into a finite number of cells by 
chopping the x interval [-a, +a] into m .. equal parts 
and the ft interval [-1, + 1] into 2m~ + 1 equal parts. 
h .. and h~ are the length of these parts, that is, 

h = 2a h' = 2 (4.1) 
n 'n 

m.. 2m~ + 1 

Then each cell can be labeled by a pair of integers 
(i,j): i = 1,'" ,m .. and j = -m~_l"" , -1,0, 
+ 1, ... , +m~. The number of particles in cell (i,j) 
is written ~i.i' We define the set of all vectors (~i.j), 
~i.; real, the Banach space X .. , by introducing the 
norm 

v = (~i.1)' 

Ilvll = I l~uI· (4.2) 
i.1 

To the operator T E C(X) [where C(X) is the set of all 
closed operators from X into X], there corresponds a 
matrix operator Tn E B(Xn) [where B(X) is the set of 
all bounded operators from X into X]: 

v = Tnu, U = (~i.i)' V = ('fji), 

_ 'h ' ~i.j - ~i-;,j _ h~ (I: 1:) 
'f/i,j - ] n 'h - h ~i.; - <;;i-; i , 

] n n 

(4.3) 

with the convention ~i.i = 0, whenever i < 1 or 
i > mn • This takes care of the boundary condition 
that no particles enter R through the boundary of R. 
- Tn is the generator of a semigroup V nC T .. ) defined by3 

U .. = Un(Tn) = 1 - TnT .. , (4.4) 

V = U .. u, u = (~i.i)' V = ('fji.i), 

'f/i,; = ~i,j - 7' n(h~/hn)(;i,; - ;i-j,j)' (4.5) 
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Let us choose Tn such that T nh~h;/ = 1 for each value 
of n = I, 2, .... So we get a connection between the 
discrete time interval Tn and the cell widths hn and 
h~. We get 

'Y/i.1 = ~i-;,j' (4.6) 

We should have expected (4.6), because for -T the 
semigroup U(t) has the property 

U(t)n(x, ft) = n(x - ft t , ft) (4.7) 

that corresponds exactly to Eq. (4.6). 
We turn now to the operator T + A and construct 

Lemma 1.' The operator P n has the following 
properties: 

(a) IIPnl1 = 1, 
(b) IIPnull-- IIuli for n -- 00, 

(c) there exists for every v E Xn a u E X such 
that V = PflU, (5.3) 

Proof: 
(a) For every u E X we have 

~i,j = i dx i dftu(x, ft) 

the corresponding matrix operators Tn + An as and 

v = (Tn + AJu, u = (~i.i)' V = ('Y/i.1), 
h' +m,,' 

'Y/i.i = h: (~i.; - ~i-;,i) - !Cl=~}i.lh~ + ~i,;. (4.8) 

Then -(Tn + An) is the generator of a semigroup 
Vn(Tn), that is, 

and 

Vn = Vn(Tn) = 1 - Tn(Tn + An), 

V = Vnu, U = (~i.;), V = ('Y/;,,), 

+mn' 

'Y/i,I=~i-i,j+tc ~ ~i,ITnh~-Tn~i.j' (4.9) 
l=-mn' 

We define Ain by 

v = AInU, n = (~i.j), V = ('Y/U), 
+m,/ 

'Y/,.i = - ic I ~'.lh~. (4.10) 
l=-mn' 

- (Tn + AIn) is the generator of a semigroup VIne Tn), 
where 

Vln = VIn(Tn) = 1 - Tn(Tn + A1n). (4.11) 

Finally we remark that we have 

Vn(kTn) = [Vn(Tn)]k, VIn(kTn) = [V1 .. (T .. )Jk. 

5. CONVERGENCE AND STABILITY 

IIPnu11 = ~ I~i,il = ~ I (.dx (dftu(x, ft) I 
.,1 •• j J, J, 

~ ~ (.dx r dft lu(x, ft)1 = /lu /I. (5.4) 
t" Ji Ji 

If we choose u(x, ft) = 1, we see that /lp .. 11 = 1. 
(b) First, for every u(x, ft) ~ 0, we get 

IIPnu/i = /lu/I. (5.5) 

Every U E X has the form u = u+ - u_, u+ ~ 0, and 
u_ ~ 0. So we get 

IlPnu/i = /lPn(u+ - u_)11 = IIPnu+11 + IIPnu-l1 

= Ilu+1I + IIu-ll = lIuli. 

(c) For every v EX .. , we take,for u(x, ft), 

u(x, p) = ~ ~i,iXi.i(X, p), (5.6) 
i,; 

where Xu(x, ft) is the characteristic function of all 
(i,j). 

Definition.' A sequence Un E Xn is said to converge to 
u EX, iff 

(5.7) 

Let X = VCR x S) and Xn = Cmnxm,,' be the set of Lemma 2: Every P nU converges to u. 
all (m .. x m~-dimensional vectors v = (~i.i)' i = 1,'" , 
mn and j = -m~, ... , -1, 0, + 1, ... , +m~, with This follows from the definition and requires no 
the corresponding norm, calculation. 

i. , 

Let P n be the operator from X into X n: 

v=p .. u, UEX, V=(~i.i)EXn' 
and 

~i,j = i dx 1 dp u(x, p), 

where the integration is over the cell (i,j). 

(5.1) Definition.' The sequence An E B(Xn) is said to con-
verge strongly to A E C(X), iff 

IIA .. Pnu - PnAuil -- 0, for n -- 00 

and every u E X. (5.8) 

(5.2) Lemma 3.' Tn converges to T for all u of a core of 
D(T). (A core of a closed operator T is a dense subset 
of the graph of T.) 
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Proof: If we set 

and 

T"P "u = ('YJi,;)' 
h' 

'YJi,; = h "(~i,j - ~i-j,j), 
n 

PnTu = (~i,;), 

t: -ld Id oU(X,f.l) 
'>i.; - x f.lf.l 0 ' 

i; x 
then we form 

'Y/i,; - ~i,i 

= h~[ ~ dx f df.lu(x,f.l) - ~ dx f.df.lU(x,f.l)] 
hn Ji Ji Ji-I Jj 

(5.9) 

(5.10) 

Proof: 

U = (~i.i)' V = ('Y/i.i)' 

v = [1 - T "(T,, + Aln)]u, (5.17) 

Ilvll = L l'YJi,;1 ~ L I~i-j,jl + tCT n L L I~t.d h;, 
i,j i,j i,; ,. 

~ Ilull + tCTn(2m~ + l)h~ Ilull 

= (1 + CTn) Iluli. 

So we finally get 

and 

(5.18) 

(5.19) 

(5.20) 

-J.dX f df.lf.l ou(x,f.l) and if we put 
i J; oX sup(l + CTn)(Tn)-l = eC, 

=J'dX f df.l[h~(U(X'f.l) - u(x - jh~,f.l» - f.l on(x,f.l)] 
i J; hn ox 

=J.dX f df.l[jh~ -}:- ['" ou(a,f.l) da - f.l on (X,f.l)]' 
i J; jh).,....jnn ox ox 

(5.11) 

The polynomials form a core of T. If we substitute for 
u(x, f.l) a polynomial, then the argument of the integral 
is uniformly convergent, so that we get 

(5.12) 

Theorem 3,' Tn + An converges to T + A for all u 
of a core of D(T). 

Proof' Tn --:- T (where -;+ means convergence in the 
strong sense) follows from Lemma 3, so we have only 
to show that 

An~A, 
8 

+mn' 

'YJi,; = -tc L ~i.!h~ + ~i,j, (5.13) 
l=-mT/' 

P nAu = (~;,;), 

~i'; = i dx 1 df.l[ -tc L:lU(X, f.l') df.l' + u(x, f.l)] 

+mu' 

= -tch~ L ~i,! + ~i.i' (5.14) 
l=-m n' 

so we get 
'YJi.; - ~i.i = O. (5.l5) 

Theorem 4: Vln( T n) = I - T "(T,, + Al,,) is uni
formly quasibounded, i.e., 

n-+oo 

(5.21) 

For Vn(T"k), we have 

IW,,(h n)11 ~ e(C-l)kTn, (5.22) 

with (J = C - 1, and independent of k and n. 

We can now apply the theorem of Appendix C, and 
we get that 

(5.23) 

where the limit has to be taken in the sense of Appendix 
C. The stability condition (which corresponds to the 
uniform quasiboundedness) is 

Tn = h~/hn ~ 0, for n ~ 00, (5.24) 

meaning that we have to make the division in the f.l 
direction finer than that in the x direction. The 
stability condition is a sufficient one for the converg
ence in the above sense of the approximation pro
cedure. In other words, if we violate the condition 
(5.24) by an inappropriate choice of Tn' h~, and h", 
with T nh" ¥: h~, we cannot expect, in general, that the 
procedure converges for Tn-the time interval-tending 
to zero. If in a certain approximation of the linear 
transport process Tn and hn-the time interval and the 
x interval-are given, then we have to choose h~
the f.l interval-such that (5.24) is satisfied to be sure 
that a numerical calculation will give better and better 
results for n ~ 00. 

For more details, see Ref. 4. 

APPENDIX A 
IWln(h n)11 ~ efJkTn, 

where (J does npt depend on k and n. 
(5.16) Theorem3: If TE C(X) with a dense domain D(T), 

if the negative real axis belongs to the resolvent set P 
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(T), and if the resolvent satisfies the inequality 

II(T + ~)-111 ~ ~-1 ~ > 0, (AI) 

then - T is the infinitesimal generator of a semigroup 

U(t) = e(-Tt>, for t ~ O. (A2) 

This semigroup has the following properties: 
(1) Vet) is strongly continuous in t for t ~ 0 with 

V(O) = I and II V(t)11 ~ 1; 
(2) net) = V(t)no, no E D(T) is a unique solution of 

the abstract Cauchy problem 

n = -Tn' 

nCO) = no E D(T). (A3) 

This implies net) E D(T) for all t ~ O. 

APPENDIX B 

Theorem3: If T satisfies the assumptions of Appendix 
A, and if A is a bounded operator, then T + A is a 
closed operator with domain D(T + A) = D(T) dense 
in X, the part A ~ -II A II of the real axis belongs to the 
resolvent set of T + A, and the resolvent of T + A 
satisfies the inequality 

II(T + A + ~)-111 ~ (~ - IIAII)-l, for ~ > IIAII· 

(B1) 

- (T + A) is then infinitesimal generator of a semi
group 

Vet) = e-(T+A)t, for t ~ O. (B2) 

This semigroup has properties (1) and (2) of Appendix 
A, except that we have to replace II V(t)11 ~ 1 by 
II V(t)11 ~ e-liAlit • 

Vet) can be constructed from Vet) by the relations 

<Xl 

Vet) = ! V net), 
n=O 

Uo(t) = U(t), (B3) 

Un+1(t) = - fU(t - s)AUn(s) ds, 

for n = 0, 1, 2 , .... 

APPENDIX C 

Theorem3 : If Vn(kTn) is uniformly quasi bounded , 
i.e., 

(Cl) 

for all values of Tn and k, M, and (3 independent of Tn 

and k, and if Tn -;+ T in the generalized sense [that is, 
Tn converges to Tin the generalized sense, if 8(Tn, T) -4-
o for n ---+ 0; for the gap topology and the distance J 
between two operators, see Ref. 3], then Vn(kTn)-4-
Vet). 

If Tn ---+ T for a core of D(T), then Tn -4- T in the 
generalized sense. 

1 B. Davidson, Neutron Transport Theory (Oxford University 
Press, London, 1957). 

2 E. Hille and R. S. Phillips, Functional Analysis and Semigroups, 
American Mathematical Society Colloquium Publications 31 
(American Mathematical Society, Providence, R.I., 1957). 

3 T. Kato, Perturbation Theory for Linear Operators (Springer
Verlag, New York, 1966). 

4 R. D. Richtmyer and K. W. Morton, Difference Methods for 
Initial- Value Problems (lnterscience Publishers, Inc., New York, 
1957). 

S C. M. Wing, An Introduction to Transport Theory (John Wiley 
& Sons, Inc., New York, 1962). 

6 K. M. Case, F. de Hoffmann, and G. P. Placzek, Introduction to 
the Theory of Neutron Diffusion (U.S. Government Printing Office, 
Washington, D.C., 1953). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME II, NUMBER 3 MARCH 1970 

Application of Iteration Technique to the Integral 
Equations of Scattering Theory 

P. DOLESCHALL AND J. REVAI 

Central Research Institute for Physics, Budapest, Hungary 

(Received 17 June 1969) 

An iterative method based on the generalization of the Fredholm reduction is developed for the 
solution of the integral equations of the scattering theory. 

In nearly all the fields of scattering theory in 
practical applications one faces the problem of 
solving integral equations.I - 5 The analytical treatment 
of these equations is possible only in a very few cases 
of special potentials. Therefore, one has to seek the 
ways of numerical solution. 

There are two basic methods: 

(a) the "discretization" of the integrals: that is, the 
substitution of the integrals with a finite sum using 
some quadrature formulas leading to a system of 
linear equations which has to be solved; 

(b) iterative methods. 

The first method is always applicable, though the 
singularities of the equations cause an extra problem, 
for which there are several methods of solution,6-9 
The accuracy of this method is finally determined by 
the number of terms in the sum standing for the 
integral. In the case of iteration, the accuracy can be 
increased, in principle, to any extent, but its applica
tion is allowed only under certain conditions which 
generally are not fulfilled. The advantages of this 
method would make it desirable to establish a general 
method with the aid of which the originally non
iterable integral equation could be substituted by an 
equivalent iterable one. In this paper, we try to solve 
this problem using a generalization of the Fredholm 
reduction6 of singular integral equations. 

In the quantum theory of scattering, the most 
frequently3-s appearing integral equations are those 
of the Lippman-Schwinger type, which can be written 
in the following form (omitting the energy parameter): 

f(x) = c· k(x, PI) + J k(x, y)t(y)f(y) dy, (1) 

where PI and c are energy-dependent constants. 
The function k(x, y) can generally be deduced 

from the potential and is assumed to be a square
integrable function. In the simplest case, t(y) corre
sponds to the energy denominator (pi - y2 + ie)-l, 
but in a general case it can be more complicated, e.g., 
it can have poles at PI, ... , Pro' 

Let us write (1), for x = Pi' i = 1,2,"', n, 

f(Pi) = c· kepi' PI) + J kePi' y)t(y)f(y) dy. (2) 

If we now multiply (2) by a still unknown function 
d;Cx), sum over i, and subtract the resulting equation 
from (1), we shall obtain 

n 

f(x) - L d;(x) . f(Pi) 
i=l 

= c· [k(X, PI) - i~ db)k(Pi' PI)] 

+ f (k(X, y) - i~ d;(x) . k(Pi, y») t(y)f(y) dy. (3) 

Let us now choose the dj(x) in such a way that the 
expression in the round brackets under the integral 
would give zero at the poles P j of t(y): 

n 

di(x) = ~)(x, p;)Mj/, (4) 
i~l 

where 

Mii = kePi, Pi)' 

Here we must assume that det (M) ;i: O. Substituting 
(4) into (3), we get the following equation: 

n 

f(x) = L k(x, Pi)M;/!(Pi) 
i.j~l 

+ f Ln(x, y)t(y)f(y) dy, (5) 

where 
n 

Ln(x, y) = k(x, y) - L k(x, Pi) Mi/k(Pi , y) 
i,i=l 

= k(x, y) - kn(x, y). (6) 

Thus, we have achieved the following: the kernel 
Ln(x, y)t(y) of Eq. (5) is not singular. This procedure 
is called Fredholm reduction. 

Let us now write I(x) as 

n 

f(x) = 2 gb)Mi/!(P;). (7) 
;,1=1 

1001 
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Thus, for the new unknown functions gi(X) , we get the 
equations 

g;(x) = k(x, Pi) + J L,,(x, y)t(y)g;(y) dy. (8) 

Ifwe have the solutions gi(X) of (8), using (7) and (2), 
the original/ex) can be determined. . 

It has to be noted that the existence and uniqueness 
problems arising in connection with these new 
equations have not been satisfactorily solved yet. 6 

The described procedure can be performed for an 
arbitrary sequence of points Xl' X2'· •. , X m , con
taining the points PI,· .. 'Pn' too. The function 
Lm(x, y) obtained in this way will be zero along the 
2m straight lines X = Xi' Y = Xi' since at the same 
places k(x,y) = km(x,y). Hence, it can be seen that 
the function km(x, y), introduced in (6), coincides with 
the m-point Bateman approximationlO- 12 of the func
tion k(x, y). 

It can be shownll that a function of the form 

m 

K(x, y) = I A;(x)B;(y) (9) 
i~l 

and its m-point Bateman approximation are identical. 
Further, it is a well-known fact that any square
integrable kernel k(x, y) can be approximated with 
so-called degenerate kernels of the form (9), if m 
is large enough. These arguments make it plausible 
that 

J1k(X, y) - km(x, yW dx dy 

can be made arbitrarily small if the mesh points Xi' 

i = 1,2, ... ,m, are suitably chosen and m is large 
enough. Then, it can be directly shown that 

JILm(X, y)t(y)1 2 dx dy < 1. (10) 

The relation (10) is a sufficient condition of iterability 
of Eq. (5). 

Now, it has to be pointed out that, using the 
described method based on the combination of the 
generalized Fredholm reduction and the Bateman 
approximation, the question of existence and unique
ness is solved automatically since iterable Fredholm 
equations of the second kind always have one and 
only one solution. 

The described method can be easily generalized 
for the case of multichannel processes, i.e., for systems 
of integral equations. 

The practical applicability of this method is 
naturally very sensitive to the choice of the number 
and the positions of the points Xi. The numerical 
investigation of this method for the case of some 
practically important kernels is in progress. 
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A general formulation is given of a method of reduction of Cartesian tensors, by Cartesian tensor 
operations, to tensors irreducible under the three-dimensional rotation group. The criterion of irreduci
bility is that a tensor be representable as a traceless symmetric tensor, its reduced or natural form, 
invariantly embedded in the space of appropriate order. The general formulation exploits the properties 
of invariant linear mappings between tensor spaces. Considered abstractly, such mappings bring out the 
structure of the theory and illuminate the relation to spherical tensor theory. On the other hand, any linear 
invariant mapping between tensor spaces is equivalent to a combination of operations with the elemen
tary invariant tensors U and E. The general abstract formation therefore has a direct operational repre
sentation in terms of the ordinary tensor operations of contraction and permutation of indices. An 
analogous formulation is given for spinors, and the relations between spinors, Cartesian tensors, and 
spherical tensors is discussed in the language of the present formalism. Lastly, several examples are given 
as to how the general formalism may be applied to groups other than the rotation group. 

I. INTRODUCTION 
This paper is concerned with the decomposition of 

Cartesian tensors by purely Cartesian methods into 
tensors irreducible under the three-dimensional rota
tion group. The theory has a generality for integral j 
similar to spherical tensor theoryl and, indeed, it 
can be transformed into the latter, However, it is 
independent of spherical tensor theory and is appro
priately adapted to solve problems in Cartesian tensors. 

Cartesian tensors remain popular in many problems 
involving spherical symmetry2 in spite of the power 
and generality of spherical tensor methods. They arise 
naturally in the course of ordinary vector algebra, and 
it is often desirable to have the decomposition into 
irreducible tensors adapted to this vector algebra. Their 
relation to the properties of three-dimensional space 
is more apparent than with spherical tensors, where 
one axis is arbitrarily distinguished, and, furthermore, 
they can often be more easily handled, i.e., without 
the necessity of tables of numerical coefficients. 
Cartesian tensors are, however, generally used without 
an appropriate irreducible tensor analysis being 
available. Even the appropriate orthogonality rela
tions for irreducible Cartesian tensors do not seem to 
be generally appreciated, although recently, several 
papers have appeared tending toward a general 
formulation.3- s 

In a paper henceforth referred to as Part 1,6 it was 
shown how the classes of traceless symmetric tensors, 
there called natural tensors, provide a criterion of 
irreducibility which permits problems of Cartesian 
tensor reduction to be handled by purely Cartesian 
methods. A form of irreducible tensor analysis can in 
fact be developed for natural tensors fully as general 
as spherical tensor analysis (except limited to integral 
j) with an analogous apparatus of n-j symbols. 7 

The use of natural tensors in the reduction of general 
Cartesian tensors depends on the fact that any irre
ducible Cartesian tensor can be regarded as a natural 
tensor embedded in the tensor space of appropriate 
order. 

Part I gave a concrete construction of the reduction 
of tensors by tensorial operations. The key to an 
abstract formulation through which the general theory 
emerges, and also its relation to spherical tensor 
theory, is the representation of the relevant tensor 
operations by invariant linear mappings. In spherical 
tensor theory, the mappings produced by the 3-j 
symbols are examples of just such invariant mappings. 
However, whereas in spherical tensor theory it is 
natural to represent invariant tensors by the numerical 
values of their components, in Cartesian theory it is 
natural to represent them in terms of the elementary 
invariant tensors U and E. As these are merely abstract 
representations of the vector operations "dot" and 
"cross" and of the permutation of indices, the 
mappings have a direct operational significance. This 
scheme leads to a considerable gain in clarity and 
compactness. 

Section II establishes in a very general way the 
abstract properties of invariant mappings of tensor 
spaces X", where invariance is with respect to the 
behavior under a general group G of transformations 
acting on the vector space :X:. Much of this general 
formulation simplifies considerably when applied to the 
rotation group (Sec. III). The only property of the 
proper rotation group required is that there are only 
two elementary invariant tensors U and E. Section IV 
establishes the properties of the natural projections 
E(j) for traceless symmetric tensors, while Sec. V gives 
the general method for reducing tensors of arbitrary 
order. The general formulation of Sec. II is required in 
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Sec. VI, where the reduction of spinors is considered. 
Irreducible spinors are thus analyzed as embedded 
symmetric spinors, the latter being the natural form 
for spinors. Section VII discusses the relation between 
spinors, Cartesian tensors, and spherical tensors in the 
language of the present formalism, while Sec. VIII 
considers how the formalism can be applied to certain 
other vector spaces and other groups. 

The Cartesian Clebsch-Gordan problem is essen
tially a special case of the reduction considered here 
and is treated in Part III. 7 With a proper normalization 
of the Cartesian 3-j tensors, the Cartesian 6-j, 
9-j, etc., symbols, being scalars, coincide with 
those of spherical tensor theory. This alone implies 
that, when the final results are to be scalar quantities, 
it is unnecessary to transform Cartesian tensors into 
spherical tensors. 

Practical problems arising in Cartesian tensor 
applications are frequently of low tensorial order. 
Convenient basis sets for tensors of order n ~ 6 
together with their metric properties have been 
obtained and will be published subsequently,S 

II. INVARIANT TENSORS AND THEIR 
MAPPING PROPERTIES 

Given a v-dimensional vector space :x: over the real 
or complex field, there exists9 another v-dimensional 

vector space X, the dual vector space, which is 
effectively the space of linear functionals on :X:. As v 
is assumed to be finite, :x: is also isomorphic to the 

space of linear functionals on X. When the distinction 
is important, the elements of:X: are called contravariant 
vectors, the components relative to a given basis being 
designated by superscripPo indices, the dual vectors 
being covariant with subscript indices. For every pair 
of integers n, m there is a tensor space :X:;:' of orderH 

(n, m) which can be thought of as the (n + m)-fold 

tensor product of n:X: factors and mX factors. 9 In 
particular, any element T(n I m) of:X:;:' is equivalent to 
a linear mapping from :x:m into :x:n

• Thus, if x(m) E :x:m
, 

thenl2 yen) = T(n I m) om x(m) is an element of :x: n
• 

None of these properties depend on the existence of a 
metric for X. In fact, all of the tensor properties dis
cussed in this section are independent of any metric. 

It is assumed that a group G oflinear transformations 
(automorphisms) of X is given. Then a representation 
of G is given by a set of elements of X~, the identity 1, 
in component form being b~ with respect to some 
(arbitrary) basis rei} of X. G induces the group Gn of 
automorphisms of xn with representation in :X:~. An 
element Rn = R X R x ... x R of Gn is the n-fold 
Kronecker product13 of the corresponding group 

element R E:X:f with itself. A tensor T(n I 0) E Xn is 
defined as invariant if RnT(n' 0) = T(n 0) for all 
Rn E Gn, More generally, a tensor T(n I m) E:X:;:' is 
invariant if RnT(n I m) = T(n I m)Rm. The properties 
of these invariant tensors as maps between tensor 
spaces, and between subspaces irreducible under G 
in particular, are considered in the following. 

The complete group-theoretical reduction of :X: n 

consists in finding a set of linearly independent pro
jections Dj..(n I n) E :X:~, where Dja(n In) projects out 
the exth irreducible subspace H"ja c :x:n of symmetry 
type14 j. Let D j denote the dimension if the representa
tion and N~;) the multiplicity, i.e., the number of inde
pendent, equivalent representations of the same 
symmetry j into which :x:n decomposesls (ex is a label 
for these N~j) independent, equivalent representations 
which, of course, are not at all unique). In many 
practical problems, it is sufficient to decompose :x:n 

only into the total D;N~j)-dimensional, invariant, but 
in general reducible, subs paces H"j = La: Hia. of given 
symmetry. However, it is the completely irreducible 
subspaces which behave simply under invariant 
mappings. 

An irreducible tensorl6 A (j)(rl ... , J == A Wen) of 
order (n,O) and symmetry j has vn components but 
lies in an irreducible subspace Hj., such that only Dj 

of its components are independent. If ea('l ... r n) == 
ea(n) are a set of basis tensors spanning Hja, then 
AW(n) = LO' AWae,,(n). The Dj independent com
ponents A (j)" can easily be obtained by introducing 
the basis {e"(n)} c :X:n dual9 to {ea(n)} , defined such 
thatl2 

(1) 

With this set of dual basis tensors, the component 
AW" of AW(n) is simply e"(n) on A Wen). An analysis of 
the three-dimensional rotation group by spherical 
tensors considers exactly these components A(i)m with 
m labeling the weightsl3 of the irreducible representa
tion. 

Any tensor A (j)(n) in the total subspace Hi of sym
metry j can be considered as a tensor of symmetry j, 
but in general it is reducible. As there can be at most17 

min CD;, N~/» linearly independent tensors each with 
D j components, any such tensor of symmetry j can be 
written as a sum of at most min (D;, N~i» (not, in 
general, N(,.") linearly independent irreducible tensors. 

An invariant mapping is defined as a (linear) trans
formation of the type 

B(m) = T(O)(m I n) on A(n), (2) 

where T(O)(m I n) is an invariant tensor (of symmetry 
type 0) and of order (m, n). These mappings are used 
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for representing isomorphisms between tensorial sub
spaces of the same symmetry j and are basic both for 
the general reduction of Cartesian tensors and in the 
Clebsch-Gordan problem. It is mainly the general 
reduction which is considered in this paper, while the 
properties of the Cartesian 3-j tensors are discussed 
in the succeeding article. 7 

Although formally the invariant mappings are 
accomplished by tensors with m + n indices, the 
effect of the mapping can often be very simply inter
preted. Thus, for example, all invariant spinors can be 
represented as combinations of the spinors Ers ' ~~, 
and Ers which, respectively, contract the contravariant 
order, permute the indices, or expand the contra
variant order. A particular mapping of order (m, 
m + 2) might in fact be just a contraction of the first 
two indices. Again, for some groups such as GL(v) , 
there are no invariant tensors with m ¢. n, and con
sequently there are no invariant mappings between 
tensors of different order.ls Certain general properties 
of invariant mappings are stated as the following three 
theorems. 

Theorem 1: A projection from :X;" onto an invariant 
subspace is an invariant mapping. 

Proof' Let n = n(n I n) be a projection onto an 
invariant, but not necessarily irreducible, subspace H 
having the basis {e.,.(n)}. Then ne.,. = e.,. and, since 
R "e.,. is also in H, it follows that DR "e.,. = R "e.,. = 
R"nea • Similarly if {e;(n)} is a basis for the invariant 
subspace n complementary to H, then nR"e; = 0 = 
R"Ue;. Thus URn = RnU for all Rn E G1I, and this 
implies that II is an invariant tensor. 

For any tensor A(n) in H, the decomposition of 
A(n) into components A" follows the formula 

nA(n) = A(n) = I A"e,,(n) = I e,,(n)e"'(n) 0 11 A(n). 
a a 

Thus n has the spectral representation, 

U(n I n) = I ea(n)ea(n). 

(3) 

(4) 

Theorem 2: The image Hm of an irreducible sub
space H7a. under any nonnull invariant map T(O)(m I n) 
from Hia. into xm is an irreducible subspace of the 
same symmetry j. Thus T(O)(m I n) has an inverse 
invariant mapping T(O)(n I m).19 (The latter part of this 
theorem is identical to Wigner's2o Theorem 3 while 
Boerner13 calls it Schur's Lemma.) 

Proof: Let {eAn)} be a basis of Hia.. Then 

a.,(m) == T(O)(m I n) 0" e,,(n) (5) 

forms a basis for Hm. If U!i)'(R) is the irreducible 
representation of G to which Hia. belongs, then since 
T(O)(m I n) is invariant, 

Rma,,(m) = T(O)(m I n) 0 11 Rnein) 

= I IT(O)(m I n) on erCn)]U~ilr(R) 
, 

(6) 

That is, a .. forms a basis for the jth irreducible repre
sentation of G. This implies first that, since T(O)(m I n) 
is nonnull, then all of aa are nonnull and, secondly, 
that the dimension of Hm is exactly Dj , the same as 
Hia., and hence that Hm is an irreducible subspace Hjp 
of symmetry j. This in turn requires that the mapping 
be one-to-one, so that an inverse map T(O)(n I m) 
exists such that19 

and 
T(O)(m I n) on T(O)(n I m) = Ujp(m 1m), (7b) 

since the projection II;in I n) is the identity in Hja.. 
etc. Obviously T(O)(n I m) is invariant since T(O)(m I n) 
and n;(n I n) are. 

Note that if the domain subspace Hia. were invariant 
but not irreducible (e.g., Hj) then, in general, the 
aa(m) could be linearly dependent since some of the 
irreducible subspaces contained in Hj could be mapped 
onto the same irreducible subspace in :x;m. 

Theorem 3: An invariant mapping T(O)(n I n) of an 
irreducible subspace Hia. into itself leaves all tensors in 
Hja unchanged except for a constant factor. (This is 
a form of Schur's Lemma.20 ,13) 

Proof: T(O)(n I n) has the matrix representation 

T~O)a == ea(n) 01lT(O\n I n) One.(n), (8) 

which commutes with all elements of the irreducible 
representation u;ila(R) because T(OI(n I n) is invariant. 
By Schur's Lemma, T;ola = A(j~ and consequently, 
for any tensor A(n) in Hia., 

T(O) 0" A(n) = IT(O) one,,(n)A" 
q 

= A 2 e,ln)Aa = ,lA(n). (9) 
a 

Another way of expressing this result is that T(O)(n I n) 
is a multiple of the projection operator U;in I n). In 
this statement it is again assumed that the domain and 
range of T(O)(n I n) are precisely Hia.. A more general 
result is that, for any invariant tensor T(O)(n I n) 
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mapping any subspace of xn into Xn, 
nj~(n I n) OnT(Ol(n I n) onniin In) = Aniin In). 

(10) 

Theorem 2 is the basis of our method of Cartesian 
tensor analysis. The tensors T(O)(m I n) -and T(O)(n I m) 
describe the isomorphism between H'la and H'/P. Thus, 
if A(j)(n) E Hr: then 

1«' 

a(j)(m) == T(Ol(m I n) on A(})(n) (lla) 

describes an equivalent tensor in H'/P, while the inverse 
mapping is 

(Ub) 

In general, there will be a least contravariant order for 
which contravariant tensors of a given symmetry can 
occur. Equations (1) imply that any irreducible 
tensor AW can be represented as a tensor ali) of 
minimal order and thus simpler structure. The tensor 
A (i) itself can be considered as consisting of the tensor 
a(j) suitably embedded [by T(O)(n I m)J in the higher
order n space. Thus a(j) will be called the reduced or 
natural form for the tensor. The reduced matrix 
element occurring in the Wigner-Eckart theorem is a 
special case of a scalar which is embedded to form an 
invariant tensor. More generally, any tensor A(j)(n) of 
symmetry j will have an expansion 

A{J)(n) = L T~O)(n I m) Om a~j)(m), (12) 
'p 

where the sum is over the possible number 

min (D. NU» 
I' n 

of independent irreducible tensors of symmetry j. In 
Sec. V, it is shown that there is a distinguished 
representation of A(f)(n) in this form. 

m. IRREDUCIBLE CARTESIAN TENSORS FOR 
THE PROPER ROTATION GROUP 

We now specialize to the three-dimensional proper 
rotation group SO(3) with X three dimensional. The 
only information about the rotation group that is 
required is that the only elementary invariant tensors 
are the metric tensor U with components (jrs whose 
invariance defines the rotation group and the anti
symmetric third-order tensor £, with components Erst 

equal to 1, -1, or 0 according to whether rsf is an even 
or odd permutation of 123 or not a permutation of 
123, whose invariance implies that the rotations be 
proper. 21 The distinction between contravariant and 
covariant tensors is irrelevant in this case since the 
tensorial components are unchanged by lowering or 
raising indices with (jr.' 

All other invariant tensors can be constructed as 
linear combinations of tensor products of U and £. 

An essentially equivalent statement is that the only 
"vector operations" are the dot and cross products. 
This fact is presumably "well known" but it can be 
proved inductively after showing that the Cartesian or 
outer product of an irreducible tensor with a single 
vector can be reduced by means of U and £ alone.6 

By the usual parentage scheme, it is then possible to 
construct explicitly from U and £ alone a set of in
variant tensors which completely span the invariant 
subspace H: of xn for any n. Furthermore, the 
relation22 

ErstEuvw = (jru(jsv(jtw + (jrv(jsw(jtu + 0rw(jsu(jtv 

- (jru(jswOtv - (jr"osu(jtw - (jr,,/JsJJtu (13) 

implies that all even-order invariant tensors, and 
particularly all projections into irreducible subspaces, 
can be constructed from U alone. Furthermore, in any 
invariant tensor, £ need only appear linearly. 

Corresponding to the discussion in Sec. II, it is 
now shown that the natural form for a tensor of sym
metry j is a symmetric traceless tensor and that any 
irreducible tensor A Wen) E Hia. can be represented as a 
symmetric traceless tensor embedded in xn: If A(j)(n) 
is not traceless symmetric, its order may be reduced 
by applying the contraction U 0 2 or the "cross
product relation" £02 to at least one pair of indices. 
Each contraction lowers the order by two, whereas 
each cross-product lowers the order by one. By Theo
rem 2, the group symmetry type j is unchanged by this 
procedure, which ends only when A(j)(n) has been 
reduced (by an invariant mapping) to a completely 
symmetric, traceless tensor a(i)(m) , i.e., symmetric 
and traceless in each pair of indices. Since the mapping 
of A(j)(n) into traceless symmetric form is an invariant 
mapping from Hilt onto the image space Hm c Xm, 
it has, by Theorem 2, an inverse. Thus A(j)(n) is repre
sented [Eq. (lIb)] as a(;) (m) , a symmetric traceless 
tensor, embedded in xn. 

The subspace of traceless symmetric tensors of any 
order is thus necessarily irreducible and of multiplicity 
N~;) = 1. This last comment can be proved in the 
following interesting way. Since any invariant mapping 
from xn to xn is accomplished by an even-order 
tensor, it is a combination of U's alone. Since U can 
act either as a contraction, which causes a traceless 
symmetric tensor to vanish, or a permutation of 
indices, any nonnull invariant mapping TIO)(n I n) 
acting on a symmetric traceless tensor is merely a 
permutation of indices and, hence, equivalent to a 
multiple of the identity map for symmetric traceless 
tensors. Hence there is one and only one irreducible 
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subspace of symmetry j whose tensors are symmetric 
traceless. This uniqueness implies that the symmetry 
number j can be assigned to an irreducible representa
tion as precisely the order of the natural tensor. 
Since symmetric traceless tensors of order j have 
exactly 2j + I linearly independent components,6 the 
designation coincides with the usual one for the 
rotation group with all integral j representations 
being realized. 23 This discussion can be summarized 
by saying that any irreducible tensor A(j)(n) can be 
uniquely represented in the form 

A(j)(n) = T(0)(n I j) Oi alil(j), (14) 

where ali)(j) is symmetric traceless. 
The Casimir operator (P(n I n) is a special invariant 

mapping from xn onto xn. It is formed as the sum of 
the squares of the Hermitian infinitesimal generators24 

(t.,(n I n), (tin I n), (tin I n) in xn for rotations about 
the x, y, and z directions. For example, (t.(n I n) is a 
sum of n terms, one for each tensorial index, of the 
form25 U ® U ® ... ® (til 11) ® ... ® U, where 
(t.(lll) acting on X has the well-known matrix 
representation dAr Is) = -iEzrs' With the relations 
ErstEruv = osuOtv - osvOut' the explicit form for (t2(n I n) 
becomes 

(t2(n I n) = 2n + 2 I (Pij - Oij Trii), (15) 
i<j 

where Pi; is a permutation of the ith and jth indices 
of X n , while 0i; Trij means,26 "Take the contraction 
(trace) between the ith and jth indices, then introduce 
a Kronecker a between these same indices." It is 
possible to reduce xn into its total invariant subspaces 
Hi = I", Hj(1. of given symmetry j by looking for the 
eigentensors of27 (t2(n I n). Orthogonal projections into 
the Hj can also be constructed by Lowdin's proce
dure. 28 However, the use of (t2(n I n) is surprisingly 
complicated, indeed more complicated than the 
methods developed in this article. One result that is 
easily confirmed is that any symmetric traceless 
tensor A(n) of order n satisfies 

32(n I n)A(n) = n(n + l)A(n), (16) 

since all traces are zero, and each of the tn(n - 1) 
permutations reproduces A(n). 

The Casimir operator for tensors may be contrasted 
to that for spinors,29 

(t2(n I n) = in(4 - n) + IPij' (17) 
i<j 

The absence of the trace term in the spinor operator 
corresponds to the fact that irreducible spinors under 
the rotation group can be completely classified by the 
symmetric group, whereas the reduction of Cartesian 

tensors by means of the symmetric group requires a 
preliminary separation into traceless, double traceless, 
etc., parts according to the classical procedure.30 

IV. NATURAL PROJECTIONS 

The projection of Xi onto the irreducible subspace 
H: of traceless symmetric tensors of order j is denoted 
by Eli) = E(j I j). This natural projection is the essential 
"unit tensor" of "natural tensor analysis," equivalent 
to a;;:. of spherical tensor theory. Theorem 1 implies 
that EW is invariant, of order 2j and, by the spectral 
resolution [Eq. (4)], separately symmetric traceless in 
both sets of j indices, since by definition it is sym
metric traceless in one set. The converse is important. 

Theorem 4: An invariant tensor TIO)(A /jz), separ
ately symmetric traceless in each set of indices, is a 
multiple of O. . Elh). 

'VJ2 

Proof: Since the subspace H: of traceless symmetric 
tensors is irreducible of symmetry j, it follows that 
TIO)(j1 Ij2) is an invariant mapping from H:~ onto 
H~~. By Theorem 2, this is nonnull only if A = h, in 
which case, by Theorem 3, TIO)(j1 I jl) is a multiple 
of the identity in Hi, namely EIJt) 

31' . 

The explicit construction of Eli) is aided by intro
ducing a notation suitable for handling sets of sym
metrized indices. Since each member of a set of 
symmetrized indices is equivalent to every other, it is 
redundant to label them differently. Thus each index 
of a set of p symmetrized indices, say r1 ••• r p' may be 
replaced by the generic symbol r with the under
standing that when working with the tensor, the p 
r-indices must be symmetrized, e.g., 

(0,.,.)2 = !( 0no,or ••• + 0r, •• or.s,), 

(a.,,)2 = HarIr.ar3r_ + OrI •• a .... + ar,r_a'2'3)' (18) 

a •.• or•s = t( 0nr.o.ss, + o., •• or.s, + 0'2'30r,S,). 

In carrying out contractions on a pair of indices, one 
simply considers the different kinds of terms in the 
final result and then calculates each numerical coeffi
cient as the fractional number of ways in which the 
particular term Play arise. 

EW(rl ... ri I SI •.• Si) is symmetric in both the r 
and S indices as well as to the interchange r ~ s. Thus 
it can be expanded in the form 

[li] 

Eli) = '" c (J )i-21( a )t(a )t k t r,s r,T S,S' (19) 
1=0 

where [tjJ = ij or iU - 1) according to whether j 
is even or odd. The leading term is simply a sym
metrizer, the next takes single traces, the third double 



                                                                                                                                    

1008 J. A. R. COOPE AND R. F. SNIDER 

traces, and so on. The uniqueness implied by Theorem 
4 implies that the successive terms are linearly inde
pendent. The coefficients Ct are thus determined by the 
condition that EU) is traceless in the r (and hence also 
in the s) indices. This condition is obtained by setting 
the trace over a pair of r indices in Eq. (19) equal to 
zero, namely, 

[in 
L Ct{ (j - 2t)(j - 2t - 1 )b;~2t-2b:,rb!~1 

t=O 

which, by the linear independence of the different 
trace terms, leads to the recursion formula, 

(j - 2t + 2)(j - 2t + 1) 
ct = - 2t(2j _ 2t + 1) Ct-l' 

(21) 

This is identical to the recursion formula for the 
coefficients of the Legendre polynomials. With the 
choice Co = I to make E(i) idempotent, 

C = -1 t (j !)2(i) (2i - 2t). (22) 
t ( ) (2' ') . J. t } 

Table I lists some of the EU) explicitly. The coefficients 
for the Legendre polynomials differ only in normaliza
tion and, in fact, the Legendre polynomial is given by 

p (u· Ii) = (2n)! (u)" on E(") 0" (6)", (23) 
11 2n(n!)2 

where 11, iJ are unit vectors and (it)". is the decom
posable tensor9 U @ it @ •.• @ it. In particular, if iJ is 
in the i direction, Eq. (23) identifies the z· .. i com
ponent of E(n) on (iJ)" (except for normalization) with 
the spherical harmonic Y~(i3). The EW satisfy the 
recursion relation 

E(j+l) _ eS EW + J'2(4J'2 - I)-lE(j-lIeS b = 0, (24) 
T.8 r,r .of,S 

differing essentially only in normalization from the 
Legendre polynomial recursion relation. 

A j-fold contraction between rand s indices of E(j) 
(j-fold trace) gives the rankH of the projection E(j), 

TABLE I. Natural projections for traceless symmetric tensors. 

Order j 

o 
1 
2 
3 
4 

j 

E(j IJ) 

i.e., the dimension of the representation 

Trj E(J) = 2j + 1, (25) 

while a single trace (between rand s indices) gives a 
a multiple of E(J-l), 

Trl E(i) = (2j + I)(2j - I)-lE(H). (26) 

Theorem 4 implies that the invariant part of the 
tensor product of two natural, i.e., traceless sym
metric, tensors A(i)(j), B(n(j') vanishes if j ¥ j' and 
is a multiple of E(i) if j' = j; i.e., 

(AW(j) @ B(;')(/»(O) = AbirE(f). 

Using Eq. (25), one has 

E(;) 02i (A(;)(j) @ B(;)(j» 

(27) 

= A<il(j) Oi B(;)(j) = (2j + 1)1., (28) 

from which A is obtained and, finally, 

A w( .') i B w( .) 
(Aw( ') @ B(;')( ,'»(0) = } 0 ] J .,E(f). (29) 

] ] 2j + 1 i1 

This equation contains the orthogonality relations for 
natural (irreducible) tensors. Since the integral of a 
tensor over angles is just the isotropic (invariant) part 
times the volume integral, Eq. (29) implies that 

f A<il(j) @ B(i'l(j') do' 

= 47T(2j + l)-l A(;)(j) Oi BW(j)bjj,E<il. (30) 

In the quantum-mechanical treatment of angular 
momentum, the quantum trace Tr Q takes the place of 
the volume integral so that if A(1l(j) and B(i'l(/) are 
quantum-mechanical operators, 

Tr Q AUl(j) @ BCi')(i') 

= (2J + 1)(2i + l)-lAw(j) oj B(;l(j)bii'Ew, (31) 

where [J(J + l)]i/i is the magnitude of the angular 
momentum (note that23 J has no relation to j). The 
A(i)(j) Oi B(i)(j) is, since it is scalar, essentially the 
same as the corresponding quantity in spherical
tensor theory. 

Natural Cartesian tensors constructed from a de
composable tensor and, in particular, those from a 
single vector a, 

(32) 

are used quite widely, and have recently been discussed 
by several authors.a,4 The bar (YU» is used to empha
size the normalization Co = I, while Pi (x) is the 
Legendre polynomial with the same normalization. 
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One has 

yWCa) 0(;) ,(w(b) = (a)1 0 1 '(W(b) = P;(a. b) (33) 

as the spherical harmonic addition theorem, almost a 
trivial result in Cartesian form. Hence the Cartesian 
spherical harmonics y(j)(u) as such,a1 for a unit vector 
u, satisfy the orthogonality relations, 

f y(il(u)y<i')(u) du 

= 2'(j !)2[(~j) Jt147T(2j + 1)- l bi j'Ew, (34) 

with the numerical factor equal to Pi(l). The YU)(u) 
can be used in the usual way as a complete orthogonal 
(but not normalized) set of angular functions for use in 
expanding an arbitrary function. 32 When a and bare 
quantum operators, commutation relations complicate 
the scalar yi(a) . Yi(b) and lead, e.g., to the "quantum 
Legendre polynomials" of Kramers'.4,33 

V. REDUCTION OF nth-ORDER TENSORS 

An invariant mapping T~O)(n Ij), from the space H: 
of symmetric traceless tensors of order i into Hj c xn, 
defines a (2j + I )-dimensional subspace of Hi'. Since 
Hj is (2j + I )N~j/ dimensional and of symmetry j, there 
exist exactly N~i) independent invariant mappings from 
Hj into Hj. Each of these invariant mappings T~O)(n Ii) 
can be made symmetric traceless in the i indices, and it 
is assumed in the following that this has already been 
done; thus T~)(n iJ) Oi E(i) = T~O)(n iJ). Acting on Xi, 
such a tensor first selects out the subspace H: and maps 
this into the subspace Hi'. Consequently, ifni(n I n) is 
the projection operator into Hi', then 

nj(n I n) on T~O)(n Ii) = T~O)(n Ii). 
The advantage of having such maps is that one can 
very easily construct tensors in Hj without having to 
assure, by methods in Xn , whether or not such tensors 
are, in fact, in Hy. 

If F(n) is any nth-order tensor and {T~O)(n Ii)}, 
p = 1, 2, ... , N~i), is a given linearly independent set 
of invariant maps from H: into Hi, then the symmetry:), 
part of F(n), namely F(j)(n), can be represented as 

Y ti) 

F(})(n) =" ~ T~O)(n Ij) oiftilP(j), (35) 
p=l 

in terms of N~iI tensors f(j)P(j) of order j. Now 
{T~O)(n Ii)} spans that subspace of Xi consisting of 
invariant tensors symmetric and traceless in the i 
indices. If this set is used to generate a basis for Xj, 
then there is9 a dual basis in X~ whose invariant 
elements {T(O)q(j In)} satisfy34 

T(O)q(j I n) On+i T~O)(n I j) = !5~(2j + 1). (36) 

Since T(O)q(j I n) On T~O)(n /j) is symmetric traceless in 
its covariant set of indices, it maps natural tensors of 
symmetry j into tensors of orderj, which must then be 
symmetric traceless in their contravariant set of j 
indices. Consequently, by Theorem 4, this quantity is 
a multiple of E(j) whose multiplicative factor can be 
deduced from a combination of Eqs. (25) and (36), so 
that 

T<O)q(j I n) onT~o)(n Ij) = b~E(;). (37) 

This identity allows an evaluation of the f(j)P(j) 
tensors as 

fWP(j) = T(O)P(j I n) on F(n). (38) 

Equation (38) gives the extraction of the pth natural 
form tensor of symmetry j from F(n), while Eq. (35) 
gives their re-embedding in xn. The invariant map
pings T~O)(n Ij) and their duals define projections 

n;in I n) = T~O)(n I j) oj T(o/P(j In), (39) 

into the N~ irreducible subspaces Hip whose direct sum 
is the total subspace Hi. They satisfy the idempotency 
relation 

njp(n I n) on nj'q(n I n) = ~jj'apqnjp(n In), (40) 

but are not necessarily orthogonal projections. 
As no distinction exists between covariant and 

contravariant indices in the case of the rotation group, 
an n-fold dot product between T~O)(n lJ) and T~O)(n Ii) 
is defined and gives an invariant tensor, symmetric 
in both pairs of j indices, and hence a multiple of 
E (j). Thus a metric g pq is defined by 

T~O\n I j) on T~O)(n I j) = g]lqEW. (41) 

If gpq are the components of the inverse metric 
satisfying gpqgqr = a:, then 

T(O)P(j In) = ! gpqT~O)(n I j). (42) 
q 

The resolution of the projection nj(n I n) into the total 
invariant subspace Hi is therefore 

ll/n I n) = Z gPQT~O)(n I j) oj T~O)(n I j). (43) 
P,<l 

The metric g can also be used to express the scalar 
product of the symmetry-j part of two tensors F!i)(n) 
and F~j)(n), 

Fiil(n) on F~iI(n) = ! gpiij/p(j) oj f~j)q(j), (44) 

in terms of their corresponding natural forms. The 
reduction of second- and third-order tensors using 
this formalism is given in Tables II and III, with some 
discussion of these cases in the Appendix. 
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TABLE II. Reduction of 2nd-order tensors by mapping from natural forms. Indices r refer to order n, s to order j. 

j Tp(n /j) gpo 

2 E(21 2) == (6r,)2 - t6rr6ss' 

E'q T28 2 

0 Gr1r2 3 

If the tensors {T~O)(n /j)} have been chosen so that 
they are orthonormal in the sense g Vol = b 1JQ.' then the 
extraction and re-embedding is particularly simple. 
This is always possible since g is, by Eq. (41), a sym
metric, positive definite matrix. Orthogonal Tv(n /j)'s 
are still arbitrary to the extent of a real orthogonal 
transformation, since such a transformation leaves the 
metric gVq = b1JQ. unchanged. Therefore, given any 
particular F(n), it is possible to make its natural forms 
orthogonal by diagonalizing the matrix K1JfI. == 
f(j)v(j) oj f(j)q(j) by a real orthogonal transformation. 
Since the dimension of H; is (2) + 1), there can be at 
most 2j + 1 orthogonal fWP(j),s. Coupled with the 
fact that Hi is (2j + I)N~j) dimensional, this means 
that at most min (2j + 1, N~j» eigenvalues k'/) of 
K'J}q are nonzero (hence positive). Thus F(j)(n) has a 
distinguished representation as a sum of min (2i + I, 
N~j» orthogonal natural tensors, separately embedded 
in different orthogonal subspaces Hi'/) , namely, 

min (2i+l,Nn Iii) 

F(J)(n) = ~ T~O)(n I j) ojfWP(j). (45) 
'/)=1 

This representation is unique jf the eigenvalues of 
Kpg are distinct. If, in particular, F(j)(n) is irreducible, 
then there exists only one f(j)-that is, every invariant 
mapping F(n) into Hi gives a multiple of f(j)- and a 
unique embedding operator T(O)(n Ii), which repro
duces F(j)(n) from f(j}, can be found. 

VI. ANALOGOUS REDUCTION OF SPINORS 

The reduction of Cartesian tensors proceeded by 
mapping into the natural form tensors which are sym
metric traceless tensors of appropriate order. Spinors 

gPO p(!1 n) nln 1 n) 

E(21 2) E(21 2) 

~ !E$r;r~ H6r1r~r5,.t~ - 6n,~(\~r2) 

t !t5r~r~ !£5r1 t'tOr;t'; 

can be similarly reduced by mapping into their natural 
forms which are symmetric spinors of appropriate 
order. The basic formalism is the same, as discussed in 
Sec. II, but whereas the distinction between the vector 
space and its dual is irrelevant for Cartesian tensors, 
the distinction is now very important. The emphasis on 
invariant spinors is closely related to Kramer's ex
ploitation of "Spinor Invariants." 35 

The vector space :x: is now two-dimensional and over 
the complex field. In agreement with standard termi
nology, we denote the two base vectors el (1) and e2(l) 
by a and ~, respectively. The dual basis is given by 
el(l) = a* and e2(1) = ~*; these elements are defined 
to satisfy the relations a * 0 a = ~ * 0 ~ = 1 and 
a* 0 ~ = ~* 0 a = O. In order to avoid confusion 
with the Cartesian tensor case, we will not write spinors 
in tensorially invariant form but only in component 
form relative to the basis a, ~. Thus the spinor rJ" 
represents the abstract spinor II = 'l'}lle/l(l) = rla + 
1J2~. 

The group of transformations is the two-dimensional 
special unitary group SU(2), and it thus follows that 
there exists a unique (to a multiplicative factor) 
invariant metric,36 

(46) 

Besides this invariant covariant spinor and its inverse 
,,/IV having the same matrix form, the only other 
elementary invariant spinor is the identity transforma
tion b~. By this it is meant that any invariant spinor 
can be written as a sum of tensor products of "/IV' ,,/IV, 

and be, a property which can be proved by parentage. 

TABLE III. Reduction of 3rd-order tensors by elementary contractions. Indices r refer to order j, s to order three. 

Symmetry) Elementary Contraction P(jj n) g"" gpg 

3 none E(3j 3) 1 1 

2 
Eras•s Tl == 1:/ E(2)(rlrz I tSl )EUZ" G ~) !( 2 -~) 
E"l'3 TZ = :E,E(2I (r1r.1 tSz)E/'1'3 -1 

15'283 Tl = 6"115,.,. 

(: 
1 

;) ,\( -: -1 -I) 
15818• TZ == 15 •• ,15'1" 3 4 -1 

15'182 T3 = 15"3r5'1'z 1 -1 -1 4 

0 £B18283 T = E818283 6 ~ 
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It is also equivalent to the theorem37 that all spinor 
invariants can be constructed from combinations of 
the basic spinor invariants EIlVUIlVV = U 1V2 - U 2V1• 

Finally, in view of the relation 

(47) 

ellV and EIlV need never both appear in the same in
variant spinor. 

The invariant metric EIlV may be used to lower the 
order of a (contravariant) spinor. In particular, if a 
spinor A(j)(fll ... fln) is irreducible of symmetry j, it 
follows by Theorem 2 that E)l'llmA(j)(fll ... fl,,) either 
vanishes or is again of symmetry j. This process ends 
only if A(i)(fll ... fln) is a completely symmetric spinor, 
which is thus the natural or reduced form for spinors 
of symmetry j. By dimensionality or by applying the 
Casimir operator [Eq. (17)], it is seen that a natural 
spin or of symmetry j has order 2j. Thus there exists an 
invariant spinor (basically a contraction) T(O)(2j I n) 
and its inverse T(O)(n 12j) such that 

aW (2j) = T(O)(2j I n) on AU)(n) (48) 

is in natural form, and 

(49) 

describes the re-embedding of a(j)(2j) as an nth-order 
spinor. 

The natural projection, i.e., for symmetric spinors, 
is 

is that the invariant part of the product of two sym
metric contravariant spinors is 

(A W(#1 ... fl2;)B(;')(fll ... fl2r»(O) 

e2 ; 0 2; A(;) ® BU ) , •. 

= 2j + 1 b;j'(e
IlV

)-'. (53) 

As in Eqs. (30) and (31), the invariant part of A(i) ® 
B(;') can be selected out in certain cases by integrating 
over angles, and in other cases by taking the quantum 
trace. Analogous results are valid for covariant spinors 
with (EIlY replacing (EIlV);, whereas with one covariant, 
one contravariant spinor (bn; = E( i) appears. It is the 
latter that is strictly the analog of Eq. (29), all three 
results being simply contravariant-covariant forms of 
one another. 

The reduction of nth-order spinors depends on the 
selection of a convenient set of :Lt,:o N~!) linearly inde
pendent invariant spinors T~O)(n 12j) symmetric in the 
2j indices. For a given symmetry j, these describe the 
N~i) linearly independent ways of embedding a natural 
spinor of order 2j in the nth-order spinor space, 
whereas their duals T(O)q(2j In), satisfying34 

(54) 

describe the extraction of these same natural spinors. 
A metric gpq for the T~O)(n 12j)'s is defined by38 

( E )n T(O)(II." j a2j)T(O)(v" I 7 2;) = g ( )2J 
)lV NS 1) r' q pq ,E"T , (55) 

(50) and from its inverse gpq, the dual basis 

where the previous symmetrization convention is used 
[see Eq. (I8)]. As in the tensor case, a complete con
traction between the # and v indices gives the dimen
sion of the representation, 

Tr2; EU ) = 2j + 1, 

whereas a single contraction gives 

(51) 

Trl E(;) = [(2j + 1)/2j)Eu-t ). (52) 

The analog of Eq. (29), and indirectly of Theorem 4, 

follows. The projection onto the total invariant nth
order spinor subspace of symmetry j is given by 

n;(n I n) = 2: T~\n j2j) 0 2
; T(O)P(2j In). (57) 

'IJ 

Table IV gives the reduction of 4th-order spinors, 
wherein the embedding tensors are taken as simple 
tensor products of n_2jEllv'S. As an example, the 

TABLE IV. Reduction of 4th-order spinors by elementary embeddings. Indices v refer to 2jth-order, f.l to nth-order. 

j Embedding To(4!2j) gP. go. 

2 none (c5~)' 

£11111. T1 = £1l11l'1-(c5~~~: + c5~:c5~:) 

G :) !( -~ -1 -I) .11.", T. = .11''''H c5~~c5~: + c5~:c5~!) 2 3 -1 
.1131'0 T = ,,1'3"'1-(1511115'" + 1511 .151'1) 1 \-1 -1 3 3 )/1 \'2 "1 )/2 

.1'1112."311. Tl = .1'11'3."'''' (~ ~) k(_~ -~) .1',"3.11,111 T, = EIl21'3,,1""1 
o 
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projection onto the invariant spinors is 

TIO(,ul ... 1141 VI ••• v4) 

= i(ellll"eI'3114e e + el"113e 114ll le e 
\/1V2 \13\14 V2V3 v4'-'1 

It is interesting to observe that the valence-bond 
method39 of molecular quantum mechanics coincides 
in this formalism with the use of elementary embed
dings to define the set of T~O)(n 12j)'s. Thus a valence
bond structure of spin s for an n-electron system is 
obtained by assigning (n - 2s) electrons to Hn - 2s) 
"bonds." Each bond is considered as a pair of spins, 
associated with atoms i and j coupled to spin zero in 
the manner oc(i)fJ(j) - fJ(i)oc(j), while the remaining 
2s electrons are coupled to maximum spin (s). In the 
present formalism the "bonds" are invariant spinors 
el'il1j' and the state is a symmetric spinor of order 2s 
with an elementary embedding, i.e., through a tensor 
product with n-2s eI'V'S. For example, a triplet state 
for four electrons is given by the embedding spinor 

T(O) (41 2) = .1(0"'61'2 + ol"61'1)e"3Ji4 
3 2 VI "2 VI "'2 

which has components 

T~O) (412) = ococ (ocfJ - ,Soc), VI = V2 = 1, 

= HocfJ + (3oc)(oc{3 - t3oc), VI = -V2 = 1, 

= t3f3 (oc{3 - (3oc), VI = V2 = -1. 

(59) 

If'Y(n) is the general spin state, the reduced spinors 

'Yi2j) = T(O)P(2j I n) 0" 'Y(n) 

are the expansion coefficients of'Y with respect to the 
(unnormalized) valence-bond basis. 

VII. RELATION TO SPHERICAL TENSORS 

Spherical tensors, symmetric spinors, and, for 
integral j, traceless symmetric tensors are equivalent 
ways of describing tensorial quantities irreducible 
under the rotation group. The theories of all three can 
be developed independently, and we have attempted to 
emphasize the self-contained development of the 
Cartesian tensor theory. However, there are direct cor
respondences between them, and these are now given. 

The correspondence between symmetric spinors 
and spherical tensors is particularly simple because, 
with the natural choice of spinor components, the 
first-order spinor is already a spherical tensor. Thus if40 

em(v2i) = (. 2j )-! o::;'--}:j"i (60) 
) - m 

is a basis set for symmetric spinors of order 2j, then the 

spherical tensor components of the symmetric spinor 
A(j)(V 2i) are 

A Wm = em(v2i) 02i A(J)(v2i), (61) 

where {em(v2i)} is the basis dual to {em (v2i)}, and each 
em(v2i) has the same numerical value as em(v2i). In 
particular, if A(j)(v2i) is the decomposable spinor 
(ua + v(3)2i, then A(j)m is the spherical tensor 

A (j)m = (. 2j )! ui+mvi-m. (62) 
) - m 

This is the well-known re!ation,35,41 which has been 
used to derive the rotation matrices42 D~~. and the 
3-j coefficients43 for spherical tensors.44 The spherical 
tensor metric g mm' for this basis set is also the standard 
one, 

_ 2j 02i (21) "0 (2i) _ ( I)i-m" 
gm,m' - E em V '6' e" V - - Um,-m" 

(63) 

It is simple to relate a spherical tensor to a sym
metric traceless Cartesian tensor if the latter is ex
pressed in terms of the spherical vector basis set (in 
natural phase45) el(l) = - 2-!(x - iy), eo(l) = i, 
e-l(l) = 2-!(x + iY). The relevant basis tensors 
are, in fact, 

e (m ... In.) = ( 2j )-! 2!(J-Ji)oJi' 
m 1 }. m' 

} - m 
(64) 

where flo = Ii Imil, ,u' = Ii mi' These agree with the 
spherical vector-basis set for j = I and have the metric 
gm,m' = (_l)mom,_m" This metric differs from the 
spinor metric (63) by a factor (-I)i which could easily 
be obtained by changing the phase in the definition of 
em (!). However the above used form is also standard
it should only be remembered that there is a factor (i)i 
between the spherical tensor components as derived 
from a Cartesian tensor as opposed to those derived 
from a spinor. 

The analog of Eq. (62) for a decomposable tensor 
(amem(l»i = (xx + yy + zi)i is a formula for the 
spherical harmonics, 

Y;'(a) = (. 2j )-~'L82i(i-m-2') ( j ) (m + 2S) 
) - m m + 2s s 

X (a+)m+8(aO)i-m-28(a-)", (65) 

where flo = m + 2s. These have the projection-type 
normalization of Sec. IV,46 

f Y;'(d) Yj'?'(a) dd 

= 47T(2j + 1)-12 i (j !)2[(2j) lrlo;;.( -l)mom,_m" (66) 
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Equation (65) is therefore equivalent to 

[
2j + 1 J! Y';'(O, 4» = ~ (j - m)! (j + m)! 

( _1)m+8 sin 01ll+2s cos OJ-m-2Seim~ 
X ~s 2 

2m+ SCm + s)! s! (j - m - 2s)! 

(67) 

as the usual spherical harmonics normalized to unity. 
The transformation from Cartesian components 

involves, in addition, the unitary transformation 
ar _ am, namely 

(68) 

where for natural phase 

(69) 

The notation urm emphasizes that U::, = Ur;,.* = (m I r) 
can be regarded as a matrix element of the unit tensor 
U in "mixed" representation, and thus has the prop
erties 

u;.nu';", = 6~" 
U;.nUr,;. = 6;', 

U~U~, = (-1)"'6",,_111" 

(70) 

which are "mixed" representations of U· U = U. 
Also, Eli) can be expressed in "mixed" representation, 

(mI' .. m,1 E(j) Ir· .. r i ) 

= ~ clU;')i-2t(6r ,rY< -1)"'(6m._m)t, (71) 

which is just the transformation from Cartesian 
representation to the spherical vector representation. 
[In Eq. (71), ct is given by Eq. (22), and the sym
metrization convention is used.] The spherical tensor 
basis set in Cartesian form is obtained by combining 
the Ur;,. transformation with Eq. (64) to give 

e (r .••• r ,) = ( 2j )-t ~ i5I:/"'i2!u-II)(Ur )i 
mz. ,. ~ m 'Tn' 

) - m m/"'11Il 

(72) 
which satisfies47 

gmm' = e",(j) oj em,(j) = (-I)"'i5",._m' (73) 
and 

m 

Since the dual basis is em(j) = (-l)"'e_m(j), the last 
equation is just the resolution of the natural projection 
E(J) according to the basis em(j). In general, the em(j)'s 
are quite complicated, although particular cases are 
easy to write out and can be found in literature.48 Of 

particular simplicity is 

e ( ") = .!.(2j) I)! Y (2) 
o } j! 2' ' 

(75) 

from which all the other em(j)'s may be obtained by 
raising or lowering operators. 

The relation between natural tensors and natural 
spinors can be obtained through their spherical tensor 
components. As discussed earlier, the two sets of 
components give rise to different metrics [Eqs. (63) 
and (73)]. These can, of course, be brought into 
coincidence by introducing a factor (i)i or (_i)i into 
the Cartesian tensor to spherical tensor correspond
ence. If a factor +i is introduced into the definitions 
of em(l) the vector a and the symmetric second-order 
spinor AIIV are related by 

ar = U~vAllv, (76) 
with 

u;. = (~~ (-~ ~ ~ ~), 
o 1 1 0 

(77) 

where the labeling on the four spinor components is 
All, A12, A2l, A22 where Al2 = A2l, and ar is a"', a", a'. 
Higher-ordered tensors and spinors can be built up 
with the aid of this transformation, two spinor indices 
being equivalent to one Cartesian index. The following 
correspondences between invariant spinors and in
variant tensors are particularly important: 

i5r• ~ (Ellv)2, 

Erst ~ +2!EllvEvrErll' 

(78) 

(79) 

Here the indical correspondences are r ~> /-tl , /-t2 , S ~ 
VI, V2 and t ~ T 1 , T2, with the symmetrization con
vention being used on the repeated unlabeled spinor 
indices. Since all invariant tensors can be expressed 
in ten'hs of the elementary invariant tensors i5rs and 
Erst' Eqs. (78) and (79) give a prescription for tran
scribing any invariant tensor into an invariant even
ordered spinor. 

The whole of Cartesian tensor analysis could have 
been formulated in terms of the extraction and re
embedding of spherical tensors-in fact, this is one 
interpretation that can be put on the basis tensors of 
Sec. II. However, this is only one possible basis set and 
others may be simpler to work with, if indeed one 
needs a basis set at all. It has been our general experi
ence that the irreducible Cartesian tensors can be 
handled very conveniently as entities by themselves 
without the complicated and usually unnecessary 
transformation to spherical components and back 
again. 
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Note added in proof' The basis tensors ern(j) for the 
spherical components (Sec. VII) can be obtained in a 
simpler form by projecting out the traceless symmetric 
part of the product (el)rn(eo)i-rn. For m > ° the result 
must be of the general form 

em(rl ' .. r j) = N L at[el(r)meO(r)j-m-2t(<5rrY], 
t 

where the symmetrization convention is understood 
and where the coefficients at can be determined, in a 
way similar to those of the projections £(1) (Sec. IV), 
by requiring the expression to be traceless. The 
resulting recursion formula yields 

(_1)t(j - m)!j! (2j - 2t)! 
at = , 

(2j)! (j - m - 2t)! t! (j - t)! 

where ao = 1. With the normalization 

N = 21<m-j) ( . 2j )1, 
] - m 

the em have the normalization and phase of Eqs. (64) 
and (73). For m < 0, replace m by Iml in all these 
equations and also replace el by e_l in the first equa
tion. Apart from the normalization these are the 
coefficients of the associated Legendre polynomials, 
a result which is consistent with the fact that 
em(j) Oi (U)i is the spherical harmonic Y;n(u): 

em(j) Oi (U)i. 

VIII. IRREDUCIBILITY UNDER OTHER 
GROUPS 

The considerations of Sec. II apply to groups other 
than the rotation group, but the elementary invariant 
tensors are changed. Irreducible tensors can still be 
represented as reduced or natural tensors of minimal 
order embedded in a tensor space of higher order. 
However, the minimal orders for distinct symmetries 
are not necessarily distinct. One must first determine 
the "natural projections" E(j)(m I m) for the irreducible 
subs paces of symmetry j in the space :x;m of minimal 
order. Unlike the case of the rotation groups, these 
in general will not be all of the same type. Some 
examples are discussed in the remainder of this 
section. 

In general, the higher the symmetry, the fewer the 
number of invariant tensors. This is exemplified by the 
general linear group GL(3) where the only invariant 
tensor is <5! (there being no invariant metric) so that the 
only invariant mappings are permutations. In partic
ular, there can be no invariant reduction of order, 
and so tensors of different order have different group 
symmetry. Thus the irreducible representations can be 
classified according to the irreducible representations 
of the symmetric group, the well-known resu1t. 3o,49 

The improper rotation group 0(3) in three dimen
sions is the direct product of the proper rotation 
group SO(3) and the inversion group {1, I} so that the 
irreducible representations can be labeled by (j,1T) 
according to the rotational symmetry j and the parity 
1T. Since the inversion I changes the sign of any 
vector r E:X;, i.e., Ir = -r, any element T(n) E:x;n 
obeys JnT(n) = (- 1tT(n). In particular, E con
sidered as an element of :x;a changes sign, J3E = -E 
and so is no longer an invariant tensor. Thus the only 
elementary invariant tensors are <5; and the metric <5r• 
together with its inverse <5rs. Consequently not all the 
natural forms are symmetric traceless tensors; those 
for the irreducible representations (j, (- l)i) actually 
being symmetric traceless, while those for (j, (_l)IH) 
are not. In fact, the minimal tensorial order is 3 for the 
(0, -1) representation and j + 1 for (j, (-1)1+1), 
j ¥: 0. However, it is convenient (and common 
practice) to reduce to symmetric traceless form in the 
following invariant way: Define E' as having the same 
components as E but transforming differently under 
inversion, namely 

E'~E' (80) 

thus being invariant. Clearly E' is not an element of 
:x;a but can be considered as an element of 'Ya, the 
space of third-order pseudotensors. In general, the 
space of nth-order pseudotensors 'Yn can be defined as 
'Y n = p:x;n where p is a unit pseudo scalar having the 
basic properties Ip = - p, and p2 = 1. The second 
property implies that the product of two pseudo
tensors is a proper tensor, i.e., is an element of :x;m 
for some integer m. In particular E' is given by E' = pE. 
In literature, the usual meaning of E is, in fact, really 
E' rather than E! By means of E', all irreducible (proper) 
tensors can be reduced to symmetric traceless form, 
those belonging to the representations (j, (- l)i) being 
tensors, and those belonging to the representations 
(j, (_I)iH), pseudotensors. 

For the group Coo of proper rotations about the 
z axis of a three-dimensional space, U and E can be 
reduced into the more elementary invariant tensors 
U(2) = U - ZZ, E' Z, and Z. Thus the reduction 
problem is equivalent to the analogous problem for 
the rotation group SO(2) in two-dimensional space. 
The elementary invariant tensors for SO(2) are I5jl. 

and €jlV [see Eq. (46)]. Because of the presence of I5jlv 

(implying that covariant and contravariant Cartesian 
indices need not be distinguished), €/lV' in contrast to 
the case of SU(2), also has the significance of €; that 
is of a map of vectors into vectors. This is not the 
identity map, and this is fundamental in studying the 
tensor representations of SO(2). The two eigenvectors 
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of the map E~, satisfying II' E~al' = Aal', cannot be 
mapped into one another by any invariant tensor 
T(O)(1 II), since any such tensor is merely a linear 
combination of E~ and 15~, and they therefore have 
different symmetries, which are both one dimensional 
and of multiplicity one. Thus the eigenvectors e+ = 
2-1(1, i) and e_ = 2-!(1, -i), belonging to rota
tional symmetry m = + I and -I, respectively, are 
irreducible under SO(2). The mapping of an nth
order irreducible tensor to natural form is attained by 
contracting with 15I'V and/or EI'V to obtain a symmetric 
traceless tensor oflower order Iml. The result must be 
an eigentensor of E~ with respect to each index, for the 
two distinct eigentensors cannot be mapped into one 
another by any invariant map, being easily seen to be 
in fact eigentensors of all invariant automorphisms, 
and are therefore of different symmetry, each sym
metry being of dimension one and having multiplicity 
one. The eigenvalues A of E; are either +i for all 
indices, or all -i, since the tensors are symmetric. 
Thus for each order Iml there exist two traceless sym
metric natural forms which can be labeled by {A, I ml}, 
or by the product m = iA Iml = ± Iml, coinciding 
with the usual symmetry designation for SO(2). The 
natural projections into representations ± Iml are 

E±lml(.u1· .. .um' 111 ... 11m) = 2-m(15~ 1= iEI:,)m. (81) 

When reflection is introduced giving Coo'/) [or 0(2)], 
then EI'V is no longer invariant, and the irreducible 
representations are changed in an essential way. For 
m :;1= 0 the m and - m representations of C co coalesce 
to form two-dimensional irreducible representations, 
whereas there are two representations for m = 0 
which can be labeled (0, +) and (0, -) in analogy to 
the improper rotation group, or by the spectroscopic 
symbols ~g and ~u. The natural forms for Iml > 0 

and for the ~g state are the symmetric traceless 
tensors of order Iml with natural projections, 

Elml(r ... r Is' .. ~ ) 
1 Iml 1 'Iml 

llml 
= '" c'(15 )11II1-2t(15 ,)t(b )1, (82) k., t T,S r.1 s,s 

toO 

where 

, ( 1 t I (Iml - t - I)! 
Ct = - ) 1m 22tt!(lml _ 2t)!' Iml> 1, 

c; = bt .o, Iml = 0, 1. (83) 

For ~u, the natural form is the antisymmetric second
order tensor50 with natural projection 

E(0'-)(r1r2 1 S1S2) = t(15r,s,15r2s2 - 15""215'2",). (84) 

Table V gives the reduction of fourth-order tensors 
under Coo in the present formalism. 

Finally,51 for the finite rotation groups Cn , there 
are two additional invariant tensors, (e+)n and (e_)n, 
besides 15 IlV and El'v' These extra invariant tensors map 
symmetric traceless tensors of order n + r to order r 
so that there is only a finite number of inequivalent 
irreducible representations. 

APPENDIX A 

The reduction of second-order tensors is extremely 
simple since all multiplicities are unity, and well 
known, but it serves to illustrate the notation. Table II 
summarizes the reduction according to our formalism 
by elementary embeddings. For symmetry j = 2, 
TiO)(212) = T(ol1(212) is the natural projection E(2) 
so that the reduced and embedded forms coincide. 
For symmetry 1, T10)(211) is chosen as E. Then 

T~°>C211) 0
2 T~0)(211) = 2 E""2sEr,T2S' = 2b"s' = 2EU) 

(AI) 

TABLE V. Reduction of 4th-order two-dimensional tensors under C oov by elementary contractions. 

Symmetry 
m 

4 
2 

(0, +) 

(0, -) 

Contraction 

none 
~"r2 

~r"3 
~'3r. 
~T,r. 

~r,r.{jr",. 

~rlr3~r2r4 

(j1'lr4t5r2T a 

~r.r3 

~'2r4 

~r3r. 

(: 
,I 

{ 
(: 

gPO 

1 
1 1 

i) 2 1 

2 

1 

;) 2 

2 ;) 

go. 

1 

(' 
-1 -1 -I) -1 4 -1 -1 

-~ -1 -1 4 -1 

-1 -1 -1 4 

:( -: -} -I) 3 -1 

-1 -1 3 

t(-: -1 -I) 
3 -1 

-1 -1 3 
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implies that gll = 2, gll = t, and T(O)1(I 12) = tEo 
The corresponding second-order projection is 

IT1(r1r2 1 r{r~) = T(0)(r1r211) 0 1 T(O)(l1 r{r~) 

= -~- L E'rl"2,'jE'rl'r2's 
s 

= H 0rlrl,Or2r' - 0rlr• Orl'r2)' (A2) 

The effect of these tensors on the tensor product 
a ® b is given by 

T(0)1(l12) 02a ® b = a x b, (A3) 

TiO)(211) 0 1 a x b = Ha ® b - b ® a), (A4) 

where the natural form is a x b, the cross product of 
a and b and the re-embedded form is the antisym
metric part of a ® b. Similarly for j = 0, T(O)I(O 12) = 
U contracts (takes the trace or dot product), while 
T~0)(21 0) re-embeds the trace, e.g., 

T(O)l(O 12) 0 2 a ® b = a· b, (AS) 

TiO)(21 0) 0° a . b = i(a. b)U. (A6) 

The reduction of third-rank tensors is the simplest 
case involving multiplicities. Table III gives the com
plete reduction by elementary contractions and 
illustrates the simplicity and compactness of the 
present formalism, in comparison with the more 
lengthy calculations in Part I, Sec. IV. Consider the 
symmetry j = I case as an example. There are three 
ways of contracting a third-order tensor to first-order: 
0 8283 , 0

8183
, and 0SIS2' conveniently equal to the multi-

Plicity N(I) = 3 Thus we set T(0)1(1 13) = 0 0 
3 • r81 8283' 

etc. The metric g-l is obtained by considering products 
of the form 

T(O)I(r 13) 0 3 T(O)I(r' 13) = 30r ,r' = 3E(l)(r 1 r'), (A 7) 

T(O)l(r 1 3) 0 3 T(0)2(r' 13) = Or,r = E(])(r 1 r'). (A8) 

The inverse metric gives the dual tensors, e.g., 

T\O)(s 1 r) = T\J[4T(0)1(r 1 s) - T(o)2(r 1 s) - T(0)3(r 1 s)]. 

(A9) 

Reductions based on elementary embeddings or 
contractions are quite simple for 4th- and 5th-order 
tensors as well as the 6th-order invariant tensors. 
These and other convenient choices of basis tensors 
will be discussed in Part IV. 

• Supported in part by the National Research Council of Canada. 
1 See, e.g" E. P. Wigner, Group Theory and Its Applications to 

the Quantum Mechanics of Atomic Spectra (Academic Press Inc., 
New York, 1959) or L. C. Biedenharn and H. Van Dam, Quantum 
Theory of Angular Momentum (Academic Press Inc., New York, 
1965). 

• In the kinetic theory of gases with nonspherical molecules, 
irreducible Cartesian tensors were introduced by Y. Kagan and 
L. Maksimov, Zh. Eksp. Teor. Fiz. 41, 842 (1961) [Sov. Phys.
JETP 14, 604 (1962)]. W. J. Meath and J. O. Hirschfelder, J. Chern. 
Phys. 44, 3197 (1966), have recently used Cartesian tensors for 

studying intermolecular forces. In the latter case, the spherical 
tensors are expressed in Cartesian form. 

3 B. Barsella and E. Fabri, Nuovo Cimento Supp!. (Ser. I) 2, 293 
(1964). 

• C. Zemach, Phys. Rev. 140B, 97 (1965). 
• H. Grad, Commun. Pure App!. Math. 3, 325 (1949). 
6 J. A. R. Coope, R. F. Snider, and F. R. McCourt, J. Chern. Phys. 

43, 2269 (I965). This is referred to as Part I in the text. 
7 J. A. R. Co ope, J. Math. Phys. (to be published). (Part III). 
8 J. A. R. Coope (to be published). (Part IV). 
9 W. H. Greub, Linear Algebra (Academic Press Inc., New York, 

1963). 
10 This is the common notation, see, e.g., L. P. Eisenhart, An 

Introduction to Differential Geometry (Princeton University Press, 
Princeton, N.J., 1947). 

11 Both of the terms "rank" and "order" are commonly used for 
the number of indices on a tensor and we used the term rank in Part 
I. As the term rank also has a meaning (see Ref. 9) as the dimen
sion of the image space of a given linear mapping, which is used 
in Sec. IV, we will here follow Greub in using the word order for 
the number of indices. 

12 An nth-order tensor has n indices rl, r., ... ,r,,; however, for 
most purposes it is completely unnecessary to explicitly write down 
these indices; hence, the symbol (n) is used which merely implies that 
there are n indices. In contracting an nth-order contravariant tensor 
with an nth-order covariant tensor, the n-fold contraction is denoted 
by on. However, some convention, as to which of the 2n indices 
are to be contracted, must be followed when doing the contraction. 
In Part I, the convention that nearest indices are contracted was used, 
while T. B. Drew [Handbook of Vector and Polyadic Analysis 
(Reinhold Pub!. Corp., New York, 1961)] uses the convention of 
contracting left-hand index with left-hand index and so on, down the 
line. This latter convention is somewhat more convenient for higher
order tensors and is used in the following when an explicit con
vention is required. However, the formal development is independent 
of what convention is adopted. 

13 See, e.g., H. Boerner, Representations of Groups (North
Holland Pub!. Co., Amsterdam, 1963). 

14 For the rotation group, j is the highest weight (see Ref. 13) of 
the irreducible representation and was simply called the weight in 
Part I. Here,j will be considered as a composite label to distinguish 
the different irreducible representations of the arbitrary group G, 
hence the name "symmetry j" or "symmetry type j." 

16 It is assumed that G is a decomposable group. 
16 In general, a superscript in brackets designates the symmetry, 

whereas without brackets, it will denote a tensorial product, e.g., 
:X;n or Eq. (23). Again, (n) stands for the n indices (see Ref. 12). 

17 Since the space of symmetry j is only DI dimensional, there can 
be at most Di independent tensors of this symmetry. 

18 For the group GL(v), the invariant mappings are sometimes 
called tensorial mappings (see Ref. 9). 

19 Care must be exercised in applying this theorem to assure that 
the domains of the mappings are only the relevant irreducible 
subspaces. 

20 Ref. I, p. 77. 
81 See Sec. VIII for a discussion of the improper rotation group 

0(3) where E is not invariant. 
•• This can be considered as the multiplication rule for deter

minants. 
.3 This does not mean that quantum-mechanical problems in

volving half-integral spin cannot be handled by these methods since, 
in general, it is the quantum-mechanical operators which are required, 
and these can be expressed in terms of the quantum-mechanical 
vector operator J. 

U Correctly, the infinitesimal generators are anti-Hermitian, 
being i~in I n), etc. 

26 ® denotes the tensor product (see Ref. 9). 
'6 For example, n = 2 :~·(r,r.1 s,s.) = 4(Jrl,,(Jr.,. + 2«Jr".(Jr"1 -

(Jr,rs(J'l'.)· 
'7 I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representa

tions of the Rotation and Lorentz Groups and Their Applications 
(Pergamon Press Ltd., London, 1963). The reduction of third-order 
tensors is explicitly obtained by them with this method. 

28 P.-O. Lowdin, Rev. Mod. Phys. 36, 966 (1964). 
29 This is equivalent to Dirac's formula P12 = t(l + a, • a.). 
30 H. Weyl, The Classical Groups (Princeton University Press, 

Princeton, N.J., 1939); see also M. Hamermesh, Group Theory 
(Addison-Wesley Pub!. Co., Inc., Reading, Mass., 1962). 

3lThese can also be written as y(il(t)=j!ri+l(_V)i/r, a form 
appearing in multipole expansions. 



                                                                                                                                    

IRREDUCIBLE CARTESIAN TENSORS. II 1017 

32 The expansion coefficients are tensors CU)(j) satisfying Eli) oj 
CIi)(j) = Ci(j). 

33 H. A. Kramers, Koninkl. Ned. Akad. Wetenschap. 34, 956 
(1931); see also J. Schwinger, "On Angular Momentllm," in 
Quantum Theory of Angular Momentum (Ref. 1). 

34 The normalization is chosen so that Eq. (37) takes a simple form. 
For a fixed basis {e .. (j)) of HI with dual basis {e"'(j)}, then ep",(n) == 
T pen I j) 0 j e",(j) and eor(n) == er(j) 0 i TO(j In) are d lIal basis sets in 
H; and lif, respectively, i.e., 

cor(n) 0 n cp .. (n) = lS~cr(j) 0 j c",(j) = IS:IS~. 

35 H. A. Kramers, Koninlk. Ned. Akad. Wetenschap. Proe. 33, 
953 (1930); 34, 956 (1931); H. C. Brinkman, Applications of Spinor 
Invariants in Atomic Physics (North-Holland Pub!. Co., Amsterdam, 
1956). 

36 The sign agrees with that of L. D. Landau and E. M. Lifshitz, 
Quantum Mechanics Non-relativistic Theory (Pergamon Press, Ltd., 
London, 1959). 

37 See Chapter I, Sec. 4 of Ref. 35. 
38 The p, and 11 indices in Eqs. (55) and (56) are not symmetrized 

according to the convention of Sec. IV-hence the subscript NS. On 
the other hand, the a and T indices are symmetrized. 

39 Also called the Heitler-London-Slater-Pauling method. See, 
e.g., L. Pauling and E. B. Wilson, Introduction to Quantum Me
chanics (McGraw-Hili Book Co., New York, 1935). 

40 For first-order spinors, 1Ii = I or 2 corresponds to m = ±!, 
so that the IS term just equates m and 1:i mi' 

41 H. Weyl, Theory of Groups and Quantum Mechanics (Dover 
Publications, Inc., New York, 1949), p. 145; E. P. Wigner, Ref. I, p. 
163. The factor [(2j) !]t is not usually used. 

.2 P. Giittinger, Z. Physik 73, 169 (1932). 
U B. L. Van der Waerden, Die Gruppentheoretische Methode in 

der Quantenmechanik (Springer-Verlag, Berlin, 1932). 
44 Some of the 6-j coefficients were derived by Kramers (Ref. 35) 

by spinor methods. These being scalars are essentially the same for 
spherical tensors, spinors, and Cartesian tensors. 

45 E. U. Condon and G. H. Shortley, Theory of Atomic Spectra 
(Cambridge Univ. Press, London, 1935). 

46 All the transformations in this section are unitary. The only 
change in orthogonality relations is therefore in the representation of 
the natural projection. For example, the change from the Cartesian 
yli> of Sec. IV to the Y~ here only changes the orthogonality relation 
(34) from EU> to (- I)mlSm._m'. 

47 See the discussion following Eq. (64). 
48 Two recent articles containing examples are R. McWeeny, J. 

Chern. Phys, 42,1717 (1965); W. 1. Meath and 1. O. Hirschfelder, 
ibid. 44, 3197 (1966). 

49 A discussion of the irreducible representations multiplicity 
problem for GL(n) is given by D. R. Tompkins, Phys. Rev. Letters 
16, \058 (1966). 

50 As in the case of the rotation group one could use the non
invariant ellV to devise a space of pseudo scalars. 

51 The invariant tensors for the low-order crystallographic groups 
are given by G. F. Smith, J. Math. Phys. 5, 1612 (1964). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 3 MARCH 1970 

On the Ising Model with Long-Range Interaction. II. 
Critical-Region Analysis 

COLIN J. THOMPSON'" 

Mathematics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 

ARNOLD J. F. SIEGERTt 
Physics Department, Northwestern University, Evanston, Illinois 60201 

AND 

DAVID J. VEZZETTI+ 
Physics Department, University of Illinois at Chicago Circle, Chicago, Illinois 60680 

(Received 19 May 1969) 

. The ~igh-temperatur~ expansi.on for the .free e~ergy in p0v.:e!S of y (the reciprocal of the range of 
~nteractlOn) .developed .m a prevlO~s paper IS studIed m. the ~ntlcal region. In terms of the graphology 
mtroduced m the prevIous paper, It IS proved that the nng dIagrams give the dominant contribution in 
the critical region, if and only if the integral 

211 

R(vy) = (~)D f ... f g(w) dDw 
h 1 -vyg(w) 

o 

diverges no worse. than.loga~ithmically at [the Curie-Weiss (CW) point] vow = J/kTow = [yg(O)]-t, 
whe~e D denotes dlI~ensJO~ahty and yg(w) the Four~er.transf~rm of the interaction potential. The results 
are m agreement wIth vanous model results, and It IS conjectured that the above condition is also a 
necessary and sufficient condition for the existence of a phase transition. 

1. INTRODUCTION 

In a recent paperl (hereafter referred to as I) a 
functional-integral representation for the partition 
function of an Ising model with long-range interaction 
was used to develop high- and low-temperature 
expansions for the free energy in powers of y, the 
reciprocal of the range of interaction, with the 
classical Curie-Weiss (CW) theory as leading term. 
Previous graphical results of Brout2 and others3.4 are 
obtained very easily by this method, and by a combina
tion perturbation-variational technique (which we 
call the "oc trick") it was shown that, as a first approxi
mation, one obtains the "sphericalized" graphical 
results of Brout2 and Miihlschlegel and Zittartz.5 The 
limitations of these results obtained via the oc trick are 
discussed in Paper I (Sec. 8), and are summarized 
briefly at the end of the present Sec. 3. 

A parallel development in the study of systems with 
long-range interaction was begun some time ago by 
Kac,6 who proposed a number of models with long
range exponential interaction, for which explicit 
expansions could be worked out at temperatures 
above and below the classical Curie-Weiss point 
(CWP) as well as in the critical region around the 
CWP. This approach has been summarized in detail 
by Kac7 in the 1966 Brandeis lectures, where detailed 
references can be found. 

In a recent paper Kac and Thompson8. made a 
detailed critical-region study of a I-dimensional model 

with infinite-range interaction, a 2-dimensional model, 
and a 3-dimensional model, all with exponential 
interactions. The method is briefly as follows: One 
first develops expansions in powers of y above and 
below the CWP and notes that for a range of tempera
tures around the CWP these expansions break down, 
e.g., for the 2-dimensional model, when T - Tcw'-"; 
y log IJy. This range of temperature defines the 
critical region, and in this region one sums the most
divergent terms to all orders in perturbation. One finds 
that in all cases the resummed series to lowest order 
are now completely analytic at the CWP, and that the 
singularity is shifted by a small amount to a modified 
critical point, e.g., for the 2-dimensional model to 

~ = _J_ + .LIog (~). 
kT~ kTcw 47T Y 

In principle, one can then investigate the resummed 
series to determine a new critical region and then 
resum to determine a second approximation to the 
critical point, and so on. In this way, one hopefully 
obtains a converging sequence of approximations to 
the true critical behavior. The procedure, however, 
as one might imagine, gets rapidly out of hand, 
and even for the first resummation it was necessary to 
conjecture the form of the most divergent terms in 
perturbation beyond second order. It is also not clear 
how the true critical behavior is approached by this 
method, e.g., in two dimensions the first resummation 

1018 
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gives a logarithmically divergent energy at the modified 
critical point, which is definitely incorrect (one would 
rather expect a logarithmically divergent specific 
heat !). In fact, the first resummation gives critical 
behavior which is identical with Brout's sphericalized 
results. Whether or not the next resummation will 
change this is not known at the moment. 

In spite of these difficulties it is encouraging that the 
critical-region resummation moves the singularity 
away from the CWP in the direction of the true 
critical point, and for the models, at least, the essen
tial information about the modified critical point and 
critical exponents can be deduced from the high-tem
perature expansion (above the CWP) alone, i.e., the 
resummed low-temperature expansions give the same 
critical behavior and match up with the resummed 
high-temperature expansions at the CWP. 

The striking similarity of the critical region resum
mations for the 1-, 2-, and 3-dimensional models 
suggests that it may be possible to carry out the type of 
procedure described above for general lattice 
systems with long-range interaction. The purpose of 
this note is to show how this can be done for tempera
tures above the CWP. Moreover, we will prove the 
most divergent term conjectures of Ref. 8 in complete 
generality. We are not able as yet, however, to treat 
the problem below the CWP, but in view of the model 
results this does not seem to be a serious drawback 
of the method. 

We take as our starting point the functional-integral 
reduction given in Ref. 1. This is summarized briefly 
in the following section, and in Sec. 3 we carry out 
the critical-region resummation and relate the resum
mation to the oc trick. For those not interested in the 
technical details we have summarized and discussed 
the results in some detail in the final section. 

2. FUNCTIONAL-INTEGRAL REDUCTION OF 
THE PARTITION FUNCTION 

For simplicity we will carry through the analysis 
for a I-dimensional chain of spins Iii = ± 1, 
i = 1, 2, ... , N, with interaction 

N 

E = -tJy ~ Pk-z(Y)likliz, (2.1) 
k"'l=l 

where it will be assumed throughout that the inter
action potential is periodic and ferromagnetic, i.e., 
PI(Y) > 0 and for convenience Po(Y) will be taken to 
be unity. The results for higher dimensions can be 
obtained simply from the formulas below by inter
preting the k's etc., to be vectors of appropriate 
dimension. 

To calculate the partition function for the inter
action (2.l) 

QN = ~ exp [tVY ~ Pk-b)likP/] , (2.2) 
{II) k"'Z 

where v = l/kT (k is Boltzmann's constant and T the 
absolute temperature) and the summation {p} denotes 
the sum over all configurations 

Pi = ± 1, i = 1,2, ... , N, 

we use the identityD 

exp [-t L ~k(o:-l)kl~/J 
k,! 

= (h)-tN(det oc)! 
<Xl 

X r . -J dNx exp (i t ~kXk - t tz XlhlXZ) ' 
-<Xl 

(2.3) 

which is valid for any pOSItIve definite symmetric 
matrix oc and any set of complex variables ~k' 

To obtain the leading contribution (for small y) to 
QN for high temperatures, we add and subtract, 
with Po(Y) = 1, 

-iN(l - vy) = -t ~ t5k,/(I - VYPk_Z(Y» 
1t,I 

to the exponent in (2.2), and then apply the identity 
(2.3), obtaining 

QN = exp [tN(1 - vy)] 

x lexp [-t ~lik(6k,l- VYPk-lY»PI] 
{I'i k,! 

= exp [iN(1 - vy)](27r)-tN[det (I - vyp)r! 
<Xl 

X J ... r dNx exp (-t ~ xk(I - VYP)k.~xz) 
• k,l 

-00 

x ~ exp (i ~ Xklik) 
{u) k 

_ Q(O) 
- NqN' (2.4) 

where 

Q~) = 2N exp (-tNvy)[det (I - vyp)r1 (2.5) 

represents the leading contribution2 to QN for small y 
and 

<Xl 

qN = (27T/erlN r . J dNx 
-<Xl 

x exp ( -t ~ Xk(I - Vyp)k.~xl) ft cos xk· 

(2.6) 
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In this case, the reduction to (2.4) is valid only if the 
matrix / - vyp is positive definite, which implies, 
since we are assuming that p is periodic (and ferro
magnetic), that the smallest eigenvalue of / - vyp, 
viz., I - vy 1k Pk' is positive, i.e., 

'11< (Y t Pkfl= Vew· (2.7) 

The right-hand side of (2.6) will be recognized 
immediately as the Curie-Weiss value of 'I' = J{kT. 

To simplify (2.7), we define the matrix P by 

/ + vYP = (/ - 'I'yp)-l. (2.8) 

The homogeneity of p carries over to p, i.e., Pkl = 
Pk-I' so that qN, Eq. (2.6), can be written as 

OCJ 

qN = (27T/er!N r .. f dNx 

-00 

x II cos X k 
k 

00 

= (27T/e)-tNuN r .. f dN'Y) 

-00 

x exp (--! 1'Y)~ -11Jyu2I 'Y)kPk_''YJI) 
k k"'l 

x II cos (U'YJk)' 
k 

where 

(2.9) 

(2.10) 

and to obtain (2.9) we have made the change of 

variables Xk = U'Y)k' 
The factor 

(27T)-iN exp ( -t t 17:) 

in (2.9) can be considered as the probability density 
for independent Gaussian random variables rJk with 
zero mean and covariance unity, so we can write q;v, 
given by Eq. (2.9), in the form 

with 

and 

q 
_ q(1)q(2) 

N- N N 

(2) _ / (1 2" - ) qN - \ exp -~vyu f#1'Y)kPk-Z'Y)Z 

(2.11) 

X IJ [cos (ur/k)/(cos U11k> 1). (2.13) 

where 

(cos ul7> = (27T)-i i:e-h2 cos (Ul7) d'fj = e-h2. (2.14) 

Thus, from (2.4) and (2.11), 

Q _ q(1)q(2)Q(O) 
N- N N N, (2.15) 

which gives for the free energy per spin "PN the 
following: 

-"P1'IIkT = N-1log QN 
= log2 + t(l - 'I'y) 

- (2N)-110g det (I - vyp) 

- t log (1 + vYPo) 

- !(1 + vYPo)-l + N-1log qW. (2.16) 

Proceeding now to the limit N - 00, we obtain [for 
details see Paper I, Eqs. (4.21) to (4.27)] 

-"P/kT = log 2 - tvy + f(v) 

where 

and 

+!( vyR(vy) _ log [1 + VYR(VY)]) 
2 1 + vyR(vy) 

+ lim N-1 log q~>, (2.17) 
N-+oo 

j(v) = _1- (21Tlog [1 - 'I'yg(w)J dw, (2.18) 
47T Jo 

00 

g(w) = L eik"'Pk(y), (2.19) 
k=-oo 

R(vy) = lim Po 
N-+oo 

I 12.- g(w) 
= 27T (I 1 _ vyg(w) dw. 

(2.20) 

The reduction to Eq. (2.17) was carried out in I, 
where it was shown by a method discussed in the 
following section, that for'll < Yew [see Eq. (2.7)] 

q = lim N-1log q~) 
J.v ...... OO 

where 

1 ib
( g(w) )2 R 22(VY) = - dw . (2.22) 

27T 0 1 - vyg(w) 
and 
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It is also to be noted that yR22(VY) and yR'2(VY) are 
bounded in the limit y --+ 0 provided v < Vew, so 
that Eq. (2.21) gives the order y3 contribution to 1{J 

[Eq. (2.17)] above the CWP. The motivation behind 
the trickery leading to Eq. (2.17) is now clear when 
we note that f(v) and the square bracketed term in 
(2.17) are of order y and y2, respectively, so above the 
CWP (2.17) and (2.21) they give the first three terms 
in the high-temperature y expansion for 1{J. 

We have given the above reduction in some detail 
in order to point out the (formal) identity of Eqs. 
(2.17) and (2.21), and the perturbation results for the 
models discussed in Ref. 8. Thus, if one compares 
(2.17) and (2.21) above with Eqs. (2.13) and (2.16), 
combined with (2.43) of Ref. 8 for the I-dimensional 
model [cf. Eqs. (4.13) and (5.9) of Ref. 8 for the 2-
and 3-dimensional models,respectively], one will note 
that the formulas are identical; that is, if one identifies 
R(vy), yR22(VY), and yR42(VY) above with p, T2, and 
T" respectively, defined in Ref. 8, so that, formally, 
at least, one can immediately carryover the model 
critical-region analysis to the general formulas given 
above. Before going into this in some detail, let us 
first consider two examples which will illustrate what 
we have in mind: 

(a) the I-dimensional Kac model6 

(2.24) 
and 

(b) the I-dimensional infinite-range model discussed 
in Ref. 8, 

ply) = f>ae-;,Y,t, dA, 0 < a < 1. (2.25) 

The formulas for R(vy) , R 22(VY) , etc., for (a) are 
given in Appendix C of Paper I, so we will simply 
summarize the results: 

() 
~ ikco-ylkl sinh y 

gw=£.,e = , 
k=-oo cosh y - cos w 

(2.26) 

where the CWP is given from Eqs. (2.7) and (2.19) by 

Vew = [yg(O)]-l = y-l tanh iy = i + O(y2); (2.27) 

R(vy) and f(v) defined by Eqs. (2.20) and (2.18), 
respectively, are given by 

R(vy) = sinh y{(cosh y - vy sinh y)2 - 1}-1-

= (1 - 2v)-i + O(y2) (2.28) 

and 
f(v) = -COSh-l (cosh y - vy sinh y) + y 

(2.23)] are to leading order 

(vy)4t[R(vy)]2R 22(VY) "'" ya(1 - 2v)-t (2.30) 

and 

(vy)' 2 : 3! R42(VY) "'" i y3(t - 2v)-t, (2.31) 

respectively. 
We see then that the "first-order" terms in 1{J are 

given by 

-ivy + f(v) "'" -y[(l - 2v)! - I + tv] + O(y3); 

(2.32) 
the "second-order" terms, by 

~( vyR(vy) _ log [1 + VYR(VY»)) 
2 1 + vyR(vy) 

= ![vyR(vy)]2 + O(y3) 

= (ivy)2(1 - 2V)-1 + O(y3); (2.33) 

and the third-order terms, by (2.28) and (2.29). It is 
then obvious that the expansions break down when 

1- 2v""'yf, (2.34) 

since in this region there are terms of order yt in first, 
second, third, and, as is not difficult to convince 
oneself, all orders. Equation (2.34) defines the critical 
region, and the idea is to resum the series for 1{J 

[Eq. (2.17)], typically by picking out the most diver
gent terms in all orders of perturbation. This is 
clearly a hopeless task in the above case, since from 
(2.30) and (2.31) the two third-order terms contribute 
equally in the critical region. This situation, as we will 
show in the following section, occurs in general when 
R(vy) diverges algebraically at Vew [cf. Eq. (2.28)], 
and certainly for model (a) we know from the outset 
that there is no phase transition (for finite y). We 
conjecture that this is in general the case when R(vy) 
diverges algebraically at Vew. The situation is com
pletely different for model (b), Eq. (2.25). In this case, 
from (2.25) and (2.26), 

( ) 11 Aa sinh (Ay) dA 2 
g yO) = "'" - hew) (2 35) 

o cosh (Ay) - cos (wy) y , . 
where 

i1 Aa+1 
hex) = 2 2 dA 

o A. + x 
(2.36) 

and 

R(vy) = J.. r2:r g(w) dw"",! roo hex) dx , 
217" Jo 1 - vyg(w) 17" Jo 1 - 2vh(x) 

(2.37) 
= -y[(1 - 2'11)1- - I] + O(y3); (2.29) 

which is precisely the form for p given in Ref. 8 [see 
and the "third-order terms" [Eqs. (2.2B, (2.22), and in particular Eqs. (AI) and (All) of Appendix A]. 
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The CWP from (2.7) and (2.35) is given by 

vcw = la, (2.38) 

and, for 0 < a < 1 [see Eqs. (3.5) and (3.6), respec
tively, of Ref. 8; note that in general dl/dv = tyR], 

- ..2.. f(v) f"Ooo.' A(a - 2v) + B(a - 2v)l/a + ... , 
ya2 

(2.39) 

R(vy) f"Ooo.' 2a 2[A + (B/a)(a _ 2v)O/al-l] + ... ; 
(2.40) 

and, from (2.22) and (2.20) [cf. Eq. (3.11) of Ref. 8], 

yR22(VY) = ~ R(vy) t-' -4B(1 - a)(a - 2v)U/aH. 
OV 

(2.41) 

It is now evident that the expansion (2.17), as for 
model (a), will break down for that range of v around 
Vcw, such that 

I(v) t-' ![vyR(vy)]2; 

i.e., from (2.39) and (2.40), when 

a - 2v t-' y. 

(2.42) 

(2.43) 

In this case, terms of order yu/a)+! occur in first and 
second order and also, from (2.41) and (2.21), in 
third order; moreover, it is not difficult to convince 
oneself that such tenus will be present in all orders. 
The essential difference, however, between models 
(a) and (b) becomes clear when we note that the other 
third-order term in (2.21) [cf. Eq. (3.12) of Ref. 8] 

_1_ (Vy)'R42(VY) f"Ooo.' y2/a, when a - 2v t-' y, 
2 X 3! 

(2.44) 

which, since a < 1, is of higher order than y(1/a)+!. 

For model (b), then, the "most divergent terms" 
in the critical region [defined by Eq. (2.43)] in first, 
second, and third order are, respectively,J(v), 

2 2 .] df i[vyR(vy)] = t[v yR(vy) -
dv 

and 

4 2 2 2 d
2f 

Hvy) [R(vy)] R22(VY) = t[v yR(vy)] dv2 ; (2.45) 

and the conjecture stated in Ref. 8 for the models may 
be now stated (in general) as follows: 

The most divergent term in (n + l)th order is 
given by 

2 n 1 dnf 
[-v yR(vy)] - -, n > 2; 

n! dvn 
(2.46) 

and all other tenus in the critical region are of higher 
order, if R(vy) is finite or diverges no worse than 
logarithmically at Vcw. 

This conjecture will be proved in the following 
section. 

3. CRITICAL-REGION RESUMMATION 

To prove the result (2.46), we use the graphical 
representation of q [Eq. (2.21)] given in Paper I, 
which is briefly as follows: 

Expanding the exponential in (2.13), we obtain 

q~) = i ~ (_!VYU2)11/\(~' Pkl'YJk'YJ1)n II f/J('YJi)/\ 
11=0 n. k,1 , 

(3.1) 
where 

f/J('YJi) = cos (u'YJj)/(cos u'YJ> = e1u2 cos (u'YJj) (3.2) 

and IIi extends over all lattice points j. If we now 
represent a pair of points (p~, p~) by p« and denote 
P , • by P~ , we can write (3.1) as 

Prx Pac Y(l 

N 

X ~' II PPIXF N(Pl, P2' ... , P N), (3.3) 
Pl,P2," ',PN «=1 

where the sum is over all pairs of distinct lattice 
points and 

FN(Pl, P2"", PN) = <ft 'YJp«''YJp«" If f/J('YJj»' (3.4) 

The form (3.3) is now completely analogous to a grand 
canonical partition function of a "gas," the pairs 
corresponding to the position vectors of the gas 
molecules and the sum over pairs to the integral over 
coordinates. We can then represent each term in the 
sum over pairs by a graph, if each pair PIt is represented 
by a line joining the two lattice points p~ and p: and 
by the standard cluster argumentlO 

00 

N-1 log q~) = ~ (-vyu 2»).b). (3.5) 
).=2 

with cluster coefficients b), given by 
), 

N)'!b),= ~ S;'(Pl,"·,p).)IIpp«, (3.6) 
Pit'· ·,P,t 1%=1 

where S)'(PI,"', p;,) are Ursell cluster functions 
associated with the weights F',V(Pl' ... ,PN)' More
over, from the cluster property of the S).'s and Eq. 
(3.4), only even connected graphs contribute to (3.6). 

The weights FN(PI, ... ,PN) can be calculated very 
easily as follows. If the graph has mf points of degree I 
(the degree of a point is the number of lines entering 
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the point), it is obvious that Eq. (2.40) in particular] 

F;.(P1'·· " P).) = IT [(1/ cos U'I})/(cos u'I})]mf, (3.7) R(vy) = A + B(vcw - vy-1 + "', IX> 1. (3.15) 
f 

where 
(3.8) 

and, from (2.14), it follows that 

('I}fCOSU'l})/(COSU'I}) = elu\-1)tf(:UYe-lu2 

= (-1)!tH/u), (3.9) 

where Hf(u) is the Hermite polynomial of degree f 
For example, from (2.10), 

H2(U) = u2 - 1 

= -vYPo(1 + vypO)-1. (3.10) 

Usually, the easiest class of graphs to sum is the rings, 
i.e., all points are of degree 2. In this case the ring 
contribution to NI.! b). is clearly 

(N I.! b ).)ringS 

= t(1. - I)! [-H2(uW 1 Pkl,PIII,,'" ,pl)._,k 
k,ll,' ··.l;'_l 

(3.11) 

If we now proceed to the limit N -+ 00, recalling from 
(2.8) and (2.19) that 

lim (,0).)0 = 1- (2/T ( g( w) )). dm 
N-+oo 27T Jo 1 - vyg(w) 

2y-). d~ 

= (I. - I)! dv A ' 
(3.12) 

where fey) is defined by (2.18), we see that the ring 
contribution to q [Eq. (2.21)] is simply 

00 y-). dAj 
qrings =)'~2[-vyu\1 - U

2
)]A T! dv A' (3.13) 

where (in the limit N -+ (0) 

u2 = [1 + vyR(vy)]-1 = 1 - vyR(vy) + .. '. (3.14) 

Thus, since u2(1 - u2),....., vyR(vy) for small y, (3.13) 
is the sum of the "most divergent terms" in Eq. (2.46). 
In other words, the critical-region analysis in the 
functional-integral formalism boils down to a sum 
over ring diagrams. Our work will be complete, then, 
once we have proved that the rings give the dominant 
contribution to q in the critical region. We will prove 
in fact that this is the case if and only if R(vy) 
diverges no worse than logarithmically at Vew. 

Let us first consider the case where R(vy) is finite 
at Yew and write [cf. model (b) in the previous section, 

The high-temperature expansion (2. I 7) clearly breaks 
down when 

Vow - v""""y, (3.16) 

since in this region (the critical region), noting from 
(2.45), (3.15), and (3.14), respectively, that 

-). dAj 1-).( )"-A .. -2).+1 (3.17) Y - ,....., Y Yew - V ,......, Y 
dvA 

and 

(3.18) 

the rings, contribute a term of order yllH to the free 
energy "p. To estimate the sum over diagrams excluding 
rings, we essentially follow the argument given in 
Appendix B of Paper 1. Thus, consider first graphs of 
I. lines containing one point of degree f > 2, and from 
(3.8), I. - tJ points of degree 2. From (3.9) and (3.10) 
[also (3.14)], the point of degree f> 2 has weight 
H/(u) , which is finite when u -- 1, y -+ 0, and each 
point of degree 2 has weight H2(U) which contributes 
order y in the critical region. The total weight in the 
critical region is, therefore, of order y).-If; and, from 
(3.6), the contribution to NA! b). from these graphs is 
bounded by 

A 

(NI.! b).)' ~ C).yA-lt 1 IT ,01'11' (3.19) 
p}, .. ·,P.a. «=1 

where C is a (suitably chose.n) constant, independent 
of y, and the sum is over all graphs with I. lines 
containing one point of degree f> 2 and I. - if 
points of degree 2. The sum in (3.19) can be estimated 
as follows: Since the graphs under consideration are 
contained in the class of graphs consisting of if chains 
leaving and returning to the point k, with no restric
tion on the remaining points, we have 

where (f labels the if chains and A" denotes the number 
of ,0 bonds in the chain, so that 

it 
11.,,= ),. 
,,=1 

(3.21) 

The right-hand side of (3.20) is easily seen to be 

If" it 
2' 2 II (pA")kk = N 2' IT (p"")o; (3.22) 

).,," • ",All k ,,=1 AI," " ·,Ai! ,,=1 
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and since in the limit N -+ 00, from (2.20) and (3.15), 

(pn)o = J.... (2"( g(w) )ndW 
27T Jo 1 - vyg(w) 

1-11 d n
-

1R(vy) 
= y dvn- 1 

,...." y1-n(vcw _ v)~-n 

,...." y~-2n+1 in the critical region, (3.23) 

Eqs. (3.19)-(3.23) give 

(N).! b;j' ~ y~-it yit(a+l)y-2.l. = y!fa-l (3.24) 

for the bound on the critical-region contribution from 
graphs with one point of degree I > 2 and all other 
points of degree 2. The contribution to the free energy, 
from Eqs. (3.5) and (2.17), is thus at least of order 
y!fa , which, since oc > 1 and I > 2, is of higher order 
than the ring contribution ya+!. 

The above proof can be easily extended to graphs 
containing more than one point of degree higher than 
two, but we leave this for the reader. 

The next case to consider is when R(vy) diverges 
logarithmically at Vew, i.e., 

R(vy) '"'-' -A log (vew - v), as v-+ vcw. (3.25) 

By comparing the first two terms in the high-tempera
ture expansion (Le.,/(v) and HvyR(vy)]2) for "P, we 
see that the critical region is of order 

(3.26) 

and in this region it is trivially verified from (3.13) that 
the rings contribute a term of order 

(3.27) 

To estimate the contribution from other graphs, 
we proceed exactly as in Eqs. (3.19)-(3.24). Thus, 
for graphs containing one point of degree I> 2 and 
the remainder of degree 2, the weight is of order 
(y log(y)-l).l.-if and the bound (3.20) is of order 

[y(vew - v)]tt-.l. ,...." [y2 10g (y)-l]it-.<, (3.28) 

glVIng a contribution to N).! hI. at least of order 
y!f-.l., which, combined with Eqs. (3.5) and (2.17), 
gives a contribution to the free energy "P at least of 
order ytf. The next order correction (after rings) to q 
is, therefore, at least of order y2 (f = 4)! The proof, 
as before, may be easily extended to graphs containillg 
more than one point of degree higher than 2. 

It remains to consider the case when R(vy) diverges 
algebraically at Vew [typified by the I-dimensional 

model (a) of the previous section], i.e., 

R(vy),...." (vew - vrx, oc> O. (3.29) 

In this case, by comparing the first two terms in the 
high-temperature expansion, we see that the critical 
region is of order 

Vew - v,....., y1/(a+!), (3.30) 

and in this region the rings contribute a term of order 
y2/(a+!). Notice now, however, from the above argu
ments, that the contribution from graphs with at 
least one point of degree I > 2 is of order yf/20+IX), 
so that when 1= 4, these graphs are of the same order 
as the rings! In fact, it is not difficult to convince 
oneself that a large class of graphs will contribute 
terms of equal order in the critical region. 

The analysis above is similar in many ways to the oc 
trick analysis given in Sec. 7 of Paper I, which is 
briefly as follows. 

Going back to the beginning, Eq. (2. I), one adds 
and subtracts 

-tN(oc - vy) = -t L bk,l(OC - VYPk_Z{Y» (3.31) 
k,l 

to the exponent in (2.2), instead of -tN(1 - vy). The 
resulting modification of Eq. (2.4) is then legitimate 
even below the CWP, if oc is chosen to be larger than 
vyg(O) [cf. Eq. (2.7)]. The free energy per spin is then 
obtained in I, Eqs. (7.10)-(7.13) and (7.18): 

"P = -kT(:1"1 + :1"2)' (3.32) 
where 

i
vy / a 

:1"1 = log 2u + t(oc - vy - u2oc) + 0 R(t) dt, 

with 

D 2" 

R(t) = (l..) f· . ·f g(w) dDw 
27T 1 - tg(w) 

o 
(D is dimensionality) and 

u = [1 + (vy/oc)R(vy/oc)]-! 

(3.33) 

(3.34) 

(3.35) 

and:1") corresponds to the first five terms in Eq. (2.16). 
The term :1"2 is a diagram series analogous to Eq. 
(3.5), which can be obtained from Eq. (7.9) of Paper I. 

The free energy "P given by Eq. (3.32) is, of course, 
independent of oc, while:1"1 and:1"2 depend on oc. The 
best approximation to tp by -kT:1"l alone is, therefore, 
obtained by choosing the value of oc for which :1"1 is 
stationary (this could also give a locally worst 
approximation, but other arguments in I suggest that 
this is very unlikely). This leads to the choice of oc as a 
function of v, given by Eq. (7.16) of Paper I, 

oc - 1 = (vy/oc)R(vy/oc), (3.36) 
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or, equivalently, Eq. (8.13) of Paper I, 

2" 

( 
1 )Df f dDm 

I = 21T •• ' rJ.. - vyg( w) . (3.37) 

o 

One easily sees that drJ../dv > 0, d(rJ../v)/dv < 0, and 
that ~ -+ 1 as v -+ O. 

The function:F1 and any diagram in:F2 are analytic 
functions of v not only above the CWP, but also, at 
least, in a small temperature region below the CWP. 
The failure of the previous expansion at the CWP is 
thus avoided. 

As was pointed out in I, Sec. 7, the diagram series 
:F 2 for the above choice of rJ.. contains no diagrams 
with points of degree less than four. The result of the 
resummation in the present paper, therefore, agrees 
with the dominant terms in :Fl' 

In I, we also compared:F1 with the results of Brout 
and Miihlschlegel and Zittartz and found formal 
agreement. In terms of the models of Ref. 8, the ~ 
trick is equivalent to using, in the Schrodinger-type 
equation as zeroth - order approximation, not the 
naturally occurring oscillator potential, but a properly 
chosen oscillator potential, which does not become 
flat in any direction when the temperature is lowered 
through the CWP. The total potential ceases to 
have only one minimum there, but the ground-state 
wavefunction still has only one maximum, if the 
temperature is sufficiently close to the CWP. In this 
temperature region (the critical region) the use of an 
oscillator potential as zeroth approximation is, there
fore, reasonable, but one expects that such an approx
imation, as well as the ~ trick, will fail at still 
lower temperatures. This expectation is borne out by 
the remarks in I, Sec. 8: :F} can become singular only 
at a temperature defined by 

rJ..(vo) = voyg(O). (3.38) 

This, by Eq. (3.37), leads to 

2" 

( 
1 )DJ J dDw 

Yo = 21T . .. y[g(O) - g(w)] . (3.39) 

o 

If, for example, Pk has a second moment so that 

g(O) - gem) f"'o.J w2 , for small w, (3.40) 

one has Vo = 0 for the 1- and 2-dimensional models, 
which is in agreement with the fact that the results for 
the 2-dimensional case are quite similar to those for 
the 2-dimensional spherical model which does not 
have a phase transition. For the 3-dimensional case 
one finds that while Yo > 0, the specific heat per spin 

remains finite at the temperature corresponding to Yo' 

As we pointed out in I, Sec. 8, Eq. (3.38) also con
tradicts the initial assumption (X > Yyg(O), made to 
justify the representation [Eq. (7.4) of Paper I] from 
which Eqs. (3.32)-(3.37) are derived. 

While these arguments show that the approximation 

(3.41) 

with (X determined by Eqs. (3.36) and (3.37), cannot 
correctly represent the phase transition, the estimates 
of the diagrams given above for temperatures in the 
critical region above the CWP hold a fortiori for the 
diagrams in :F 2 in the critical region above and below 
the CWP. The approximation given by Eq. (3.41) is 
thus the dominant term in the critical region, except 
where R(vy) diverges algebraically at Yew' The 
exception accounts for the discrepancies obtained for 
the I-dimensional model (a), discussed in the 
previous section, and at the end of Sec. 9 in 1. 

The approximation (3.41) thus agrees with the 
result of the resummation above to leading order and 
extends it to the critical region below the CWP. 
Specifically, one has to leading order, 

rJ..(vcw) = I + vcwyA, 

when R(vcwY) = A is finite, and 

(X(Ycw) = 1 + YcwAy log (y)-I, 

when R(vy) f"'o.J -A log (vew - v), as v -+ vcw . 

(3.42) 

(3.43) 

While it is clear that the (X trick as well as the 
resummation will fail when the temperature ap
proaches the true critical temperature, the tempera
ture at which this failure occurs can be expected to 
be a better approximation to the true critical tempera
ture than the CWo temperature. One can obtain an im
proved estimate of the critical temperature under the 
assumption that:F1 is still a reasonable approximation, 
but taking for rJ.. not the value obtained from Eq. (3.36) 
or (3.37), but the value obtained in the critical region. 
One then obtains the estimates given by Eqs. (4.13) 
in the following section. 

4. SUMMARY AND DISCUSSION 

We now summarize and discuss the main results, 
which for simplicity are given for the I-dimensional 
chain of spins !hi = ± 1, i = 1, 2, ... , N, with 
periodic and ferromagnetic potential JYPk-l(y); i.e., 
the interaction energy is given by [Eq. (2.1)] 

N 

E = .-tiy L Pk-I(Y)flk!1I' (4.1) 
k*l=l 
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For temperatures above the classical Curie-Weiss 
temperature Tew (vew = JjkTcw), i.e. [Eq. (2.7)J, 

v<vew= (Y~Pk)'-l, (4.2) 
k=l 

the free energy per spin 1p in the limit N ~ 00 is given 
by [Eq. (2.17)] 

-1p/kT = log 2 - ivy + f(v) +!( vyR(vy) 
2 1 + vyR(vy) 

where 

-log(1 +VYR(VY») +q, (4.3) 

12.- dw 
f(v) = -i log (1 - vyg(w» - , 

o 27T 
(4.4) 

00 

g(w) = L eikWpiy) , (4.5) 
k=-oo 

R(vy) = (2lT g(w) dw , (4.6) 
Jo 1 - vyg(w) 27T 

and q is defined by Eqs. (2.21) and (2.13). (In D 
dimensions the k's, l's, w's, etc., above are D-dimen
sional vectors and nlT dw/27T ... is replaced by 

2" r . -J dDwj(27T)D ... 

o 
etc.) 

The reduction to Eq. (4.3) is given in I, where a 
graphical prescription for computing terms in the y 
expansion for q can also be found. Our concern here 
has been the nature of this expansion in the critical 
region (where the expansion breaks down). In the 
graph formulation of I we have been able to prove 
that in the critical region the ring diagrams give the 
dominant contribution to q (and hence 1p), if and only 
if R(vy) is finite or diverges no worse than logarith
mically at Vew. The ring contribution to q is given by 
[Eq. (3.13») 

~ 2 2 ..l 1 d).f 
qrings = k [-vu (1 - u)] --). 

..l=2 A! dv 

= f(v[l - u2(1 - u2
)]) 

2 2 df + vu (1 - U ) dv - f(v), (4.7) 

where 
u2 = [l + vyR(vy)]-l. (4.8) 

We list three cases: 

(i) R(vewY) = A is finite. 

In this case the critical region is of order y [Eqs. 
(3.15) and (3.16)]. When Vew - v,......, y, since to 

leading order 

u2(l - u2),-...., vyR(vy)'-"'" vewyA, (4.9) 

the dominant contribution to 1p [Eqs. (4.3) and (4.7)] 
is given by 

1p 9 

- kT""'" log 2 - ivy + HvyA]-

- t log (1 - vy(I - vcwyA)g(w)] ~. 1
2

" d 
o 27T 

(4.l0) 

(ii) R(vy) diverges logarithmically, as v ~ vew ; 

i.e., 

R(vy),-...,-Alog(vew-v), as v~vcw. (4.11) 

(One actually only requires that the divergence be 
weaker than any power.) 

In this case the critical region is of order y log y-l 

[Eq. (3.26)] and to leading order, when Vew - '1''"-' 

Y log y-l, 1p is given by Eq. (4.10) with A replaced by 
A log y-l. 

(iii) R('Vy) diverges algebraically as v ~ 'Vew; 

I.e. , 

R('Vy),-...,A(vew - v)-a, IX> 0, as v~vcw' 

(4.12) 

In this case the critical region is of order yl/(a+]) 

[Eqs. (3.29) and (3.30)], and when Vew - 'V ,....., yl/(<X+1), 

the rings no longer give the dominant contribution to 
1p. Thus, a simple resummation cannot be effected. 

The IX trick discussed in I and at the end of the 
previous section gives essentially the same results as 
above in the critical region and if R(vy) diverges no 
worse than logarithmically at Vew. Thus, if one 
compares (3.32) with (2.17) and notes the critical
region values for IX [Eqs. (3.42) and (3.43), corre
sponding to cases (i) and (ii) above, respectively], it is 
clear that the IX trick in the critical region is equivalent, 
to lowest order, to a summation on rings. The advan
tage of the IX trick is that it can be easily extended to 
higher orders; thus, there is hope that the free energy 
minimization (with respect to IX) to next order will 
give the next order critical region, and so on. Work 
along these lines is proceeding, and we hope to report 
on this at a later date. 

Returning to (iii) above, where a resummation 
cannot be effected and where the (X trick fails, one 
might expect that the systems in this case do not have 
phase transitions for any finite value of y [which is in 
fact true for model (a) in Sec. 2, Eq. (2.24)). 
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In cases (i) and (ii) the resummations shift the 
critical point from Vew to v~, which, from Eq. (4.10), 
is given by (to the accuracy of the resummation) 

v~ = vew(1 + vewyA), for (i), 

va = vcw(1 + vewAy log y-l), for (ii), (4.13) 

so that in these cases we might expect that the system 
has a phase transition. We, in fact, state the following: 

Conjecture I: An Ising model with interaction (4.1) 
has a phase transition if and only if (a) R(vy) given by 
(4.6) is finite or diverges no worse than logarithmically 
at Yew, or, equivalently, (b) the rings in the functional 
integral formulation of Paper I give the dominant 
contribution in the critical region. 

Conjecture I(b) is clearly more general than (a), 
since the formalism of Paper I can be applied to 
almost any classical system with long-range inter
action. One might hope then that, in general, an 
examination of the rings will correctly diagnose the 
existence or nonexistence of a phase transition. 

Note that the integral R(vy) (Eq. 4.6) occurs in the 
equation determining the saddle point for the spher
ical model,ll and, as is well known, the spherical 
model with interaction (4. I) has a phase transition if 
and only if R(vy) is finite at Vew. Conjecture I(a) is, 
then, partly related to a conjecture of Kac,12 which 
states that an Ising model with a periodic and ferro
magnetic potential will have a phase transition if the 
corresponding spherical model has a phase transition. 

The logarithmic case (ii) occurs typically in two 
dimensions and case (i) in three dimensions. Since it 
is known from the work of Griffiths13 that Ising models 
in two and three dimensions with interaction (4. I) 
have phase transitions, it is clear that Conjecture I(a) 
is true for dimensionality higher than one. The ques
tion then arises: What happens in one dimension? 
An almost complete answer to this question has been 
given recently by Dyson,14 whose results are as 
follows: For the I-dimensional Ising model with 
interaction (4.1) such that Pn is positive and monot
onically decreasing with 

00 

.2Pn < 00, (4.14) 
n~l 

the system has a phase transition if 
00 

.2 log log (n + 4)[n3pu]-1 < 00 ( 4.15) 
n~l 

and does not have a phase transition if 
00 

lim (log log N)-l.2 nPn = o. (4.16) 
N-+ 00 n=l 

Equation (4.16) is slightly stronger than a previous 
result of Ruelle15 which states that the model (4.1) 
does not have a phase transition if .2~1 nPn is finite. 
Dyson's result (4.16) is sufficient to disprove a con
jecture of Kac, 7 which states that the model (4.1) has a 
phase transition if and only if .2~1 nPn is unbounded. 
Note that this conjecture is not equivalent to Conjec
ture I(a), which in terms of the moment .2~1 nPn may 
be stated as follows: 

Conjecture II: The I-dimensional Ising model 
with interaction (4.1) has a phase transition if and 
only if .2;;~1 nPn diverges at least logarithmically as 
N -+ 00. 

This is most easily seen for the particular case 

(4.17) 

which is essentially equivalent to model (b) Eq. (2.25). 
Thus, from the definitions (4.5) and (4.6), it is clear 
that R(vy) is finite at v = Vew if 0 < a < 1, diverges 
logarithmically as v -+ vcw if a = 1, and diverges 
algebraically as v -+ vcw if a > 1. Therefore, Con
jecture I(a) implies that the I-dimensional model 
(4.1) and (4.17) has a phase transition when 0 < 
a S I and does not have a phase transition when 
a > 1. This conclusion also follows from Conjecture 
II. From Dyson's theorem, on the other hand [Eqs. 
(4.15) and (4.16)], we conclude that the I-dimen
sional model (4.17) does, in fact, have a phase transi
tion when 0 < a .< 1 and does not have a phase 
transition when a > 1. The case a = I, however, is 
undecided at the moment. In essence, then, we may 
consider our Conjecture I(a) to be proved in all cases 
except for the I-dimensional model (4.1) with Pn 
such that .2~1 nPn diverges logarithmically, or simply 
stated: 

Conjecture III: The I-dimensional Ising model 
with interaction Pn = n-2 has a phase transition. 

This model, then, is an important test case for our 
resummation procedure or, rather, our diagnostic 
Conjecture I(b). 

Two independent results which support Con
jecture III are the following: 

(a) JoycelS has developed high-temperature suscepti
bility expansions for the n-2 model and concludes, 
using series extrapolation techniques, that the sus
ceptibility diverges at a finite temperature Tc like 
(T - Tc)-3. 
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(b) Rapaport and FrankeP 7 have analyzed numerically 
the model 

Pn = n-(Ha), n ~ L, 

Pn = 0, n > L, (4.18) 

for various values of L (up to L = 20) and find that 
for 0 < a ~ 1 the specific heat maxima appear to 
diverge with increasing L, and in particular for a = 1, 
it appears that Cmax is proportional to log L, a 
result which is very reminiscent of the finite 2-
dimensional Ising model,l8 In fact, as we have seen, 
the a = 1 [logarithmically divergent R(vy)] case is 
very similar to normal 2-dimensional systems. 

In conclusion, we make the trivial observation that 
for nearest - neighbor Ising models the above expan
sions may be thought of as expansions in the inverse 
of the lattice coordination number q. For the f.c.c. 
lattice q = 12, so that an expansion in inverse powers 
of q may be of some use in this case. In particular, in 
three dimensions, from Eqs. (4.9) and (4.13), the 
modified critical point is given by 

v~ = vew[1 + vewyR(vewY)], (4.19) 

where the square bracketed term [from Eq. (4.6)] is 
simply the Watson integraP9 

2lr 

W = C~rIIIl -v::~yg(W) 
o 

= 1.3446610732' .. f.c.c. (q = 12) 

= 1.3932039297 ... b.c.c. (q = 8) 

= 1.5163860591 ... s.c. (q = 6). (4.20) 

Since for nearest neighbor systems Vew = q-1 
[Eq. (4.2)], we have 

v~ = 0.11 f.c.c. (0.102), 

= 0.17 b.c.c. (0.157), 

= 0.25 s.c. (0.222), (4.21) 

with the numbers in parentheses denoting the series 
estimates of Domb et al. 20 The agreement, as one 
would expect, is best for the largest value of q(12). 
Note also that the values for v~ are essentially the 
critical values for the spherical model. ll •21 

For 2-dimensional Ising models, from (4.6), 
2 .. 

1 + vyR(vy) = -( 
1 )2Jf d

2
w 

27T 1 - vyg(w) 
o 

,......, -log (vew - v). (4.22) 

As we have seen, to leading order in the critical region 
(vew - v,...." Y log y-1) it i~ appropriate to replace 
Vew - v in (4.22) by y, or, in this case, by q-1, 
giving for the modified critical point, by analogy with 
(4.19), 

v~ = (log q)Jq. (4.23) 

For the triangular (q = 6) and the square (q = 4) 
lattices, this gives the estimates 

v~ = 0.29 triangular (exact20 = 0.2746' .. ) 

= 0.35 square (exact20 = 0.4407 ... ), (4.24) 

and again, as one would expect, the agreement is best 
for the larger q value. 

Thus, it seems that our resummation method locates 
the critical point quite accurately, at least for small y. 
However, the first resummation, resulting in Eq. 
(4.10), predicts a logarithmically divergent energy in 
two dimensions and a square root specific heat 
divergence in three dimensions; so the outstanding 
problem remains: how is the correct critical behavior 
approached (if at all) by this method? We are hopeful 
that the next order critical-region analysis will throw 
some light on this difficult problem. 
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The method of functional differentiation, used in classical statistical mechanics to obtain approximate 
integral equations for the pair distribution function, is extended to quantum systems obeying MaxwelI
Boltzmann statistics. The grand partition function is written as a path integral, and space-temperature 
distributions are generated from it by successive functional differentiation. Distributions can be ex
panded in powers of an external potential via a functional Taylor series. When the series is truncated so 
that no distributions higher than second order enter and the external potential is specialized to one 
arising from a fixed particle in the system, coupled integral equations result for the two kinds of pair 
distributions. The first-order Ursell function calculated from these equations yields the Montroll-Ward 
ring summation for the grand potential. This approximate Ursell function determines also the Fourier 
transform of the momentum density (useful in calculating the p = 0 occupation number). Although 
divergences appear in the low-temperature limit, they can be removed by a simple modification of the 
independent functional. An extension to Fermi-Dirac and Bose-Einstein statistics is indicated at appro
priate places in the text. 

I. INTRODUCTION 

Numerous authorsl -4 have investigated approxi
mation methods for classical statistical mechanics 
based upon functional differentiation and the associ
ated functional Taylor expansion. Thus, by proper 
choice of independent and dependent functionals 
taken in the Taylor series, Percus was able to derive 
simply a wide variety of approximate integral equa
tions for the pair distribution function, including the 
Debye-Hiickel, Percus-Yevick, and convolution hy
pernetted chain equations.5 Lebowitz and Percus later 
applied the method in several other directions; for 
example, to obtain rigorous bounds on distributions 
of any order.G 

This work is the beginning of an extension of the 
foregoing into quantum-statistical mechanics. It is not 
difficult to adapt the classical techniques once the 
grand partition function has been given a classical-like 
form, i.e., written as a Feynman path integral. The 
distribution functions dealt with depend not only on 
position or momentum (the latter are most profitably 
defined by means of a phase-space path-integral re
presentation of the partition function), but on tem
perature parameters which can vary between infinity 
and the true system temperature (see Sec. 2). No 
particular physical interpretation has been given to 
this dependence on temperature and, in fact, the 
quantities of physical interest are found from the 
pair distribution in which temperature intervals have 
been set to zero. These distributions satisfy functional 
derivative relations very similar to those for Green's 
functions? and they are, in the Fermi-Dirac or 

Bose-Einstein case, diagonal elements of the Green's 
functions. 

We will find here (Sec. 3), just as in the classical 
theory, that there is a crucial relationship connecting 
a nonuniform density to the pair distribution for a 
uniform system. The nonuniformity comes about by 
"fixing" a particle so that its pair interaction with the 
remaining particles of the system now becomes an 
external potential. We shall see that this offers no 
difficulties even in the quantum case: when properly 
formulated, there are no recoil effects. 

The number and kinds of integral equations deriv
able by the methods of this work (we derive one set 
only) seem to be severely limited. There are at least 
two causes for this. First, we require that no path 
integrals appear in the final equations. Second, there 
appears to be no analog' of the Boltzmann factor 
rP~(X), which correlates only two particles. Thus, 
except briefly in Sec. 4, we shall treat only the basic 
density-potential expansion in which both limitations 
are avoidable. The resulting equations may be termed 
the quantum Debye-Hiickel approximation. 

2. COORDINATE AND MOMENTUM 
DISTRIBUTIONS 

Consider a system of a large number of particles in 
a volume V interacting through a pair potential and 
obeying Maxwell-Boltzmann (classical) statistics. De
noting the N-particle Hamiltonian by 

1029 
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the grand canonical partition function will be 

00 ZN 
Z = I - Tr e(-PHNl, 

N=oN! 

in which no symmetry restrictions are observed in 
computing the trace. The fugacity is denoted by z, 
while (J = l/kT. 

We shall find it more convenient to employ the 
Lagrangian path-integral representation of Z, 8 namely, 

00 

Z =' ZN CNMf·· ·fdx dx ..• dx '" k N' 1 IPI IPX-l N . 
-00 

dXN dXNPl ... dXNflx-l 

x exp [-1E(f 2m/i2 X;Pk +.! CP(~Pk - XiPk»)]' k=l .=1 .< i 

(2.1) 
in which 

{Jk-{Jk-1=E, {JM=ME={J, {Jo=O, 
and 

X ip = XiO == Xi' i = I, ... , N. 

It is to be understood, if not explicitly stated, that the 
limit E -+ 0 is taken in (2.1). The E-dependent normal
ization factor C insures that the integrals converge. 

The expectation value of any path-dependent func
tion of coordinates is found by inserting the function 
into the integrand of (2.1) and dividing by Z. We shall 
denote such expectation values by ( ) L' If, however, 
the function depends on momenta as well, we must 
use the Hamiltonian or phase-space path-integral 
representation of Z,9.10 i.e., 

00 

Z = ' zN (27T1i)-3MNf' . ·fdP •.• dp ... 
k N' IPI IPx N . 

-ro 

Expectations employing (2.2) will be denoted by 

< )H' 
We define the one-particle coordinate distribution 

nl(x', (J') by 

nl(x', In = (Nb(xw - X'»L, 0 < {J' < (J. (2.3) 

More conventionally, this function can be written in 
terms of a trace: 

ro zNN 
n1(x', (3') = ~ ZN' Tr[b(xl - x')e[-PHNJ). 

N-l . 

(The calculation is facilitated by factoring the path 
integrals into two groups, one containing integrals 
occurring "earlier" than {J' and the other containing 
integrals occurring "later" than (J', then replacing 
each group by its equivalent "thermal" propagator.H) 
Thus (2.3) is the ordinary density function; it is inde
pendent of {J' in the range 0-(3 and is a constant, p, for 
a uniform system. 

The two-particle (pair) distribution is defined as the 
expectation value of a product of two b functions, but 
since the arguments of the b functions can refer to the 
same path or two different paths, there exists two 
such distributions, namely, a "same-particle" distri
bution, 

n2S(x', {J', x", (J") = (NIJ(x1{J' - x')IJ(x1fl" - X"»)L' 

(2.4) 
and a "different-particle" distribution, 

n2(x', {J'; x", (J") 

= (N(N - l)lJ(x1{J' - X')IJ(X2/J" - X"»L' (2.5) 

(A semicolon will separate arguments belonging to 
different particles.) Just as with Eq. (2.3), both distri
butions can be written in conventional notation. The 
functions are symmetric and satisfy 

n2.( x', (J', x", (J") 
00 N 

= Z-1! ~ N Tr [e-(fI-P'lHNIJ(Xl - x') 
N=lN! 

X e-<P'-P"lHNb(Xl - x")e-P"HN), for {J' > {J", 

= nlx', (J')b(x' - x"), for (J' = {J", 

and 

n2(x', (J'; x", (J") 
00 N 

= Z-1! !-.- N(N - 1) Tr [e-<P-P'IHNIJ(xl - x') 
N=2N! 

X e-<P'-/J"lHNIJ(x
2 

- x")e-P"HN], . for (J' > (J" 
ro N 

= Z-1! !-.- N(N - 1) 
N=2N! 

X Tr [d(Xl - x')d(x2 - x")e-PHN], 

for (J' = (J' 

The different-particle pair distribution at equal tem
peratures is the physical pair distribution. While the 
same-particle distribution has no direct physical 
significance, it is useful in evaluating momentum, 
kinetic energy or other one-particle expectations.12 

We shall occasionally meet with three- or four
particle distributions in the course of this work, but 
their definitions proceed along the lines already in
dicated for the one- and two-particle functions. 
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We turn now to momentum expectations. The 
formalism developed here permits us to calculate the 
expectation of any function of momentum by inserting 
the function into the integrand of (2.2), and inte
grating and dividing by Z. To illustrate, we calculate 
the expectation value of the kinetic energy 

(2m)-1(Np~fJ')H . 
From (2.2) 

1 • 
- (NpiIJ'>H 
2m 

00 zN (27T1i)-3MN 
= Z-1 2 - N ~--'--

N=l N! 2m 
00 

x r . J dp1fJl ..• dplp' ... dPNfJM 
-00 

00 00 

X r . J dX1 ••• dXN r . J dX1fJl ••• dXNfJM_IP:fJ' 
-00 -00 

M (N . N p2 ~ ~ I • ~ lfJk 
X exp k e k - P1PkXiPk - k -

k=1 1=1 Ii 1=1 2m 

- f r/>(X1fJk - XZPk»). 
1<1 

We complete the square, which gives 
2 • 

P1Pk 1 • 
- 2m + h PIPkXIPk 

= - 2~ ( PlfJk - ~ mXifJk)2 - 2~2 X~fJk 
_ 1'2 m' 2 

= - 2m PIPk - 21i2 x lPk ' 

and all the momentum integrals can be done, which 
leaves 

1...- (NpifJ')H 
2m 

00 N 
=Z-1 2 ~NCMN N=1N! 

00 

x f"'f dXl' .. dXN 
-00 

00 

X f· . J dX1P1 ••• dxl/f' ... dXNPM_l 
-00 

Curiously, the first term on the right is not by itself the 
average kinetic energy. The average square velocity 
does not exist but becomes infinite as e --+ O. The ex
pectation of a function which depends on two space 
points on the same path involves the "same-particle" 
pair distribution; thus, 

..L (Np~P')H 
2m 

=lim-~ 
..... 0 21i 2li2 

x L: dx dY( (x _ y)2 _ 3~e) 

x n2sCx, (J', y, (J' - Ii) 

1· mV foo d (2 31i21i) ) = 1m - ~ z z - - n2S(Z' Ii . 
£ .... 0 21i Ii -00 m 

(2.7) 

The last line follows from the translational invariance 
of uniform distributions with respect to space and 
temperature variables, so we may drop the (J'. 

Precisely as in (2.3), the one-particle momentum 
distribution is given by 

n1(p, /3') = (Nb(PlfJ' - P»H' (2.8) 

By a calculation similar to that preceding (2.7), one 
obtains the relation between this momentum distri
bution and the "same-particle" pair distribution, viz., 

n1(p, /3') = lim (-€-)!foo dx dyn2s(X, /3', y, (J' - Ii) 
£-+0 27Tm -00 

x exp [- 2~(P·- iZ (x - y»)2] 

or ! 
nl(p) = lim (_€_) vfoo dzn2s(Z, €) 

'''''0 27Tm -00 

x exp [ - 2~ (p - ~: zn· (2.9) 

Manifestly real versions of this relation may also be 
obtained; e.g., 

fie q) == L: dp exp ( - ~ q • p) n1(p) dp 

= lim Vexp (- m
q
:) foo dzn2.(Z, c;) 

<-+0 2en-00 

X exp (mli~: Z) . (2.10) 

It is easy to see that when the P = 0 state is important, 
fi(q) has the property 

lim fie q) = number of particles 
Iql .... oo 

having zero momentum, 
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so that if n28 could be bounded for some system of 
interacting particles, the extent to which the system 
condenses in momentum space at {J = 00 (Boson 
condensation) could be investigated. At absolute zero, 
Boltzmann and Boson systems are identical and the 
number of particles having zero momentum is in that 
case lim lim ii(q), as Iql, {J -+ 00. The {J -+ 00 limit 
must be taken first. 

The momentum pair distributions (there are two of 
them) involve four-particle coordinate distributions 
since each momentum factor is effectively the differ
ence of two space points slightly separated in time. 
Thus the momentum pair distribution for two different 
particles, 

n2(p' , {J' ; p", (J") 

= (N(N - I)Cl(pw - p')Cl(Pw - P"»H, (2.11) 

is readily shown to be 

lim (_E_)3fOO dw dx dy dz 
..... 0 27Tm -00 

X n4.(w, {J', x, {J' - E; y, {J", z, (J" - E) 

X exp - .!-(p, - (w _ x) im)2 
2m Eli 

X exp _ .!- (p" - (y - z) im\2, 
2m Eli! 

where the four-particle distribution is a mixed type: 
The arguments (w, (J') and (x, (J' - E) refer to one 
particle, and (y, {J"} and (z, (J" - E) refer to a second 
particle. 

All of the formalism developed thus far is immedi
ately extendable to quantum statistics. One simply 
permits the particles, which are located at (Xl' ... , 
XN) at "time" zero, to complete their paths at any 
permutation of the (Xl' ... , XN) at time (J because of 
indistinguishability. One then performs the usual sum 
over all permutations in computing Z.13 Our defini
tions of the distribution functions can be taken over 
without further change. 

3. INTEGRAL EQUATIONS FOR THE PAIR 
DISTRIBUTION FUNCTIONS 

Let us append to the exponent of (2.1) the external 
potential 

M N 

U =.2 E.2 U(xillk ' (Jk) 
k=1 i=1 

= J: if U(xiy , y) dy, 

and let us compute the first two functional derivatives 
ofln Z[U] with respect to the external potential. From 

the modified (2.1), we have 

6ln Z[U] = IE 1 f ClU(Xiflk' (Jk» 
-ClU(x', (J') \ k=1i=l ClU(x', (J') L[V] 

= (NCl(xw - X'»L[UJ 

= nlx', (J' I U), (3.1) 

by (2.3), where we have used, for discrete tempera
tures, 

oU(X, y) CJ( , CJ 1 
ClU(x', y') = x - x) 1.Y':· 

Differentiating once more, we have 

oU(X', {J')i5U(x", (J") 

Cln1(x', (J' I U) 
= -

ClU(x", (J") 

_ IN~( ') ~ ~ CJU(XiPk' (Jk)\ 
- \ U XlP' - X E k k I 

k=li=l i5U(x", (J") L[V] 

- n1(x', {J' I U)nl(x", (J" I U) 

= n2(x', {J'; x", (J" I U) + ndx', {J', x", (J" I U) 

- n1(x', {J' I U)n1(x", (J" I U), (3.2) 

by Eqs. (2.4) and (2.5). 
The functional Taylor expansions14 for In Z[U) vs. 

U, and n1(x', (J' I U) vs. U now follow with the aid of 
(3.1) and (3.2). They are, through terms quadratic 
and linear in U, respectively (E ~ 0)15: 

In Z[U] = In Z - L: iP 
dy' dy'n1(y', y')U(y', y') 

and 

+ t L: J: dy' dy" dy' dy"[n2(y', y'; y",y") 

+ n2.(y', y', y", y") _ p2] 

X U(y', y')U(y", y") + . . . (3.3) 

n1(x', (J' I U) = p - L: ill dy' dy'[nlx', P'; y', y') 

+ ndx', P', y', y') - p2]U(y', y') + .. " (3.4) 

in which all of the distribution appearing on the 
right-hand sides are for uniform systems. Higher 
terms in the series introduce distributions for three or 
more particles. 

Weare now very close to the desired approximate 
integral equations for the two pair distributions. 
[Note that (3.4) is the derivative of (3.3), so that the 
equations are consistent.] What is needed are identi
ties relating the nonuniform distributions appearing on 
the left of (3.3) and (3.4) to uniform distributions. 
These can be found if a special kind of external 
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potential is used, viz., one in which a fixed particle, 
identical to the remaining N - 1 in the system, 
provides the external potential through its pair inter
action with the rest. Such an external potential is, 
fixing particle "one," 

iII N 
U", = I e I ¢(X'Pk - X1Pk)' 

~~l i=2 

The modified (2.1) is in detail 
00 

00 zN-1 f f Z[U ] == ~ . CCN- lliII '" dx.··· dx 
'" f:.l(N-1)! 2 N 

-00 
00 

x r .. f dX2Pl ... dXNfJM-1 
-00 

x exp [- Ie(f m2 X;Pk 
k~l i=221i 

+ I ep(X1Pk - XiPk))]e- U"" (3.5) 
1<:;<; 

where all integrations over the first particle have been 
omitted. No recoil effects occur as a result of fixing a 
particle: its kinetic energy is a constant with respect to 
the other path integrations. But Z[U",l converts easily 
to n1 (x', (3') for a uniform system through 

00 

zCiII r .. f dXl dXlP1 ... dX1PM-1 
-00 

where 

since N-1 N 
zCiII . _z __ CCN-1)M = ~ NCNM. 

(N - 1)! N! 

[Compare with Eq. (2.3).] 
Similarly, 

00 

ZC'wf' . 'dfx dx ... dx 1 1P1 1PM-1 
-00 

X c5(xl/J' - x')c5(xw - x")e-K {x 1Y}Z[U ",1 
= n2s(x', {3', x", {3")Z, (3.7) 

and any higher "same-particle" distribution can be 
generated in like manner by including more <5-func
tions. Finally, starting with n1(x", (3" I U",), we obtain 

00 

zCM f· . ·dX1 f dX1P1 .•• dX1fJM-1 
-00 

X b(xw - x')nl(x", {3" I U ",)Z[U ",]e-K{:lllY} 

= n2(x', {3' ; x", {3")Z. (3.8) 

It is in these relationships (3.6)-(3.8) that the major 
differences between this treatment and a quantum
statistical one appear. It can be shown that the 
analogous relations in the latter case can only be 
obtained by fixing a number of particles say t, rather 
than one, subject to the endpoint conditions 

forming a closed loop. (Compare this with the con
cept of the "toron." 16) It is then necessary to sum over 
all values of t. 

Let us return to the functional Taylor expansions 
(3.3) and (3.4), and replace U by Vip and V(y', y') by 
!p(Y' - x1Y,), etc. Exponentiate (3.3), multiply by ZCM 
and perform the integrations indicated in (3.7). One 
obtains the expansion (after linearizing) 

n (x' (3' x" (3") 28 , , , 

00 

= ZCilIf· . ·fdX dx '" dx 1 1P1 IPM-1 
-00 

X b(x1P' - x')b(xw - x") e-K {X1Y) 

X (1 -L: J: dy' dy' pep(y' - x1r') 

+ tJoo (P dy' dy" dy' dy"[n2(y', y'; y", y") 
-00 Jo 

+ n2S(y', y', y", y") - p2]ep(y' - x1Y') 

x ep(y" - X1r") + .. } (3.9) 

Observe that for free particles (denoted by 0) (3.6) 
reads 

00 

zCM r . J dX1 dX1P1 ... dX1/lM_/J(xl/J' - x') 
-00 

X e-K{xlY } = n~(x', (3'), (3.10) 

and similarly for higher "same-particle" distributions. 
Using (3.10), Eq. (3.9) now becomes 

n (x' {3' x" (3") 2,.; , , , 

= ng,(x', {3', x", (3") (1 - p{3 i: ep(y') dy' ) 

+ iI-oo (/l dy' dy" dz' dz" dy' dy" 
-00 Jo 

X [n2(y', y'; y", y") + n2S(y', y', y", y") _ p2] 

X ep(y' - z')ep(y" - z") 

X nO (x' {3' x" (3" z' y' z" ") 48 , , , , , , ," , (3.11) 

where n~s is the "same-particle" distribution for four 
free particles. 
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We have one integral equation for the pair distri
butions. The second is obtained by multiplying (3.4) 
by ZCMZ[U,p] and integrating by means of (3.6)-(3.8). 
We obtain 

nz(x', {J'; x", (J") 

= pZ - zcM 1: dXI dX1P1 •.• dX1PJI-l 

X b(xlp' - x')Z[U ,p]Z-le-K{Xly} 

X (ex) (P dy' dy'[nix", (J"; y', y') 
lex) Jo 

+ n2.(X", (J", y', y') - p2]4>(y' - X 1Y') + ... 
= p2 -JeX) {P dy' dy" dy'[nlx", (J"; y', y') 

-ex) Jo 

This function, which is the kernel of the integral 
equation (4.3), has the property 

flgs(k, (J - y) = flg.(k, y), for y = I{J' - {3"/, (4.5a) 

and we define, for temperatures larger than {J, 

flg.(k, (J + y) = flg.(k, y). (4.5b) 

It follows that the solution of (4.3) in terms of the 
eigenfunctions and eigenvalues of the kernel, 4>n({J') 
and An(k), is 

where 

F(k, (J', (J") = *~<Xl A ~AA 4>~({J")4>n({J'), (4.6) 
n 

4>n({3') = p-te-(21Iinp')IP, 

An(k) = f: dyflg.(k, y)e(21fin y)IP, (4.7) + n2.(X", (J", y', y') - p2]4>(y' - y") 

X nz.(x', (J', y", y'). (3.12) and 

When truncated as indicated, Eqs. (3.12) and (3.11) 
are coupled integral equations for the pair distri
butions. 

4. EXAMPLES AND COMMENTS 

We define the two-particle Ursell function 

F(x', {J', x', (J") == nz(x', {J'; x", (J") 

+ nz.(x', {J', x", (J") _ p2, 

F(k, {J', (J") = 1: dxeik'XF(x, (J', (J"). (4.1) 

An equation for the Ursell function through terms 
linear in the potential is, by (3.12) and (3.11), 

F(x', {J', x", (J") = n~.(x', {J', x", (J") 

- (<Xl (P dy' dy" dy'F(x", (J", y',y') 
J-eX) Jo 

x 4>(y' - y")ngix', (J', y", y'). 
(4.2) 

Taking the Fourier transform, we obtain 

F(k, {J', (J") = flg.(k, {J', (J") - iP 
dy' F(k, (J", y') 

x ¢(k)ng.(k, (J', y'). (4.3) 

The kernel of (4.2) is a one-particle path integral, 
ex) 

o ( , {3' "R") - eMf·· ·fd d ... d nzs x , ,x, t' - Z Xl X1P1 X1PM- 1 

X b(xw - x')b(xlP" - x")e-K{Xly}, 

and it is easy to show that 

n~.(k, {3', {3") 

= p[exp ( - ~~2) ] (1{3' _ {3"1 _ I{J' ~ (J';I). (4.4) 

A = -ll¢(k). 

In the ground state 

flgs(k, (J', (J") = p exp [-T(k) /{J' - (J"/], 
where 

and F satisfies the equivalent differential equation 

d2f,(k R' R") 
dP~2' t' - T(k)[T(k) + 2p¢(k)]F(k, {J', (3") 

= -p2T(k)b({J' - (J"). (4.8) 
This has the solution 

i(k, {3', {3") 
_ pT(k) exp (-{T(k)[T(k) + 2p¢(k)]}t /(J' - (Jill) 

- {T(k)[T(k) + 2p¢(k)]}i 
(4.9) 

Once F is known we may reinsert it into (3.11) and 
(3.12) to find corrections to n2s and n2' For example, 
calling g == nz - p2, we obtain 

ex) A2 
g(k, {3', {3") = n~<Xl A _nA 4>:«(3")4>n«(3'), 

- n 

for {J < 00. (4.10) 

Now that n2(x', {J' ; x", (J') has been found, In Z is 
easily calculated via some thermodynamic relation
ship. Since n2 is an approximation we know that 
different thermodynamic relations will, in general, 
yield different results.l7 The relation used here seems 
most natural in this work and consists in requiring 
that the partition function satisfy 

blnZ[q,] 
-~~ - n (x' y) (411) _ (JlJq,(x, y) - 2 , , • 

where 4> is the interparticle potential, which is of 
course an identity if exact distributions are used.Is 
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The integral of (4.11), turning on rp(x, y, tlC) == tlCrp(x, y) 
from tlC = 0 to tlC = 1, is 

In Z - In ZO = -lfJ [If 00 dtlC dx dyn2(X; y, r:t.)rp(x, y) Jo -00 

fJV ilfoo = - --3 dtlC dkfi2(k, r:t.)c$(k). 
2(21T) ° -00 

(4.12) 

Placing the equal-temperature value of (4.10) into 
(4.12), there results 

In Z - In ZO 

= -- dk 2 [c$(k)An - In (1 + c$(k)J'n}1. V foo 
2(21T)3 -00 n 

(4.13) 

fi(q) - jiO(q) 

This is also found by MontroU and Ward19 in their 
theory of the electron gas and is equivalent to a sum 
of "ring" diagrams in that work. The high-tempera
ture, or classical, limit of (4.10), 

g(k) = -fJp2c$(k)/[1 + fJpc$(k)] 

(because An ---+ {ipt5n,o), yields the Debye-Hiickel equa
tion of state for a Coulomb potential with neutralizing 
background. 20 

We now show how the correction to the trans
formed momentum density fi(q) can also be related to 
the (approximate) Ursell function (4.6). By (2.10) and 
(3.7), we have 

= lim exp (- mq:)f
OO 

[n 2S(z', fJ', z", fJ' - €) - n~.(z', {i', z", fJ' - €)J exp (mq • (z' 2- Z"») dz'dz" 
..... 0 2di -00 €Ii 

00 

= lim exp (- mq:)f CO 

dz' dz"(Z-lzCMf· . ·fdX1 dX1Pl .•. dX1pM_
1
t5(XW - z')b(xw_. - zIt) 

..... 0 2di-co 
-00 

co 

= lim ZCMJ ... JdXl dXIPl'" dX1pM-, exp(-K{x1r}r*p,)exp (- n: (xlp' - XlP'_' _ q)2) 
..... 0 21i € 

-00 

x tJoo [P dy' dy" dr' dr"F(y', 1", y", r")rp(y' - Xlr')rp(y" - Xly")' 
-00 Jo (4.14) 

where we have used a linearized version of (3.3), and 
the z' and z" integrations have been performed in the 
last line. When a change of variables is made, 

Xlr = Ylr' Y = 0, ... ,fJ' - E, 

X1r - q = Ylr' Y = fJ', ... ,fJ, YIp = YIO - q, 

one sees that (4.14) becomes 

fie q) - fiO( q) 

= -no(q)p{Jc$(O) + i L: J: dy' dy" dz' dz" dr' dr" 

x F(y', y', y", r")rp(y' - Zl)rp(y" - zIt + q) 

x ng:(z', 1", zIt, 1''') 

= -fiO(q)p{Jc$(O) + ! ~ foo [P dk dy' dr" 
2 (21T) -00 Jo 

x P(k, r', r")sb(k)2fig:(k, r', y")eik
•
Q
, (4.15) 

where the linear term in (3.3) has been restored. The 
star denotes a modified same-particle distribution in 
which the final space-time point differs from the initial 
point by -q, a distinction which may be ignored in the 
ground state. Both terms on the right side of (4.15) 

diverge as fJ ---+ CIJ [see (4.9)], so the functional ex
pansion must be modified before it will apply to Boson 
ground states. Once such modification is to expand not 
in the potential but in a "quantum/factor" defined by 

00 

j(y', fJ' I {Xy}) == zCM r . J dy dYPl ... dYPM-l 

x t5(yp, - y')e-K{Yr} 

x exp ( - Jtrp(XPk - YPk») - p. 

(4.16) 

For example, the divergent linear term in the n2s ex
pansion (3.11) now becomes 

-p{ic$(O)ng.(x', (J', x", (J") 
00 

---+ ZCMf' . 'fdX dx '" dx PI PM-I 
-00 

x L:dy'j(y', 1" I {Xr}) 

x t5(xp' - x/)b(xp" - x")e-K1xy} 
- pVng.(x', fJ', x", (J"). (4.17) 
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(The right-hand side of (4.17) reduces to the left-hand 
side when the potential is very weak.) When (4.17) is 
inserted into the first line of (4.14) it contributes the 
correction 

fie q) - ffl( q) 
00 

= ZCMJ .. . JdX dx ... dx Ih /lM-l 
-00 

x L:dy'!(Y', y' I {Xy}) exp (-K{xy}y*/l') 

X exp (- n: (X/l' - X/l'-f - q)2) - pVfiO(q). 
2tz € 

(4.18) 

We use the same change of variables as in (4.14) and 
then shift to relative and center-of-mass variables in 
the path integral. Performing the center-of-mass inte
grations we are left with 

fi(q) - fio(q) = pV2! exp (_ mq2) 
/i2p 

X Z L:dXK(X + q, p; x, 0) 

- pVfiO(q), (4.19) 

where K is a propagator for a single particle of mass 
tm moving in an external potential identical to the 
pair interaction of the many-body system. The explicit 
fugacity dependence can be eliminated by evaluating 
(4.19) at q = O. One obtains finally 

fi(q) - fiO(q) = <N)2[ exp ( - ;;) L: dxK(x + q, p; x, 0) / L: dxK(x, p; x, 0) - 1]. (4.20) 

Unfortunately, as p -- 00 the q dependence in the 
integral becomes negligible, so that while the tempera
ture divergence has been removed, the present approx
imation predicts that all the particles condense into 
the p = 0 state. We reserve for a future paper im
provements upon (4.20) to be found by examination 
of higher terms in the i-factor expansion. 
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A superposition P!inciple is considered both in classical mechanics and in the quantum logic approach 
to quantum mechamcs. It is shown, roughly speaking, that in classical mechanics the only type of super
position of states is a mixture and that no pure state is a nontrivial superposition of other pure states. In 
quantum mechanics it is shown that, if Ii superposition principle holds, then the quantum logic is a com
plete atomic lattice. 

1. INTRODUCTION 

According to Dirac,! the principle of superposition 
of states is one of the most fundamental properties of 
quantum mechanics. In fact, this principle contains 
the essential properties of quantum systems and forms 
the basis of Dirac's quantum mechanical formulation. 
In this paper we consider superpositions of states and 
a superposition principle as they occur in classical 
mechanics and in the quantum logic approach2 to 
axiomatic quantum mechanics. Since Dirac's super
position principle is formulated in the vector-space 
model for quantum mechanics, our first problem is 
to decide what form this principle should take in 
the quantum logic approach. One of the goals of this 
last approach is to find physically plausible axiomss 

that can be added to the quantum logic axioms so 
that the resulting axiomatic system becomes iso
morphic to the usual von Neumann-Hilbert space 
model for quantum mechanics.' We show that a 
superposition principle itself is just what is needed. 
More precisely, we show that a quantum logic in 
which a superposition principle holds is a complete 
atomic lattice. 

2. NOTATION AND DEFINITIONS 

Let L be an orthocomplemented partially ordered 
set or logic. Precisely, L is a partially ordered set 
with first and last elements 0 and 1, respectively, a 
complementation a ...... a' which satisfies (a')' = a, 
a ~ b implies b' ~ a', a V a' = I, and if ai is a 
sequence of mutually disjoint elements, then V a j 

exists. We call the elements of L propositions. A map 
m:L ...... [0, 1] which satisfies m(1) = 1, andm(V a;) = 
!;o..1 m(a.) if the ai are disjoint, (Le., a j ~ a; , i :F j) is 
a state on L. If m is a state which cannot be written 
in the form m = cml + (1 - c)m2' where 0 < c < 1 

implies m1 = m2, we call (L, M) a quantum logic. A 
proposition a is an atom if a¥-O and b ~ a. implies 
b = ° or b = a. A logic is a lattice if finite suprema 
exist and is complete if arbitrary suprema exist. 

If ScM, a E L, we write Sea) = 0 if mea) = 0 
for all mE S. If ScM, mo E M, then mo is a super
position of states in S if Sea) = ° implies mo(a) = O. 
We would now like to formulate a superposition 
principle for the quantum logic (L, M). In his book,5 
Jauch formulated the superposition principle as 
follows: for any pair of distinct atoms 11, 12 E L there 
is a third atom 13 E L such that 11 V 12 = 11 V Is = 
12 V 13 , However, this formulation is not acceptable 
in our present system, since we do not even know 
atoms exist a priori and, if we did, since L need not 
be a lattice, we would not know if their suprema 
existed. We will follow Varadarajan's definition6 of 
the superposition principle, which is more in line 
with the principle of Dirac. If S c P, we denote by S 
the set of all pure states that are superpositions of 
states in S. Of course, S c S. We call S c P closed if 
S = S, and denote by .At., the class of all closed subsets 
of P. Under set inclusion, .At., becomes a partially 
ordered set. We say that a superposition principle 
holds in (L, M). if .At., is isomorphic to L, i.e., if there 
exists a 1-to-1 map from .At., onto L that preserves 
order. Roughly speaking, this may be interpreted 
to mean that given a class of pure states S, there is a 
proposition which is true if and only if the system is 
in a superposition of states in S. In the usual von 
Neumann-Hilbert-space model for quantum mechan
ics, the superposition principle is easily seen to hold 
using Gleason's theorem. 7 In the next section we will 
show that a superposition principle holds in certain 
classical mechanic systems as well. 

and ml and ms are distinct states, then m is called a 3. MEASURABLE SUPERPOSITIONS IN 
pure state. We denote the set of states on L by M, CLASSICAL MECHANICS 

and the set of pure states on L by P. If a E L, m E P, Let us now consider classical mechanics and classi-
we define Pa = {m E P:m(a) = I}, Lm = {a E L: cal statistical mechanics. Let X be a set called phase 
m(a) = I}. If P'f c Pb implies a ~ band Lml eLms space and let L be a a-algebra of subsets of X. L 
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corresponds to the set of mechanical events. Usually, 
X is taken to be a subset of a finite-dimensional 
Euclidean space and L the Borel subsets of X. If 
measure-theoretic technicalities are of no consequence, 
one usually takes L to be the collection of all subsets 
of X. As we shall see, it is in this latter case that the 
superposition principle holds. The set of states M on 
L is the collection of probability measures on L, and 
(L, M) is a quantum logic under the usual definition 
of order and complementation. We call (L, M) a 
classical logic. 

Now let (.0, F, /1,) be a probability space and let 
w -+ m", be a map from .0 into M such that w-+ 
m",(a) is measurable for all a E L. We then call 
{m",:w ED} a measurable set of states on L. If S = 
{m",: wED} is a measurable set of states on Land 
ma EM, then mo is a measurable superposition of 
states in S if m",(a) = 0 for almost every WEn 

implies mo(a) = O. For a superposition of a countable 
number of states, we can take D = {l, 2,3, ... }, F 
the class of all subsets of .0, and I-' to be, for example, 
,u({n}) = 2-n• In this case, "almost everywhere" is 
the same as "everywhere" and a measurable super
position is the same as a superposition. We now give 
an example of a measurable superposition. Let 
{m",:w ED} be a measurable set of states on Land 
letfbe a nonnegative measurable function on (X, L) 
such that 

Lfdmw = 1 

for every WEn. If we define m by 

mea) = L(ifdm", ),u(dw), 

then it can be shown that m is well defined and is a 
state on L. We call m a classical superposition or 
mixture of the m",. In the countable case, this becomes 

mea) = ~;Ci I! dmi , 

where Ci ;:: 0 and! c. = 1, or, iff= 1, we have the 
more usual mea) = ! cimi(a). Notice that a mixture 
is a measurable superposition. We now show that a 
mixture is the only kind of measurable superposition 
possible for a classical system. This gives one of the 
important distinctions between classical and quantum 
mechanics, since in quantum theory there are other 
types of superpositions which are purely quantal in 
nature, having no classical counterpart. 

Theorem 1: Let S = {mw: wED} be a measurable 
set of states on L. Then mo E M is a measurable 

superposition of states in S, if and only if rno is a 
mixture of states in S. 

Proof Suppose mo is a measurable superposition 
of states in S. Let 

yea) = 1 mroCa),u(dw). 

Then, it is easily verified that 'V is a state on L. If 
Yea) = 0, then rn",(a) = ° for almost every WEn 

and, hence, mo(a) = O. Therefore, mo is absolutely 
continuous relative to Y. By the Radon-Nikodym 
theorem there is a nonnegative measurable function 
f on (X, L) such that 

mo(a) = if dy = If(A) L mw(dA),u(dw) 

= L (if dmw),u(dW), 

where the verification of the interchange of integra
tion order is left to the reader. 

The set of mechanical events L on X is called 
separable if L is the smaIIest a-algebra containing 
some countable collection of events. In this we call 
the classical logic (L, M) separable. In the usual case, 
where X is n-dimensional Euclidean space, the class 
of Borel subsets is separable. A state m on L is 
concentrated at the point x E X, if mea) = 1 if x E a, 
and if mea) = 0 if x 1:- a. Notice that we need not 
assume {x} E L. Our next theorem tells us that, in a 
separable classical logic, a pure state cannot be a non
trivial superposition of other pure states. This theorem 
is a generalization of a result of Va radarajan , 8 and 
is proved using similar techniques. 

Theorem 2: Let (L, M) be a separable classical logic. 
Then a state is pure, if and only if it is concentrated 
at a point. If S is a collection of pure states, then mo 
is a superposition of states of S, if and only if mo E S. 

Proo/" If m is concentrated at a point, then, 
clearly, it is pure. Now suppose m is pure. If, for 
some a E L, 0 < mea) < 1, then 

m(b) = m(a)[m(b n a)/m(a)] 

+ [1 - m(a)](m(b n a')jm(a')], 

for every bEL, which contradicts the fact that m 
is pure. Therefore, m has only the values 0 and 1. 
Suppose a., i = 1, 2, ... , generates L. By replacing 
an by a~ if necessary, we may assume that m(ai) = 1 
for all i. Let b = n ai . Then m(b) = 1. Let x E b. 
Now, the collection of events a E L, such that b c a 
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or b n a = 0, is a O'-algebra containing all af. and, 
hence, coincides with L. Thus, m(a) = 1 if x E a and 
m(a) = 0 if x ¢ a; so m is concentrated at x. Now 
suppose mo is pure and a superposition of a collection 
of pure states S. Suppose m E S is concentrated at 
Xm E X and mo is concentrated at Xo E X. As before, 
there is abE L, such that Xo E b, and every a E L 
satisfies be a or b n a = 0. Now suppose mo ¢ S. 
Then, Xm ¢ b for any m E S, since, otherwise, mo 
would equal this m. Thus, m(b) = 0 for every m E S, 
but mo(b) = 1, a contradiction. Hence, mo E S. 

Now suppose (L, M) is a separable classical logic. 
If .A{, is the class of subs.ets of the pure states P defined 
in Sec. 2, it follows from Theorem. 2 that .A{, is 
the class of all subsets of P. Since .A{, is naturally 
isomorphic to the class of all subsets 2x of X, it 
follows that the superposition principle holds on 
(L, M), if and only if Lis 2x. Thus, the superposition 
principle does not hold, if L is the class of Borel subsets 
of n-dimensional Euclidean space. However, it is 
easy to construct examples of classical logics in which 
a superposition principle does hold. 

4. SUPERPOSITION PRINCIPLE FOR A 
QUANTUM LOGIC 

In this section we consider a general quantum 
logic (L, M) and use the notation introduced in Sec. 
2. In the following lemma we collect some preliminary 
results. 

Lemma 1: (i) If S c P then Sea) = 0, if and only if 
S(a) = 0 and S = :So The smallest closed set in P 
containing S is S. (ii) If S1 c S2 C P, then Sl c S2' 
(iii) If Sa. c P, IX E A, then n Sa. is closed and 

n Sa. :::> n Sa.. (iv) If S c P and S = 0 or S con
tains one state, then S = S. 

Proof" (i) Clearly, S(a) = 0, if S(a) = 0, and if 
S(a) = 0, then, by definition, Sea) = O. Clearly, 

S c S. If mE :s and Sea) = 0, then S(a) = 0, which 
implies m(a) = 0, and, hence, m E S. For the last 
statement, S is closed, contains S, and is contained 
in any closed set containing S. (ii) If Sl c S2 C P, 
then S1 c $2, and since $2 is closed, $1 c $2' (iii) 

Suppose m E n Sa. and Sia) = 0 for some IX EA. 
Then SIl(a) = 0 and (n SJ(a) = O. Hence, m(a) = 0 
and mESa.' Thus, mEn Sa., and n Sa. is closed. 
Since n Sa. is closed and n Sa. :::> n Sa., we have 
n Sa. :::> n s,1.' (iv) If S = {m} and m1 E S, then 
Lm c L

m1
, and, hence, m1 = m. Thus, S = S. 

Notice that the operation S --+ S satisfies the axioms 

of a Kuratowski closure operation9 except Sl U S2 

need not equal $1 U $2' although clearly, $1 U $2 C 

S1 U S2' 

Theorem 3: .A{, is a complete atomic lattice. If a 
superposition principle holds on (L, M), then L is a 
complete atomic lattice. 

Proof" It follows from Lemma 1 (iv) and (iii) that 
.A{, is atomic and contains arbitrary infima. Now 

suppose Sa. E.A{" IX E A, and let S = USa.. Then 
S E.A{, by Lemma 1 (i) and S :::> Sa., for all IX EA. 
Now if So E.A{, and So:::> Sa., for all IX E A, then 

So:::> U Sa. = S. Hence, S is the supremum of the 
Sa., and the theorem is proved. 

We have seen that, for a separable classical logic, 
S = $ for every S c P, and that .A{, is the class of all 
subsets of P. We also have a kind of converse to this 
result. 

Lemma 2: If a superposition principle holds on the 
quantum logic (L, M), and if S = S for all S c P, 
then (L, M) is a classical logic. 

We thus see that classical logics are roughly 
characterized by the fact that superpositions of pure 
states do not produce new pure states. 

If a superposition principle holds on a quantum 
logic, it is not clear what explicit form the isomorph
ism between .A{, and L takes. Also, it is not clear if 
there is a complementation on .A{, for which .A{, and L 
are isomorphic as logics. However, if we add one 
more axiom, we can construct a logic isomorphism 
explicitly. 

Axiom 1: If aa. E L, IX E A, and m(a,,) = 1, then 
m(Aaa.) = 1. 

This axiom is postulated by Jauch and Piron2 in 
their formulation for quantum mechanics. In the 
sequel, we suppose that a superposition principle 
and Axiom I hold on (L, M). If S c P, let as E L 
be defined by as = A {a E L:S(a) = I}. It is clear 
that S(as) = 1, and that as is the smallest proposition 
with this property. 

Lemma 3: (i) If a E L, then Pa E.A{,. (ii) If S E .A{" 
then S = Pas' (iii) If S, T E.A{" then SeT, if and 
only if as ~ aT' 



                                                                                                                                    

1040 STANLEY P. GUDDER 

Proof (i) Ifm E Pa, then, since Pia') = 0, we have 
mea') = 0 and, hence, m EPa' (ii) Clearly, S C Pas' 
Now suppose mo EPas ' If Sea) = 0, then Sea') = I 
and, hence, a' ~ as. Therefore, mo(a') = I, which 
implies mo(a) = O. Hence, mo E S = S. (iii) By (ii) 
SeT, if and only if Pas C PaT' but the latter is 
equivalent to as ~ aT' 

If ml , m2 E P, we say that ml and m2 are orthogonal 
and write ml 1.. m2, if there is an a E L such that 
ml(a) = 0 and m2(a) = 1. If mo E P, S c P, we write 
mo 1.. S if mo 1.. m for every mE S. If S c P, we define 
S' = {m E P:m 1.. S}. It will follow from Theorem 
3 that S --+ S' is a complementation on .At,. 

Lemma 4: Suppose mo E P, S c P, and mo 1.. S. 
Then (i) there is an a E L such that moCa) = I and 
Sea) = 0 and (ii) mo 1.. S. 

Proof (i) Let S={m,,:ocEA}, and suppose 
mo(a,,) = I, maCa,,) = O. If a = V {a,,: oc E A}, then 
mo(a) = I and Sea) = O. (ii) Applying (i), there is an 
a E L such that mo(a) = 1 and Sea) = 0, and, by 
Lemma I(i), Sea) = O. Hence, mo 1.. S. 

Theorem 4: The map S --+ S' is a complementation 
on .At" and the map S --+ as is a logic isomorphism 
from .At, onto L. 

Proof: To show S --+ as is I-to-l, suppose S, T E .At, 
and as = aT' Then, by Lemma 3(ii), S = Pas = 
PaT = T. To show S --+ as is onto, let a E L. Then if 
S = Pa , we have a = as. Applying Lemma 3(iii), 
it follows that S --+ as preserves order. Let S E .At, and 
T = {m EP:m(as) = OJ. We now show S' = T. 
Clearly, T c Sf. Suppose m E S' and m(as):;t:. O. 
Now, by Lemma 4(i), there is abE L such that 
S(b) = 1 and m(b) = O. Thus, as ~ b so m(b) :;t:. 0, 
a contradiction. Applying Lemma 3(i) and (ii), we get 
S' = Pas' E.At, and Pas' = S' = Pas" Hence, as' a~. 
Therefore, the complementation is preserved, and the 
proof is complete. 
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We investigate certain classes of solutions of the wave equation for which Rf(x) = - (l/x2)f( +x/x2) is 
a well-defined COO solution for all points of the Minkowski space, if f(x) is a Coo solution. We mainly 
exploit the fact that the transformation R is a generalized Hankel transformation in momentum space. 
We make use of several recent results obtained by Zemanian in connection with the Hankel transformation 
and construct a self-adjoint representation of the Lie algebra of the group 0(2, 4) which is an invariance 
group of the wave equation. Finally, we construct and discuss the eigenfunctions of R in Minkowski 
space. 

I. INTRODUCTION 

If f(x), x = (XO = t, x), x2 = (XO)2 - (X)2, is a 
solution of the wave equation 

o;f - Llf = 0, 

then it is knownl that the function 

Rf(x) = -(lfx2)f(Rx), 

Rx = -xfx2 

(1) 

(2) 

is-at least formally-another solution. The length 
inversion R is not well defined in the Minkowski 
space M4, because the light cone {x:x2 = O} has no 
image in M4. However, it may happen that Rf(x) is a 
well-defined function on M4. We shall indeed see that 
such functions exist. 

In the following we shall deal only with those 
solutions of Eq. (1) which have the representation 

where dO. is the Lorentz-invariant measure d3p/2po, 
Po = +(p2)t, on the closed positive light cone V+ = 
{p:p2 = 0, Po ~ O}. The functions q;(p) belong to 
different spaces to be specified later. 

In an earlier paper2 it was shown that the length 
inversion R, acting on the functions q;(p), is given by 
the integral kernel 

R(p, h) = (27T)-lJO[(2p . h)t] 

= (27T)-1(Poho)-t 

00 t 
x ~ (2l + 1)J21+1[2(Poho) ]Pb), (4) 

1=0 

where z = cos (p, h) and I n is the Bessel function of 
order n. 

Thus the length inversion R is a generalized Hankel 
transformation in momentum space. However, the 

arguments given in Ref. 2 were not completely 
rigorous mathematically. We shall try to improve this 
situation in the present paper which is organized in the 
following way: In Sec. II we shall consider the 
functions as elements of V(o.) and shall show R(p, h) 
to be an unitary and self-adjoint transformation of this 
space onto itself. The result is a generalization of a 
corresponding one by Titchmarsh3 for the Hankel 
transformation on the positive real line. 

In Sec. III we expand q;(p) in terms of spherical 
harmonics Y!"(p) and consider its radial part Cf!1(PO) to 
be an element of the space .r>21+l introduced by Zeman
ian.4 This space plays the same role for the Hankel 
transform as the space S of fast-decreasing functions 
at infinity does for the Fourier transform. 

Using the results of Sec. III, we construct in Sec. IV 
a representation of the Lie algebra of the Liouville 
group 0(2,4) in terms of self-adjoint operators in 
V(o.) [the Liouville or conformal group 0(2, 4) is an 
invariance group of the wave equationl ]. Here we 
exploit mainly the facts that the eigenfunctions of 
R(p, h) are elements of the spaces V(o.) and .r>2/+1 

simultaneously, that they are dense in L2(o.), and that 
the elements of the Lie algebra £[0(2,4)] may be 
constructed by the generators p/J, f..t = 0, 1,2,3, of 
the translations in M4 and the length inversion R 
alone.s 

In Sec. V we calculate and discuss the explicit forms 
of the eigenfunctions of the operator R in M4 by 
Fourier transforming the eigenfunctions of R(p, h) in 
£2(0.). 

Finally, in Sec. VI we show that any function/(x) 
which can be represented as 

flm(x) = r d1lq;,(po)y;n(f)e(x, p), Jv+ 
e(x, p) = (27T)-i exp (ip . x), 

1(2Po)iq;!(po) E 4>21+1 

(5) 

1041 
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can also be represented in the form 

flm(X) = r dQR[<ptCho)Y;,,(ft)]g(x, h), 
.Iv+ 
g(x, h) = Re(x, h). (6) 

The equality holds in the usual sense (i.e., not only in 
the mean 0. Since the Hankel transformation repre
sents an automorphism of f,21+l onto itself,4 we see 
that with any solution of the wave equation J"m(x), 
given by Eq. (5), the function RJ"m(x) is defined every
where on M4 and is a smooth solution of the wave 
equation, too. The same holds for any solution which 
can be represented as a finite linear combination of the 
functions J"m(x), 

II. THE L2(Q) THEORY OF THE LENGTH 
INVERSION R 

The Hilbert space L2(Q) consists of all equivalence 
classes-the elements differ at most on a set of meas
ure zero-of functions 'P(p) for which 

(<p, <p) = r dO 1<p(pW < 00. (7) 
Jv+ 

Since the rotations commute with R, it is convenient 
to expand all functions 'P(p) E V(O) in terms of 
spherical harmonics: 

<Xl +1 
<pep) = I I 'Plm(PO) Y;"(p), (8) 

!=Om=-! 

where the equality means convergence on L2(O). 
Accordingly, we decompose the space V(O) into a 
direct sum 

00 +1 
r,2(Q) = I I EB L;m(O). 

!=Om=-l 

The projection operator onto the space 

+l 

L~(O) = I EB L;m(O) 
m=-l 

is the kernel 
+l 

II!(ft, fI) = I Y;"(b) Y;"*(p) = (21 + 1)/41T p/(z). 
m=-! 

With these definitions we can write 

00 

R(p, h) = I Rl(Poho)IIz(ft, p), 
1=0 

Rl(Poho) = 2(Poho)-tJ2l+l[2(Poho)t). (9) 

For q;lm(P) = <Plm(Po) Ylm(p) we have 

Rq;!m(h) = Y;"Cft) f" dwRz(poho)<PlmCpO)' (10) 

where dw is the measure ipo dpo on the positive real 
line. 

The eigenfunctions enlCpo) of the integral operator 
(10) are known2 : 

en/Po) = a-;;re-PO(2po)IL~I+1(2po), (11) 
where 

L~(2po) = i (n + oc)( -2Pol/k! 
k=O n-k 

are Laguerre's polynomials and 

ani = 8-1(21 + I + n)!/n! 

is a normalization factor. The eigenfunctions (1) 
belong to the eigenvalues (_l)n. 

The fUnctions entCpo) form a complete orthogonal 
system in the Hilbert space V(w), because the func
tions (po/2)fenl(po) form a complete system6 with 
respect to the positive real line and measure dpo. 

Since the spherical harmonics form a dense orthog
onal system on the sphere, the eigenfunctions 

en1m(p) = enl(po)Y;"(p) (12) 

of R(p, h) in L2(D.) form a complete orthogonal 
system in this space. 

Because of 

(Ren1m , en1m) = (en1m , Ren1m) = (-1t, 

(Ren1m , Ren1m) = (en1m , en1m), 

the transformation R is symmetric and bounded on a 
dense set of V(Q) and can therefore7 be extended to a 
bounded self-adjoint operator with V(O) itself as its 
domain of definition. The latter of the above relations 
shows in addition that R is unitary. 

The spectral representation of Rl(Poho) is given by 

RI(Poho) = 2(Poho)-tJ21+l[2(Poho}t) 
00 

= I ( -l)nenl(ho)enZ(Po) 
n=O 

= 8e-ho-,JO( 4Poho)1 

<Xl n' xI(-l)n . 
n=O (2/+1+n)! 

x L!:+l(2ho)L!:+lC2po). (13) 

The series on the right-hand side of Eq. (13) converges 
even in the usual sense.s 

The spectral representation (9) of R(p, h) itself also 
converges uniformly and absolutely as an expansion9 

in terms of Legendre functions Pl(z) for all finite po 
andho, because the Bessel function Jo[(2poho)t(1 - z)t] 
is an entire function in z for all fixed finite Po and ho. 

The action of R on an arbitrary element 

<pep) = ! Cnlmenlm(P) 
n,l,m 
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of £2(Q.) is given by 

Rg>(h) = ~ (-l)ncnlmenlm(h), 
n.l.m 

Cnlm = f dQ.e~lm(p)g>(p)· 
III. THE SPACE ~21+1 FOR THE RADIAL 

FUNCTIONS f{Jlm(PO) 

In this section we shall consider only the radial 
Hilbert space L~(w) and its elements Tz{po) (we drop 
the spherical index "m" in this section). We shall 
translate some of the results obtained by Zemanian4 

for our purpose. We first introduce the one-to-one 
mapping 

U -+ Po = 2-1
U

2
, Po -+ U = + (2po)! ; 

3 

"Pl(U) -+ Tl(PO) = 2[u(po)r""PJu(po)], 

Tl(PO) -+ "Pl(U) = 2-1uf TtCu2j2); (14) 

lro dw 1 TI(PO) 12 = loodU l"Plu)12. 

The subspace D[ of L~(u) consists of all infinitely 
differentiable ("smooth") functions with compact 
support on the interval 1= {u:o < U < oo} with the 
usual topology of uniform convergence. 

The subspace S21+1("Pl) consists of all smooth 
functions on I for which the quantities 

y;~tl("Pl) = s~p 1 u1 (U-1 
:ur[U-

21
- f "Pl(U)] I, (16) 

j, k = 0, 1, ... , are finite. Zeman ian proved that the 
mapping (15) is a topological automorphism of S21+1' 
where the topology is defined by the seminorms (16). 
For the eigenfunctions enl(po) we have 

enlpo) -+ Enl( u) = 2-1a;t e-,,2/2u2l+! L;;+1( u2). 

Thus the functions Enl(u) are elements of S21+1("PI)' 
The mapping (14) maps the space S2l+1("Pl) on a 

space ~21+1(Tl) with an induced topology defined by 
the seminorms 

-21+1( ) I 1/2 ( d )k( -I ( ) I < 'Yi.k Tl = sup Po -d Po Tl Po 00, 
0< Vo< 00 Po 

j,k=O,l,···. (17) 

The mapping (14) is continuous in both directions [in 
the topologies (16) and (17) J. 

Since the eigenfunctions enl(PO) are elements of 

~21+1(Tl) and are dense in L~(w), we see that i>2l+1(Tl) 
is dense in L~(w). This property will be very helpful in 
the next section. [As the elements of .f>21+1 are of fast 
decrease at infinity, and since they are bounded, they 
belong to all U(po), P = 1,2, .... ] 

We finally translate some of the lemmata of Zeman-

ian for S21+1 into corresponding ones for i>21+1 (Tl): 

(1) ~212+1 C ~211+1 for 12> II; 

(2) RI(PoTl) = AlRlTl' RtCAlTl) = PORlTl' (18) 

Al = - ( d
2

2 
Po _ 1(1 + 1») . 

dpo Po 

The operator Al corresponds to the operator 
- MZl+INzl+1 of Zeman ian in SZI+1' 

(3) The mapping Tl -+ POTI is a continuous map-

ping of ~21+1 into itself. 

IV. CONSTRUCTION OF SELF·ADJOINT 
GENERATORS OF THE GROUP 0(2,4) 

IN THE SPACE L2(Q.) 

We now use the results of the preceding sections in 
order to construct the self-adjoint generators of a 
representation of the Lie algebra of the group 0(2, 4) 
in P(n). We mainly exploit the fact5 that all 15 
elements of the Lie algebra £[0(2,4)] can be con
structed by means of the generators PI', ft = 0, 1,2,3, 
of the translations (in M4) and the length inversion 
R (which itself is not an element of £[0(2,4)]) in the 
following way: We define the action of pI' on T(P) as 
the multiplication of T(P) by pl'. The generators KI' of 
the special Liouville transformations1o are given by 

KI' = RpI'R, ft = 0, 1, 2, 3, (19) 

and the remaining elements of the Lie algebra by the 
commutators 

[KI', PV] = 2i(gl'V D - M'''), (20) 

where D is the generator of the dilatations (PI'-
p-1pl') and the MI'V generate the proper orthochronous 
Lorentz transformations. Furthermore, gOO = _gll = 
_g22 = _g33 = 1; all other gl'V = 0. 

We start the construction by defining the operators 
Po and Ko in Lr(w): The operation TI(PO) -+ POTl(PO) is 
defined for all elements Tl E L~(w) for which 

l'~) dw IPoTl(Po)1 2 < 00. 

We denote this domain by ~I[PO]' Since Po is an 
unbounded operator, we have ~I[POJ ¥= L~(w). As a 
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multiplication operator, Po is self-adjoint in L~(w). write for Ko 
Furthermore, the results of the last section imply that (24) 

i>2Hl C ~1[PO], POf)21+1 c f)21+1' (21) 

We now define Ko by 

Ko = RIPoRI· 

As Rl is unitary, Ko is also self-adjoint, has the same 
spectrum as Po, and its domain of definition is 

~1[Ko1 = RI~I[Po1. Because of R1f)21+1 = f)21+1' Po 
and Ko have the common dense domain i>2Hl' The 
Eqs. (18) show that 

K _ (~ _ 1(1 + 1») 
0-- Po 

dp~ Po 
(22) 

on f)2!+1' 

Since KO~2!+l c ~2Hl [se: Eq. (21)1, we can multi

ply and add Po and Ko on ~21+l without restrictions. 
Making use of this fact, from Eqs. (20) and (22) we 
obtain 

(2i)-1[Ko, Po1 = D = i (Po ~ + 1) (23) 
dpo 

on f)2I+l' D is symmetric in L~(w). Since the equations 
D*cpt = ±iCPt do not have any solutions unequal 
to zero which lie in L~(w), the deficiency indicesll of 
Dare (0,0). This can be seen as follows: The linear 
hull of the functions 

is dense in L~(w) for each fixed mo > -1. This fol
lows, for instance, from the fact that Laguerre's 
functions form a complete basis in L~(w). If 

b;' = (cp±, hm), 

then the equations 

(D*cp±, hm) = 1= i( cp±, hm) = (cp±, Dh m) 

imply the recursion formulas 

b~+l = (m + 2)b~, b;;;+l = mb;;;. 

It then follows for the expansion coefficients c; = 
(enl , cp±) that c-;; = ° for all n and that the sum 

does not converge. Thus,D has a unique self-adjoint 
extension D in L~(w). 

All the above results remain unchanged if we go 

over from L~(w) to L~m(!l). On i>2Hl Y;n(~), we may 

where ~ is the Laplacian in momentum space. 
We now have an irreducible representationl2 of the 

subalgebra s!'(Po, Ko, D) by means of self-adjoint 
operators in Lrm(Q). 

We next turn to the operators pi = l,j = 1,2,3. 
It is convenient to introduce spherical coordinates 

P = (pI,p2,p3) 

= Po (sin {} cos cp, sin {} sin cp, cos {}). 

With 

we havel3 

P+CPlm(Po) Y;"(p) 

= PoCPlm(PO)[al(1, m)Y~tl(~) + a2(1, m)Y~tl(~)1, 

(25) 
P-CPlm(PO) Y;"(p) 

= PoCPlm(Po)[a3(1, m)Y~ll(~) + ail, m)Y~ll(p)1, 

(26) 
p3 ((Jlm(Po) Y;"(p) 

= Po({Jlm(Po)[a5(1, m)Yz'-':-l(i') + a6(1, m)Yz'~~-l(~)1, 

(27) 

where ap{l, m), (J = 1, ... , 6 are constants depending 
on I and m. 

We see that the operators pi, j = 1,2,3, mix the 
spaces L~m(Q); and from repeated application of pi it 
follows that we need all I-values in order to be able to 
represent the operators pi. We now combine the 
transformations R and pi. We have Ki = RpJR, and 
the Ki are self-adjoint in V(!l) because the pj are 
self-adjoint. 

We next define the space ~ which consists of all 
finite linear combinations of functions 

CPlm(P) = ({Jlm(Po)Y;"(p), 1 = 0, 1, ... ; Iml ~ 1, 

where ((Jlm(Po) E f)2Hl' The space ~ can be considered 

as the inductive limitl4 of the spaces f)21+1' However, 
we shall not need this property in the following. 

The space ~ which is dense in LI(!l) is mapped onto 

itself by the length inversion R, because each i>21+1 is 
mapped onto itself. Clearly, ~ belongs to the domain 
of definition ~[PJ] of pi. Since ~[KJ] = R~[Pi], we 
have ~ as a common dense domain of PI' and KI', 
I" = 0, 1,2,3. 

As Po({Jlm(Po) E i>21+3 if ({Jlm(PO) E i>21+1 [see Eq. (17)], 
and because of Eqs. (25)-(27), we have PI'~ c ~, 
KI'~ C ~. Thus we can multiply and add the operators 
PI' and KI' on ~ without restrictions. In particular, we 
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can calculate the commutators 

M/Y = i2-1[K", PY
), I' -:;t:. v. 

The operators M/Y are symmetric on f> c L2(Q) with 
respect to the metric (7) and can be extended uniquely 
to self-adjoint operators in £2(0.), as is well known 
from the construction of unitary representations15 of 
the Poincare group. 

The operators K' have the explicit form16 

Ki = -(20' + 2pkOkOi + pill), 0i = -.!. . 
op' 

We remark that 

K"R(p, h) = h"R(p, h), I' = 0, 1,2,3, 

i.e., the kernel R(p, h), is a common nonnormalizable 
eigenfunction of the operators K". 

Finally, we mention that Rrp E ~[D) c £2(0.), if 
rp E ~[D). This property follows from the relation 

R(Drp) = -D(Rrp), D = i (~/iOi + 1), 
which obviously holds on f>. However, it holds for all 
rp E ~[D) because f> is dense in £2(0.), R unitary, and 
D closed. Thus the length inversion R maps ~[D) onto 
itself. 

V. THE EIGENFUNCTIONS fn!m(x) OF R IN THE 
MINKOWSKI SPACE 

In this section we shall calculate the functions 

fnlm(X) = (21T)-i r dQenlm(p)eip'a:, 
Jv+ 

en1m(p) = a-;;t e-PO(2Po)! L~+1(2po) y;,,(p). (28) 

The integral exists because en1m(p) E V(Q). This fol-

It is convenient to calculate the integral Inl(X) by 
means of the generating function18 

F(z, Po) = (1 - z)-a-1 exp ( 2poz ) = I L~(2po)zn, 
z - 1 n=O 

Since 

Izl < 1, 

(31) 

I o~F(z, Po) I ::;; ytb.(n, €)p~ for 0::;; z ::;; € < 1, 

where the coefficients by(n, €) are independent of Po, 
the integral 

1"" dPoo~F(z, po)e-po(l-ia:o)p~+iJ!+i(por) (32) 

converges uniformly for 0 ::;; z ::;; € < 1 and we are 
allowed to interchange integration and differentiation. 
For n = 0 we get19 for this integral 

G(x, z) = 1''') dPoF(z, po)e-Po(l-ia:O)p~+iJ!+i(por) 

= 1T-i l! (2r)!+iw(x, Z)-l-l, 

w(x, z) = [z(l + ixO) + 1 - iXO)2 + (z - 1)2r2. (33) 

The integral Inl(x) is then given by 

I nzCx) = (lin !)o~ G(x, z) 1.=0' 
Thus we arrive at the result 

fnlm(X) = Ani Y;"(i)rlo~w(x, z)-l-ll.=o ' 

An! = 1T-i (_iY22!+1/! [n! (21 + 1 + n)'ti . (34) 

If we define 

( 0) l:::ln ( )-/-11 gnl X ,r = r u.w x, z .=0, 
lows from the fact that we get 

for all j = 0, 1,2, .... The integral over the sphere 
gives 

f dne-iPorco8(~.i)y;,,(p) 
= (-i)141T(1T/2Por)iJl+i(rpo)Y;"(i). (29) 

This can be seen immediately from the well-known 
expansion of exp ( - ip • x) in terms of spherical 
hannonics.17 Thus we have 

fnlm(X) = (-i)121- 1a;;tr-i Y;"(i)Inb), 

I nl(X) = fXl dpoe-Po(I-ia:o)p~+iL!I+1(2po)Jl+i(por). (30) 

gOI(XO, r) = rl(l - 2ixo - x2r1-t, 
gu(XO, r) = -2(1 + 1)r1(1 + x2)(1 - 2ixo - X2)-l-2. 

(35) 

Furthermore, it is not difficult to findio the following 
recursion fonnula for n ~ 2: 

gn!(xO, r) = -2(1 + l)r-1(1 + X2)gn_1,l+1(xO, r) 

+ 2(1 + 1)(1 - n)r-1(1 + 2ixo - X2)gn_2.1+1(xO, r). 

(36) 

We list the following rather obvious properties of the 
functions!n,m(x) without the details of the proof. They 
can be verified by explicit calculations20 in x-space: 

(1) The functions !nlm(X) are defined and smooth 
for all x E M4. 
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(2) We have 

Rfnzm(x) = -(1/x2)fnzm(Rx) 

= (-ltfnzm(x) (37) 

for all x E M4. Therefore we can represent Inzm(x) in 
the form 

fnzm(x) = (h)-l( -It+l(1/x2
) f do.enzm(h)e-ih·",M. 

(3) For X2 =;tf 0 and r fixed, we have for large Ixol 

fnzm(x) /"'oJ (x~rZ-l. 

(4) For x 2 =;tf 0 and XO fixed, we have for large r 

Inzm(x) /"'oJ ,-Z-2. 

(5) For x2 = 0, we have for large Ixol = r, 

Inzm(x) /"'oJ Ixol-1 for even n, 

Inzm(x) /"'oJ Ixol-2 for odd n. 

Consider now the bilinear form 

<Il,J2) = - i LO=rd3X(fl*Oof2 - 00!t*f2)' (38) 

The left-hand side is independent of 'T, if 11 and 12 are 
solutions of the wave equation. It is convenient to put 
'T = 0 in the following. 

The above results show that the integral (28) exists 
uniformly for all xu. Thus we are allowed to differ
entiate Eq. (28) with respect to XO under the integral 
and put XO = 0 afterwards. We get 

f ()I (2 )-!f d3p () -ip.x nZm X ",0=0 = 1T - - enzm P e , 
2po 

0ofn'z'm'(x) 1",°=0 = (21T)-i if d3p2-1en'z'm,(p)e-iP'X. 

Ifwe apply Parceval's theorem for Fourier transforms 
to these functions, we have 

Thus the functions fnzm(x) form an orthogonal set 
with respect to the bilinear form (38), which is positive 
definite for these functions. 

VI. PROPERTIES OF THE FOURIER 
TRANSFORMS OF THE FUNCTIONS 

rp(p) E f) 

We want to show that any function 

f(x) = r do.cp(p)e(x, p), 
Jv+ 

cp(p) E f), e(x, p) = (21T)-i exp (ip . x), (39) 

can also be represented in the form 

f(x) = r do.Rcp(h)g(x, h), 
Jv+ 

g(x, h) = Re(x, h). (40) 

The equality holds in the strict sense, not only in the 
mean: In other words, iff(x) in Eq. (39) is a solution 
of the wave equation, then the function Rf(x) is a 
solution, too. This is so, because Rcp E f), if cp E f). 

First we notice thatf(x) in Eq. (39) exists uniformly 
for all x E M4, because cp(p)e(x,p) E £1(0.) and 
le(x, p)1 is independent of x. As p"'cp E f> if cp E f>, we 
can compute arbitrary derivatives of f(x) by differ
entiating under the integral sign. 

In the following it will suffice to consider only the 
basis elements !fzm(P) = CPzm(Po) Y:,,(p) of f>, because 
all the other elements are finite linear combinations of 
them. 

Since the integral (39) exists, we are allowed to 
calculate the integral over the sphere first. This gives 
[see Eq. (29)] 

fzm(x) = Y:"(x) LX) dwcpz{po)Bz{rpo)eiPO"'O, 

Blrpo) = (-i)'41T(1T/2por)i Jl+i(por). (41) 

We notice that IBz(rpo) exp lipoxo)I is uniformly 
bounded for all , and po. We now expand cpz(Po) in 
terms of the eigenfunctions enz(po): 

"" CPz(Po) = L cnenz(po)' (42) 
n=O 

The equality holds in the Lr(w) topology. However, 
inserting it into Eq. (41) yields a pointwise convergence 
of the resulting series (see Appendix). Thus the 
expansion 

fzm(x) = y;n(x) Jocn L"" dwenz(Po)Bz(rpg)eiPO"'O 

"" = L cnfnzm(x) (43) 
n=O 

is an equality in the usual sense. 
Consider now the function 

(44) 

The same reasoning as above shows that 

"" hm(X) = L cnRfnlmeX) (45) 
n=O 

holds in the usual sense, too. Thus we have lzm(x) = 
RIlm(x). From this the validity of Eq. (40) follows 
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immediately. As Rrp E~, we see that/ = Rfis defined 
everywhere and its derivatives of any order exist for 
all x E M4. 

The above result holds, of course, for all subspaces 

of ~ or ~21+1-in particular, for the spaces Dr, 
$21+1' and 'H21+1 (the arguments of its elements 
restricted to the positive realline) defined by Zeman
ian.4 
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APPENDIX 

We want to prove that the series (43) converges 
pointwise, even though the expansion (42) holds only 
in the mean. 

Since the functions enl(po) form a complete orthog
onal system in L~(w), we have for any rp~I>, rpl2) E 

L~(w), Parceval's equation 

en = loo dwenl(Po)rp:I>(po), (Al) 

where the right-hand side converges in the usual 
sense.21 The function Bl(rpo) exp (ipoXo) is not an 
element of L~(w); but, if we multiply it by a factor 
exp (-).Po), it is one for all ). > O. Furthermore, the 
integrals 

lOO dWrpl(po)BI(rpo)e-;'PoeiPOXO, 

LX> dWenl(po)BlrPo)e-J..POeiPOXO 

exist and are uniformly convergent for all ). 2 O. 
Combining this fact with Eq. (AI), we get an expansion 
of the form 

00 

b()') = :2 bn().), ). > 0, 
n=O 

where b()') and bn()') exist and are uniformly con
vergent for all ). 2 0 and all x E M4. From this it 
follows that 

00 

b(O+) = :2 bn(O+). Q.E.D. 
n=O 
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Maximum and minimum principles are obtained for the nonlinear F6ppl-Hencky differential equation 
which arises in the theory of elasticity. Approximate solutions are obtained from a simple class of trial 
functions. 

1. INTRODUCTION 

In a recent series of papers,I-3 variational prin
ciples associated with a wide class of boundary-value 
problems have been derived which under certain 
circumstances lead to both maximum and minimum 
(complementary) principles. These complementary 
variational principles provide a systematic method of 
obtaining approximate solutions to various linear and 
nonlinear problems. In this paper we apply the theory 
to the nonlinear Foppl-Hencky equation 

(1) 

with 
f(O) = 0, e/>(1) = A > 0, e/>' == de/>/dx. (2) 

This equation arises in elastic membrane theory ,4-6 

where e/> is essentially the dimensionless stress which 
develops in a circular membrane when subjected to a 
constant normal pressure. 

2. COMPLEMENTARY VARIATIONAL PRINCIPLES 

Consider the boundary-value problem 

- - y(x) - =/(<1», 0 ~ x ~ 1, d ( d<l» 
dx dx 

(3) 

<1>'(0) = 0, <1>(1) = A > 0, (4) 

where f is a real-valued function which possesses an 
inverse. The exact solution of this problem will be 
denoted bye/>. Following Noble,l we write (3) in the 
canonical form 

G(V) = fr -V,!-l( - V') - (2y)-lV 2 

- F(r\ - V'»] dx + /tU(I), 

y-1U = 0 at x = 0, (9) 
where 

(10) 

Then, if 

F(e/» = fci>/(O) dO. 

Y >_ 0 and dl( e/» < 0 0 < x < 1 (11) de/> -, - - , 

we have the complementary variational principles3 

G(V) ~ leu, e/» ~ J(<I» (12) 

for all function pairs (V, <1» which are sufficiently 
close to the exact solution (u, e/» of (5) and (6). 

3. FOPPL-HENCKY EQUATION 

Provided /t is sufficiently large, the solution of the 
Foppl-Hencky equation (1), subject to (2), exists and 
is unique.6 For our purposes, it is convenient to 
rewrite Eq. (1) in the form 

_ ~ (X3 d<l» = 2x
3 . (13) 

dx dx <1>2 

Comparison of (3) and (13) then gives 

y = x3, j(<I» = 2x3/<I>2. (14) 

Since 

3 dl 4x3 

y = X ~ 0, d<l> = - <1>3 ~ 0, 0 ~ x ~ 1, (15) 

d<1> =..! V, 
dx y 

_ dU = 1(<1», 
dx 

(5) for positive stress <1>, Eq. (11) is satisfied and the 
complementary variational principles (12) can be 
applied to this problem. 

(6) The basic functionals in this case are 

and introduce the functionals I(u, e/» = f (IX3(CP')2 + 2;) dx, (16) 

leu, e/» = f H( cp')2 - F( e/»] dx, 

J(<1» = f[!(<1>')2 - F(<1»] dx, <1>(1) = A, 

(7) 
J(<1» = f (lx3(<1>')2 + 2;) dx, 

<I> = A at x = 1, (17) (8) 
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G(U) = 50
1 

(2(2X3)!(-U')! - 2~3 U2
) dx + AU(I), 

1- U = 0 at x = o. (18) 
x 3 

Since, by (5) and (14), the exact u is related to rp by 

TABLE I. Optimum parameters and bounds for the case A. = 1. 

J G (J - G)/J 

1.238 1.70 0.48311 1.236 1. 93 0.48125 0.00385 

performed calculations with trial functions 

(19) <I> = OCI + (A - OCl)XfJ\ 0/ = OC2 + (A - OC2)XfJ2 (23) 

we shall choose a trial U of the form 

U = x3o/', where 0/'(0) = O. (20) 

From (18), we have 

G(x3o/') = f[2(2x3)! (- :x (X
3o/I»)! - tX3(o/I)2] 

x dx + .1.0/'(1). (21) 

Hence, by (12), 

G(ro/') ~ leu, rp) ~ J(<I», (22) 

for trial functions <I> and 0/ sufficiently close to the 
solution rp of (1) and (2). 

4. CALCULATIONS 

To obtain a variational solution of (1) and (2) by 
means of these complementary principles we have 

for the case A = 1. The parameters OCl , OC2' PI, and P2 
were determined by optimizing the functionals G and 
J and the results are given in Table I. We see from the 
table that, in terms of the metric leu, rp), the trial 
functions (23) are accurate to within 0.4 percent. This 
accuracy can be improved of course by taking more 
elaborate trial functions. 

Finally, we remark that the results of Sec. 2 have 
possible applications to generalized forms of the 
Foppl-Hencky equation such as those considered 
by Dickey.' 
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An explicit expressi~m is obtained for th~ ~lebsch-Gordan coefficients which appear in the specification 
of ~ baSIS corres~ondmg to.the decompoSlti?n o.f the tensor product of two arbitrary SL(2, C) principal
senes representations. Special cases of phySical mterest are treated in detail. 

I. INTRODUCTION 

The knowledge of the Clebsch-Gordan (CG) 
coefficients for the homogeneous Lorentz group 
SO(3, 1) [or the covering group SL(2, C)] is of funda
mental importance in various areas of elementary 
particle physics. Indeed, the group SO(3, 1) is being 
intensively used in scattering theory to furnish invar
iant expansions of relativistic amplitudes. It serves as 
the group of motions of the space of independent 
kinematical variables in one approach,l as the invari
ance group of the zero-angle elastic scattering ampli
tude in the second approach,2.3 and as a group 
generating a complete set of basis functions in the 
third.4 In all cases, the CG coefficients are necessary 
to write matrix elements and especially to express 
experimental quantities in terms of the amplitudes. 
Further, the CG coefficients for SL(2, C) play an 
important role in the theory of relativistic wave 
equations5 and in various theories involving infinite
particle multiplets, irt which it is necessary to 
construct invariant vertex functions, Lagrangians, 
etc.6 

The problem of reducing the tensor products of two 
irreducible unitary SL(2, C) representations has been 
completely solved by Naimark7 in a series of papers 
(for a brief summary consult Ref. 8). However, the 
calculation of the explicit form of the associated 
CG coefficients has been carried out only in certain 
special cases by Dolginov and Toptygin, 9 Bisiacchi 
and Fronsdal,lO and Bamberg.ll 

II. INTEGRAL REPRESENTATION FOR THE 
CG COEFFICIENTS IN TERMS OF SL(2, C) 
TRANSFORMATION MATRIX ELEMENTS 

A. Derivation 

First, we shall sketch a method for constructing a 
basis consisting of generalized eigenvectors, for a 
space carrying an irreducible unitary representation, 
by means of operator-valued distributionsl3 

Let G be a locally compact type-I Lie group with 
H = peG) the Hilbert space of square-integrable 
functions with respect to the Haar measure on G. 
Let <I> c He <1>' denote a Gel'fand triplet. For the 
sake of definiteness, we set <I> = ~(G), where ~(G) 
is the Schwartz space: the space of infinitely differ
entiable functions defined on G equipped by Schwartz 
with a locally convex topology stronger than that of 
peG), which makes it a nuclear space. Then <1>' = 
~'(G) = space of continuous linear functionals on <1>. 

Let {D~./g); g E G} be a set of matrix elements 
which are, in general, of a subclass of unitary irre
ducible representations of G; the latter constitute a 
complete set of generalized eigenvectors for a maximal 
set of commuting, essentially self-adjoint operators 
from the regular representation of the enveloping 
algebra of the Lie algebra of G. The symbol A. denotes 
a set of eigenvalues which are invariant for an irre
ducible representation T). of G, while p(q) d,enote the 
remaining sets of noninvariant eigenvalues corre
sponding to the left (right) representations. We assume 
for simplicity that the sets of numbers p(q) are discrete 
and the set A. is continuous. This set of matrix elements 
{D~,q(g)} then provides a complete set of functions for 
any function !peg) E ~(G) and satisfies the following 
orthogonality and completeness relations: 

r dgD;q{g)D;:;,(g) = ~ <5(A. - A.')<5pp,<5qq" (1) Ja ,u(A) 

J,u(A.) dA. L D!aCg)D!:(g') = <5(g - g'), 
pq 

(2) 

We present here the solution to the problem of the 
CG coefficients for arbitrary unitary SL(2, C) repre
sentations of the principal series. Our method de
pends, in general, on the knowledge of matrix elements 
for irreducible representations and, in particular, for 
the purposes of this paper, on those for the principal 
series of SL(2, C) representations. These have been 
calculated by various authorsl2 and are now com
pletely known because of the work of Stroml2b and 
Duc and Hieu.l2d where the asterisk denotes complex conjugation. Here 
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COUPLING OF SL(2, C) PRINCIPAL-SERIES REPRESENTATIONS 1051 

we have assumed that the spectral measure dft{)") for 
the invariant operators is absolutely continuous rela
tive to the Lebesque measure d),,; i.e., dft(),,) = ft(A) d)". 
The functions D;q(g) also satisfy the following unitar
ity condition and composition law: 

D;q{g-l) = D~:(g), (3) 

D;igg') = I D;.(g)D:q(g'). (4) 

Specifically, any element f/J(g) E !D(G) has the follow
ing expansion in terms of the D!a{g) functions: 

f/J(g) = f dft(),,) L rFvq{),,)D;q(g), (5) 
pq 

where 

rFVq(),,) = ft(A) i dgf/J{g)D;;(g). (6) 
a 

Now set 

A 1 A* Ppq = ftC),,) adgDpig)'Fg, (7) 

where TIJ is the right regular representation of G in H, 
i.e., (Tg f/J)(g) = f/J(ggo)' Then 

o 

P;qf/J{g) = ft{A) fadg'D;;{g')f/J{gg') 

= ft{A) Sa dgD;;{g-lg)f/J{g) 

= ~ D;.(g-l)ft()") SaD:: (g)f/J(g) dg 

= I D:ig)rFsi),,) E !D'{G). (8) 

The interchange of the processes of integration and 
summation in the third step follows from Tonelli's 
theorem,13 Thus, we see that P;q represents a map 
from !D{G) into !D'(G). Consequently, it represents an 
operator-valued distribution (cf. Ref. 13, Sec. 2). 
Using the formalism of operator-valued distributions 
one proves the following properties13 of P~: 

P;qP;:q' = o{)" - ),,' )OqV,P;q" (9a) 

(P;q)t = P~p, (9b) 

TgP;q = I D:ig)P:q. (9c) 

This adjoint in Eq. (9b) is to be understood in the sense 
of operator-valued distributions. 

If H = L2(X), where X is a certain homogeneous 
space of G, and if Tg is a quasi regular representation 
of G in £2(X) [i.e .• (Tgf/J)(x) = f/J(xg)] , the quantity 
P!rn defined by Eq. (7) still possesses the properties 
(a)-(c) of Eq. (9).13 If u(x) E «I> c H, then it follows 
from (9c) that the element 

IA; p) = P~u (10) 

transforms according to an irreducible unitary repre
sentation T" of G. Further, the linear space of all 
vectors for a fixed A and q forms a carrier space for an 
irreducible representation TA of G (cf. Ref. 14). 

If the representation Tg in formula (7) is a tensor
product representation of two irreducible unitary 
representations. i.e., T = TAl ® TA2, and «I> c HAl ® 

II II g 

HA2 C «1>' is a Gel'fand triplet for the product space, 
then for U E «I> formula (10) again represents a map 
of the space «I> into a subspace of «I> which is a carrier 
space of an irreducible representation TA of G (for 
details. cf. Ref. 14). 

In the case of the Lorentz group, the explicit form 
of the matrices {DvP(g)} have been calculated recently 
by various authors.12 Thus, we can explicitly con
struct the operators (7) and the basis vectors (1O) and 
utilize them for obtaining the CG coefficients. 

In fact, let us consider the tensor product of two 
irreducible representations DV

lP2 and D V
2P2 (Vi being 

integers or half-integers, - 00 ~ Pi ~ 00, i = 1,2) 
which are realized in Hilbert spaces HVlPl and H V2P2 

and spanned by the sets of canonical basis vectors 
{IV1P1J1M 1)} and {IV2P2J2M 2)} , respectively. From 
Naimark's results? we already know that the decom
position of the tensor product DVlPl ® DV

tP2 has the 
following form: 

DVIPl ® DV2P2 = ~ 1: DVP dft{v, p), (11) 

where the summation extends over all v's such that 

v + VI + V2 = nonnegative integer (12) 

and each representation appears at most once.?·15 
In the tensor-product space H = HVlPl ® H V2P2 we 

can construct two sets of orthogonal basis vectors. 
The first one consists of the Kronecker product of the 
original basis vectors 

IV1PIJ I M I' V2P2J2M 2) = IV1P1J1M 1) IV2P~2M2)' (13) 

while the second one contains the basis vectors 

(14) 

which span an irreducible space HV/J contained in the 
direct integral of the Hilbert spaces corresponding to 
the decomposition (11). 

In what follows we shall omit indices V1PIV2P2 in the 
ket vector (14). 

The normalization properties of the basis vectors 
(13) and (14) are 

(VIPIJ1M1, V2P2J2M 2/ VIP1J{M{, V2P2J2M~) 

and 
(15) 

( JM I ' 'J'M') KO(p - p') ~ i> ~ 
VP VP = 2 2 uvv'UJJ'UMM', 

4v + P 
(16) 
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where K is a numerical constant determined by Eqs. 
(1), (2), (24), and (24'). 

In Naimark's notations, the vector IvpJM) corre
sponds to a function fj M(z, z) belonging to the Hil
bert space H(R2) of functions f(z, z) with the domain 
R2 (Ref. 16, p. 162). Here z and z are understood as 
independent variables (z = x + iy, z = x - iy). 

The basis vectors (13) and (14), as stated previously, 
are related by 

IvpJM) 
_ (NVPV,P' v2P2 )-1 
- J'M'JtM,J2M2 

X f dgD"J~.J'M,(g)Tg IVlPlJlMl) IV2P2J2M2)' (17) 

In this formula for the state IVlPlJlMl ) IV2P~2M2) 
we may take any vector (13) from the tensor-product 
space HV'P' ® H V2P2. N is some normalization coeffi
cient. The operator Tg acts on the basis vector (13) as 

T.Q IVlPJlMl) IV2P2J2M 2) 

= ~ DV'P' (g) 
L, J,' M,' .J,M, 

J,'M,'J2'M2' 

X IVlPlJ;M;) D~2:k".J.M2(g) IV2P2J~M~). (18) 

Using the invariance of the measure dg and the group 
properties of the matrices DVP(g) we can easily check 
that the basis vectors (17) have the correct trans
formation properties. 

The CG coefficients are the matrix elements of the 
transition matrix between the basis vectors (13) and 
(14). Utilizing (17) and (18) we get 

X f dgD"f'~.J' .'W(g)D~~w,.J" M,,(g)D"}:l1 2 .J.· M .. (g)· 

(19) 

In order to find the normalization coefficient 
Nj;j~"l::J,M.' we calculate the square of a basis 
vector (17). From the group properties of the matrices 
DVP(g) [Eq. (4)] and the normalization (16), we find 
that 

N ;~~'j~~~~,"lI' = (VlPlJlMl , V2P2J2M21 vpJ M) *. (20) 

Note that the normalization (16) is chosen so as to 
cancel the factor 

AVP = K 

4v2 + p2 
(21) 

which appears in the integration defining normaliza
tion of the DjM ,J' llr(g) functions [see Eqs. (24a) and 
(24b)]. 

The group element g can be represented in the form 

g = Ul(1') , 1p, 0)g(a)u2(PI, (), P2), (22) 

with 0 ~ 'Y} < 41T, 0 ~ PI' P2 < 21T, 0 ~ 1p, () ~ 7(', 

and 0 ~ a < 00, where Ul and U2 belong to SU(2) 
and g(a) is an element of a 1-parameter non
compact subgroup of SL(2, C). The decomposition 
(22) induces the following form for the DVP(g) 
matrices: 

min (J.J') 
D"fM.J'M.(g) = L D'k;,(1'), 1p, 0) 

).=-min (J.J') 

X DjJ').(a)Df~·(Pl' (), P2)' (23) 

With respect to the parametrization (22) the invariant 
measure on SL(2, C) has the form 

dg = d(cos 1p) d1') dpl d(cos () dP2 sinh2 a da (24a) 

and 
,u(A) = (4v2 + p2)/K. (24b) 

Using formulas (19), (20), (23), (24a) , and (24b) , 
carrying out the elementary integrations over the 
variables 1p, 1'), PI' (), P2, we arrive at 

(VlPlJlMl , V2P2J2M21 vpJM) 

X (VlPlJ{M{, V2P2J;'M;.1 vpJ'M')* 

- 641T
3 

(J M J M I J M) 
- (2J + 1)(2J' + 1) 1 1, 2 2 

X (J{M{, J2M21 J'M')"! (JlA!> J2A21 J Al + A2) 
A,A. 

X (J{Al' J;'A21 J' Al + A2) 

(00 vp' v,p, v.P' • 2 
X Jo DJJ').,H.(a)DJtJt,).,(a)DJ2Jz'A2(a)smh ada, 

(25) 

where (a, b, c, die,!) is a CG coefficient for the 
rotation group 0(3). 

The last integration will be carried out in Sec. III. 

B. Orthogonality and Completeness Relations 

The CG coefficients as defined by (19) figure in the 
decomposition 

00 00 
IvpJM)= L I L (VlPlJlMl,V2P2J2M2IvpJM) 

J,=v, J2=V. M,M. 
X \VlPlJlMl) \V2P2J2M2)' (26) 

where the canonical bases are normalized according to 
(15) and (16). 

Calculating the norms of both sides in (26) we 
obtain the orthogonality relation 

I (VlPlJlMl , V2P2J2M 21 vpJM) 
J,J.M,1I1, 

X (VIP1J1M1, v2P2J2M21 v'p'J'M')* 

tJ(p - p')K 
= tJvv,tJ JJ'{) M M' . (27) 

p2 + 4v2 
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Using (27) we can easily check that the formula 
inverse to (26) is 

x IvpJM). (28) 

x (VIP1J{M{, V2P2J~M21 vpJM)* 

= (jJIJ1'()J2JI'()lIft M l,(jMi M'/.', (29) 

which is the completeness relation. 

C. Explicit Expression for the SL(2, C) Transformation Matrices 

In the following we shall need the explicit form of the transformation matrices DVP(a). For our purpose the 
most convenient one is that of Strom,12b which is calculated for a canonical basis as defined by Naimark,16 

min(J-v.J-).) mln(J'-v.J'-).) 

DVP () _ ~ ~ BVP -a(2d·+.<+v+1-tip) 
JJ'.< a - k k JJ''<dd,e 

d=max(O.-v-'<) d'=max(O,-v-.<) 

x 2Fl(1 + J' - lip, v + A. + d + d' + 1, J + J' + 2, 1 - e-2a
) , (30) 

where 

BVP _ vp' V P(_1)J+J'-2Hd+d' 1 
JJ'J.dd' - rxJ rxJ' (J + J' + 1)! 

x [(21 + l)(J - v)! (J + v)! (J - A.)! (J + A)! (2J' + l)(J' - v)! (J' + v)! (J' - A.)! (J' + A)!]t 

and 

x (v + A + d + d')! (J + J' - v - A - d - d')! (31) 

d!(J - A - d)!(J - v - d)! (A + v + d)!d'!(J' - A - d')!(J - v - d)!O + v + d')! 

rxi = IT -2s + ip = r( -Ivl + lip + 1) W( -J + lip)1 

8=/V/ (4s2 + p2)l Ir( -Ivl + lip + 1)1 r( -J + tip) 

The choice of the phase rx'J is such that the vectors IvpJM) form a canonical basis in the sense of Naimark,16 
i.e., the operation of all generators on IvpJM) is completely prescribed. 

m. THE CG COEFFICIENT 

A. General Expression 

In this section we carry out the integration appearing in the formula (25) for the CG coefficients. Substituting 
(30) in (25) and introducing a new variable x = 1 - r 2a , we reduce the integral in (25) to a sum of terms of the 
type 

L\1 - Xl+d1 '+dt ·+).1+"2+t(V+Vl+vt)+ti (P-Pl-PS)-! 

X 2Fl(1 + J' + lip, v + Al + A2 + d + d' + 1, J + J' + 2, x) 

x 2Fl(1 + J1 - !ipl' VI + Al + d1 + d{ + 1, J1 + J{ + 2, x) 

x 2Fl1 + Ja -lip2, V2 + A2 + d2 + d~ + 1, J 2 + J~ + 2, x)x2 dx. 

To perform this integration, we develop each of the hypergeometric functions into a power series. These 
series converge uniformly for x < I, and we can perform the integration term by term from 0 to 1 - € and take 
the limit € -+ O. Since this limit exists, Abel's theorem on the value of a function on the boundary of its region 
of convergence ensures that the obtained value is the correct answer,l7 Performing the integration (see, e.g., 
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Ref. 18, p. 284), we obtain 

(V1P1 J1M}, V2P2J2M21 vpJM)(V1P1J{M{, vsP2J~M~ I vpJ'M')* 

= 81T
3 

(J}M}, J2M21 JM)(J{M{, J~Mf I J'M') 
(2J + 1)(2J' + 1) 

X L (JtAl' J2A21 J Al + A2)(J{A}, J~A21 J' A} + ,12) 
).lAI 

"" vp· vIPl vSPI 
X k BJJ , Al+AS<l<l,BJlJl'Al'h<ll,BJzJz';.,<lS<lS' 

d<l'<l1<11'd,<l2' 

X I (1 + J' + iip)iv + Al + ,12 + d + d' + 1)., 

""1'" n! (J + J' + 2)., 

(1 + J{ - !ip1)"I(Vl + Al + dl + d{ + 1)"1 (1 + J~ - iip2).,.(V2 + ),2 + d2 + d~ + 1)"2 X ~--~~~~~--~--~--~--~ ~--~~~~~~--~~~~~~ 
n1 ! (Jt + J{ + 2)n1 n2! (Js + J~ + 2)"2 

X fed' + d{ + d~ + Al + ),2 + l(v + v} + '112) + H(p - PI - P2) + t)(n + n1 + n2 + 2)!. (32) 

nd' + d{ + d~ + ),1 + A2 + i{v + VI + '112) + ii(p - PI - PI) + t + n + n1 + n2) 

The sums with respect to A'S, d's, and d"s are finite, their limits being 

-min (Ji , JD ~ Ai ~ min (Ji , J~), i = 1,2, 

min (0, -A - v) ~ d ~ min(J - A,J - v), etc. 

The sums over n, nl , and n2 are from 0 to 00, and the triple sum is convergent. We use the notation 

(a)n = r(a + n) . 
rea) 

Let us remark that the triple infinite sum I nnl n, figuring in (32) and all subsequent expressions can be re
arranged in such a way that two of the sums can be expressed as generalized hypergeometric functions of unit 
argument. The CG coefficient can thus be expressed using a single infinite and many finite sums over a product 
of f functions, a terminating ,Fa function and an aF2 function. Since this does not simplify calculations, we 
shall not give the explicit expression here. 

The number of finite sums in formula (32) can be reduced to, at most, four by a suitable choice of the super
fluous parameters J: and M:. Using the symmetry properties of the DVh,,.{a) we can always arrange the co
efficient to be such that (33) 

(These symmetry relations are discussed in detail in the next paper.) Choosing 

J{ = VI' J~ = '/12 (and, e.g., M{ = VI' M~ = -'112), (33') 

we eliminate the sums over d~ and d~ and can perform the d} and d2 summations with the help of 

I(-lt (Vi + Ai + dt + ni)!. = (_l)J/-v; (Vi + Ai + n.)! nil (34) 
di di ! (Ji - Vi - dt)! (A. + Vi + dt)! (Ji - Vi)! (Ji + ),,)! (Vi - J i + n.)! 

Thus, we obtain 

(VlPlJlM1 , v2P2J2M21 vpJM)(V1PIVlVl, V2P2V2 -'1121 vpJ' V} - '112)* 
81T3 

= (J1M1, J2M21 JM)(VIV1, '112 -'1121 J' VI - '112) 
(2J + 1)(2J' + 1) 

X I A"JiIlA1:iiJ1A1' J2A21 J A} + A2)(V1 A} , V2A21 J' Al + ,12) 
AlA' 

"" "p. "" (1 + J' + !iP)n(v + Al + A2 + d + d' + 1)" 
X k BJJ, Al+A,d<l' k , 

<I,!' "nln. n! (J + J + 2)u 

(1 + "1 - iiPl)nl("1 + ,1.1 + n1)! (1 + '112 - !iP2)n/V2 + A2 + n2)! X --~--~~~~~--~--~----~--~~~~~--~--~--
(Jl + 'Ill + 1 + n1)!(-J1 + 'Ill + n1)!(J2 + '1'2 + 1 + n2)!(-J2 + '112 + n2)! 

X r(d' + Al + ,1.2 + i(v + V} + '112) + ti(p - PI - P2) + t)(n + n1 + n2 + 2)! (35) 
fed' + A1 + A,2 + t(v + V} + V2) + ti(p - PI - P2) + f + n + n1 + n2) , 
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where 
Yo yp" vp (2J + 1)(2'11 + I)! (J + v)! (J - A,)!)! 

An. = {XJ {Xv 
(J - v)! (J + A)! (v + A)! (v - A)! 

(36) 

and B"jJ'). dd' was defined in Eq. (31). 
In order to fix the CG coefficient completely, it is still necessary to choose the value of J' and the phase, for 

instance, by taking [see Eq. (33») 

and defining the coefficient 

to be real and positive. 

B. Simplification when II, )/1' and )12 Satisfy a Triangular Relation 

If the invariant parameters V, VI, and '112 satisfy the relation 

1'111 - '11 21 S V S VI + '112, 
we can put [cf. (33"») 

J'=V 

in Eq. (35). Thus, we achieve a further simplification: 

(V1P1JIMl' V2P2J2M 21 vpJM)(VIPIV1Vl, V2P2V2 -'1121 'liP'll VI - '112)* 

8773 

= (JI Ml' J2M21 JM)(VIVl> '112 -'1121 V VI - V2) 
(2J + 1)(2'11 + 1) . 

X 2 (J1A1 , J2A21 J Al + 1.2)('111'"1 ' '1121.2 1 V Al + A2)Aj:l+AzAj;IlA'J:fz 
AlAI 

X 2 (l + v + iiP)n(v + Al + ;\.2 + n)! 

nnlnz(J + V + 1 + n)!(-J + v + n)! 

(1 + VI - iiPl)nl(Vl + Al + n1)! (1 + '112 - iiP2)n.(v2 + 1.2 + n2)! 
X 

(Jl + VI + 1 + n1)! (-J1 + VI + n1)! (J2 + '112 + 1 + n2)! (-J2 + '112 + n2)! 

(33") 

(33 111
) 

X rO'l + 1.2 + iCv + VI + '112)+ ti(p - PI - P2) + i)(n + nl + n2 +72)! . (37) 

rO'l + 1.2 + 1('11 + VI + '112) + ti(p - PI - P2) + n + n1 + n2 + 2) 

The d and d' summations have completely disappeared. 

IV. CG COEFFICIENT FOR THE COUPliNG OF DEGENERATE REPRESENTATIONS 

A. Calculation of a "Normalization" CG Coefficient 

If we consider the case V = VI = '112 = 0, Eq. (37) reduces to 

(Op1J1M1' OP2J2M21 OpJM) (Op100, OP200 10pOO)* 

_ 8' 3 Op OP1* Opz* (2J1 + 1)(2J2 + 1»)! (JlM1 , J2M21 JM)(J10, J20 1 JO) 
- 117 {XJ{XJ1 {XJz 

(2J + 1) r(1 + iip)r(1 - tiP1)r(1 - !ip2) 

X 2 r(1+iip+n)n! I'(1-!ip1+ n1)n1 ! 

nnlnZ (J + n + I)! (-J + n)! (J1 + n1 + I)! (-J1 + n1)! 

r(1 - iip2 + n2)n2! r(ti(p - PI - P2) + !)(n + n1 + n2 + 2)! 
X . (38) 

(J2 + n2 + 1)!(-J2 + n2)! r(!i(p - PI - P2) + n + nl + n2 + t) 
In this case, the "normalization CG coefficient" is especially simple and can be calculated explicitly. In fact, 

from Eq. (38), by manipulating the triple sum 

(OP100, Op200 1 OpOO) 

8772 
( sinh 117P sinh !77Pl sinh f17P2 )t 

= (PPIP2)t cosh t 77(p + PI + P2) cosh t77{p - PI - P2) cosh t77(p + PI - P2) cosh t77(p - PI + P2) . 

(39) 
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B. Explicit Formulas for the CG Coefficient 

Inserting (39) into (38), we obtain 

(OPlJlM1 , OP2J2M21 OpJM) 

. ( ! (211 + 1)(2J2 + 1»)! Op OPt· OP.· 1 1 = l7T PPlP2) (2J + 1) {XJ{XJt {XJ. (JIM!, J2M 2 JM)(J10, J20 JO) 

x 1'0 + H(p - PI - P2» 
1'(1 + iip)r(1 - iipl)r(1 - tip2) 

x (COSh f7T(p + PI + P2) cosh !7T(p - PI - P2) cosh 17T(p + PI - P2) cosh 17T(p - PI + P2»)! 

sinh i7Tp sinh i7TPl sinh !7TP2 

XL r(1+lip+n)n! r(1-tiPl+nl)n1 ! 

nnlndJ + n + 1)! (-J + n)! (Jl + n1 + 1)! (-J1 + n1)! 

1'(1 - iip2 + n2)n2! (n + nl + n2 + 2)! x . 
(J2 + n2 + 1)!(-J2 + n2)! r(!i(p - PI - P2) + n + nl + n2 + i) 

(40) 

In the evaluation of (39) we have assumed the coefficient to be real and positive. 
From the presence of (JlO, J20 I JO) in the above formula, it is clear that the only nonzero CG coefficients are 

the ones with J l + J2 + J = even integer in this special case. 
So far we have made only a partial comparison of (40) with the results of Dolginov9 and Domokos.19 This 

comparison shows that our expressions (38)-(40) agree with their results. 

V. ALTERNATIVE METHOD FOR CALCULATING NUMERICAL VALUES 

For concrete calculations of specific CG coefficients, it may prove advantageous to use a slightly different 
approach. 

So far we have made use of DVP matrices for the SL(2, C) group expressed in terms of hypergeometric 
functions. However, they can also be expressed in terms of elementary functions. Indeed, using an integral 
representation for the hypergeometric function, we have 

vp ~ BVP -aI2d'+.Hv+2+J) (J + J' + 1)! 
DJJ,;,(a) = fa, JJ'}.dd,e (v + A + d + d')! (J + J' - v - A - d - d')! 

x tJ+J'-v-A-d-d'(e-2a + t)-2-J-J'dt. 100 (e-a(1 + t»)-l-J-iiP 

o e-2a + t 

Putting x = e-a(1 + t)/(e-2a + t) and expanding the positive integer powers of (1 - eax) and (x - ea) into 
(finite) binomial series, we obtain (this is a slight modification of the results in Ref. 12c) 

DjJ'}.(a) = L BjJ'}.dd'pqe-alv+.H2d'+p-q-J')(sinh arJ-J'-l sinh a( -J + P + q - tip), (41) 
dd'pq 

where 
_"p (_l)PH-J-J'+2). (J + J' + 1)! B'1J'Add' 

BJJ')'dd'p'1= 2J+J'(_J _ lip + P + q)p!q!(v + A + d + d'- q)!(J + J'- v- A - d - d'- p)! 

Using this D matrix to calculate the CG coefficient, we get immediately 

(VIPI J I M 1 , V2P2J2M21 vpJM)(VIP1J{M{, V2P2J~M~ I vpJ'M')* 

= 6411'3 (JIMl , J2M21 JM)(J{M{, J2M21 J'M') L (JlAl' J2A21 J Al + A2)(J{Al' J~A21 J' Al + 1.2) 
(2J + 1)(2J' + 1) ).1.1.. 

~ ~ -vp -VIPt BV.P. 
x ~ ~ ~ BJJ'At+;'.drJ,'pqBJtJI'Atdtdt'Plql J.J.';'.d.d.',,"o. 

<ld'PfJ<ltdt'PlfJl <I.<I.'Pl'1. 

X Loo e-a[-J'-JI'-J.'+V+Vl+VI+21).1+).I+<I'+dl '+d.')+P+1l 1+".-'1-'11-'1.) 

X (sinh a)-J-J'-JI-Jt'-JI-J2'-1 sinh a( -J + P + q + tip) 

X sinh a( -J1 + PI + ql - tiPl) sinh a( -J2 + P2 + q2 - !ip2) da. (42) 
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The integrals in (42) are, in general, divergent, and in explicit calculations they must be combined in such a 
way that the divergences cancel. 

Using (42), we can calculate one CG coefficient for each set of invariant parameters VIPI' V2P2, and vp. Then, 
as shown in the next paper, this "starting" coefficient and recursion relations allow one to calculate any arbitrary 
CG coefficient corresponding to this set of invariant parameters. 

Let us demonstrate the calculation of a "starting" coefficient with two examples: 

(a) (OpIOO, OP200 I OpOG) 

= 16(27T3)! ( [00 sin tpa sin tpla sin tp2a da)! 

(PPIP2)! Jo sinh a 

87T2 ( sinh f7TP sinh f7TPI sinh f7TP2 )! 
= (PPIP2)! cosh t7T(p + PI + P2) cosh t7T(p - PI - P2) cosh !7T(p + PI - P2) cosh !7T(p - PI + P2) , 

(43) 

agreeing with (39), obtained previously by a different method. 
(b) A less trivial CG coefficient which can be computed by performing tedious, though elementary calcu

lations is 

or 

(tpIH, tp2t -f IOpOO) 

2 ( (p + PI + P2)(P - PI - P2) sinh !7Tp cosh f7TPI cosh f7TP2 )! 
= 47T 2 2 • 

p( 1 + PI)( 1 + P2) sinh !7T(p + PI + P2) sinh !7T(p - PI - P2) cosh !7T(p + PI - P2) cosh t7T(p - PI + P2) 

(44) 

In both cases we have chosen the CG coefficients to be real and positive. 
Incidentally, the coupling of representation v = t and P = 0 is of special interest, since this and the repre

sentation v = 0 with P = fi, belonging to the supplementary series, are the only unitary irreducible representa
tions of the SL(2, C) group, for which the basis functions satisfy an invariant wave equationI6 (these are the 
Majorana representations). 

VI. CONCLUSIONS 

We have considered the problem of the CG coeffi
cients for the SL(2, C) group and have obtained a 
general expression for these coefficients for the princi
pal series representations. The merit of our derivation 
is that it generalizes to other series and other locally 
compact groups. We have been able to achieve it 
through the knowledge of the matrix elements of the 
irreducible representations. Previous attempts by 
Dolginov et al. for calculating special cases were based 
on the use of recursion relations and the observation 
that Fano functions satisfied the same recursion 
relations. Effectively, this was an analytic continua-

tion approach. (In the next paper, we arrive at some 
concrete results on analytic continuation from the 
finite- to the infinite-dimensional case.) 

Our methods can be generalized to the calculation 
of CG coefficients in cases where multiplicity appears. 
Also, one might apply them for the couplings between 
principal and supplementary, supplementary and 
supplementary, or unitary and finite-dimensional 
nonunitary representations. 

In the next paper, we shall discuss a set of recursion 
relations which suffice, after calculating one "starting" 
coefficient by the methods of this paper, for any set of 
invariant parameters VIPl' V2P2' and Vp, to determine 
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any arbitrary coefficient corresponding to this set. 
Further, the implications of this result for the possi
bility of analytically continuing the CG coefficient 
for the coupling of finite-dimensional representations 
to those for the infinite-dimensional case will be 
discussed. 
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Recursion and symmetry relations are obtained for the Clebsch-Gordan coefficients associated with 
the coupling of two SL(2, C) principal-series representations. An explicit procedure based on the recur
sion relations which are not restricted to the case of principal-series representations is given for generating 
a set of coefficients from a single "initial" coefficient. A program for the study of a possible connection, 
through analytic continuation, between the coupling coefficients for finite-dimensional representations 
and those for the infinite-dimensional case is presented. 

I. INTRODUCTION 

In this paper we extend our treatment of the deter
mination of the Clebsch-Gordan (CG) coefficients 
associated with the coupling of two SL(2, C) principal
series repr~sentations. In our previous paper1 we 
derived a general expression (convergent infinite 
series) for these coefficients and presented a feasible 
method for calculating in closed form several coeffi
cients for a given set of invariant parameters. Each 
set of invariant parameters corresponds to one 
irreducible representation in the decomposition of a 
tensor-product representation. Here, we shall derive 
a set of recursion relations (RR) for these coefficients 
such that given one "initial" coefficient we can 
generate in a simple manner all others for a given set 
of invariant parameters. As will be evident by the 
method of derivation, this result is not restricted only 
to the case of principal-series representations. Further, 
we shall use the integral representation of the CG 
coefficients in terms of SL(2, C) transformation 
matrix elements in order to determine some symmetry 
properties of these coefficients. Finally, we shall 
outline a future program dealing with the possible 
connection through analytic continuation of the 
CG coefficients for the coupling of two finite-dimen
sional representations to those for the infinite
dimensional case. 

II. REVIEW 

We shall consider irreducible unitary representa
tions of the principal series operating in the Hilbert 
space C2(Z, z) = C2(R2) of all functions fez, z), 
satisfying the condition 

JI!(Z, z)1 2 dz di < 00, (1) 

where dz dz = dx dy. Following Naimark,2 we shall 
label the representations by an integer or half
integer number v and a real number p and, henceforth, 

suppressing z III the notation, choose a canonical 
basis PJM(Z) in C2(Z) , with 'JI ~ J < 00 and -J ~ 
M ~ J, such that the infinitesimal operators of 
SL(2, C) operate on!JlI1(z) in a prescribed manner: 

H,J}~I(Z) = [J(J + 1)]1 

x (JM, l,u I J M + ,u)!il';I+,lz), (2) 

F,Jill1(z) = - ~ R.i~( _1)k 
k 

x (JM, l,u I J + k M + ,u)!J+kM+iz). 
(3) 

Here ,u and k attain the values -1, 0, 1, and we have 

H_1 = 2-!(iAl + A 2), Ho = iA3' 

HH = -2-!(iAl - A2), 

F_1 = 2-1(iBl + B2), Fo = iB3' 

FH = -2-!(iBl - B2), 

where Ai and Bi are the rotation and pure Lorentz 
generators as defined in Ref. 2. The quantities 
(JM, l,u I J + k, M +,u) are CG coefficients of 
the 0(3) group and 

RvpJ = !( __ J_)1 RvpJ, RvPJ = vp 
J-1 2 2J - 1 J 2[J(J + 1)]1 ' 

R vpJ = !( J + 1 )1 RvpJ+1, (4) 
JH 2 2J + 3 

RvpJ = _ 2i [(f _ V
2)(J2 + !l)]1. 

J 

The normalization of the basis functions is such that 

Jrf.M,(Z)!J1If(Z) dz = ~J'J~1If'1If' (5) 

Now let us consider the tensor product of two 
irreducible unitary representations of the principal 
series YVIPI and YV2P2 realized in the Hilbert spaces 
C2(Zl) and C2(Z2)' spanned by the sets of canonical 
basis vectors /"},/11I(Zl) and f"Ji.f12(Z2), respectively. 

1059 
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Naimark shows3 that the decomposition of the tensor 
product TVIP' 0 pIPS has the following form: 

TVIPI @ TVap, = ~ L: T"P dft(p) , (6) 

where the summation extends over all v's such that 

v + VI + V2 = nonnegative integer. (7) 

For the tensor-product space C = q @ C~, we can 
construct two sets of orthogonal basis vectors. The 
first one is an orthonormal basis consisting of the set 
of all products of the original basis vectors, one 
factor from each component space: 

j VIPI ( )jVIPI ( ) (8) 
JIMI ZI JIM, Z2 • 

The second one is an orthogonal basis which spans 
the tensor-product space but lies in the space of all 
continuous linear functions3 

JVP. VIPI. V2P"(Z z) 
JM 1, 2, (9) 

which we normalize in the following manner: 

fj~~~~PIV2PI(ZI' Z2)jY;JPIV2P'(ZI, Z2) dZI dZ2 

b(p' - p) 
= 2 2 ~v'v~J'J~M'M' (10) 

4v + p 

where we introduce the Plancherel measure 4v2 + p2. 

The two sets of basis vectors (8) and (9) are related 
by the formula 

C() C() J, J, 

/::;jP,
V
2P1

(ZI' Z2) = I I I I 
JI=VI J.=v. Ml=-Jl Ms=-J. 

X (VIPlJIM I , v2P2J2M21 vpJM) 

X j VIPl ( )jV 3P2 ( ) (11) J,MI ZI JIM2 Z2 , 

which serves as the definition of the CG coefficients 
for the homogeneous Lorentz group. 

A calculation of the norm of each side of (11) 
[using (5) and (lO)] yields the orthogonality relations 
for the CG coefficientsl 

I (VlPlJIM1 , V2P2J2M 21 vpJM) 
JiJs 
MIM, 

x (V1P1J1M l , V2P2J2M2! v'p'J'M') 

~(p - p') 
= 2 2 ~vv,,jJJ,,jMM" (12) 

4v + P 

The inverse formula to (11) is 

j YIPI ( )f YIP> ( ) 
JIMI ZI J.M, Z2 

= ~ L: (p2 + 4v
2

) dp 

x I (VIPIJ IM I' V2P2J2M2! vpJM) 
JM 

which can easily be verified by substituting (13) into 
the right-hand side of (11) and applying (12). Con
versely, a substitution of (11) into the right-hand side 
of (13) yields the completeness relation for the CG 
coefficientsl : 

x (VIPIJ{M{, v2p2J~M21 vpJM) 

= ,jJIJI,,jJ.J.'~MIMI'~M.M." (14) 

In (13) and (14) the summation is over all V satisfying 
(7). 

III. RECURSION RELATIONS FOR THE 
CG COEFFICIENTS 

A. Derivation of Recursion Relations 

The action of the generators H,.. and F,.. of the 
SL(2, C) group on an arbitrary canonical basis 
vector is given by (2) and (3), and these can be used 
to obtain recursion relations (RR) for the CG 
coefficients. The procedure is to apply H,.. and F,.. 
separately to Eq. (13), then to expand the left-hand 
side of the result in terms of the irreducible basis by 
using (13) again. The RR can now be read off by 
equating the coefficients of the orthonormal basis 
functions. This procedure applied to the generators 
H,.. of the SU(2) subgroup gives the recursion relation 
for the CG coefficients of SU(2). This proves that the 
CG coefficient of the SL(2, C) group can be factorized 
as 

(VIPIJIMI' v2P2J2M21 vpJM) 

= (JIMl' J2M21 JM)X(VIPIJI' 'V2Pa12, vpJ), (15) 

where (JIMl' J2M21 JM) is an SU(2) CG coefficient. 
Applying the above procedure to the generators 

F,.., we obtain an RR for X (VIPIJI, 'V2PaJ2' vpJ) and, 
taking the complex conjugate of all terms, we obtain 

I RjJ+k(J + k M, 1ft I J M + ft) 
k=-1.0.1 

X (JIMl' J2M21 J + k M) 

x X(VlPIJ l' V2P2J 2, VP J + k) 

= ! [R'1:'~:I(JIMl' 1ft I J l + k Ml + ft) 
k=-1.0.1 

X (J 1 + k M 1 + ft, J 2M 21 J M + ft) 
X X(VIPI J 1 + k, V2PaJa, vpJ) 

+ R1:~~3(J2M2' 1ft! J 2 + k M2 + ft) 
X (JIMl' J 2 + k M2 + ft! J M + ft) 
X X(VIP1Jl , V2P2 J2 + k, vpJ)], (16) 

(13) where the coefficients R1:!x are defined by (4). 



                                                                                                                                    

RECURSION AND SYMMETRY RELATIONS FOR SL(2, C) 1061 

In the above equation the variable I' takes the 
va,lues -1, 0, 1. In order to derive recursion relations 
which can be used practically, we first eliminate the 
M-dependence. We multiply both sides of (16) by 
(JIMl' JaMal J + I M) and sum over M1, Ma, 
keeping M fixed. Cancelling the factor 

(J + 1M, 11'1 J M + 1') 

we arrive at 

- ~ [(_I)k+lRV1P1J1 U(IJ JJ . J + k J + I) - k Jl+k 1 2, 1 
k=-l.O.l 

with I = -1, 0, 1 and 

U(abed; ef) = [(2e + 1)(2/ + 1)]lW(abed; ef), 

where the W's are the Racah coefficients. 
In exactly the same fashion we can also derive 

= I [( -1)k+IRjJ+kU(IJJ1J 2 ; J + k J1 + I) 
k=-l.O.1 

X X(VIPIJl' VaPaJ2' VP J + k) 

+ (-ltR1:~~IU(lJ2JIJ;J2 + kJ1 + I) 

and 

R1:!'{IX(VIPIJI, VaPa J2 + I, vpJ) 

= I [(_I)IRj:~;lU(IJIJ,.J; JI + kJ2 + I) 
k=-I.O.I 

x X(VIPI J I + k, 'JI2PaJa, vpJ) 

+ RjJ+kU(I{JaJ1; J + k J 2 + I) 
X X(VIP1JI , 'JIaPaJ2' vp J + k)]. (17c) 

The U's appearing in Eqs. (17) are known in closed 
form.4 Recursion relations of type (l7a) for the 
special case VI = 'JI2 = V = 0 were already derived in 
Ref. 5. 

Putting I = 0 in (17a) and bearing in mind that 
U(abed; ef) = 0 unless (abe), (ede) , (aef), and (bdf) 
satisfy triangular relations, we obtain 

X(VIP1J1, v2pa1a, vpJ) = 0, (JI , Ja, J) nontriangular. 

(I 8) 

The recursion relations (17) are in a simple and 
elegant form which is useful for studying general 
properties of the CG coefficients; in particular, we 
plan to use them for a study of the analytic structure. 
However, they involve increases in at least two of the 
J's simultaneously, so that they are not convenient 
for practical applications. 

B. Simplification and Discussion of the 
Recursion Relations 

We shall now proceed to obtain three RR's in 
which only J, J1, or J2 , respectively, increases. For 
instance, let us eliminate JI + 1 and J2 + 1. To do 
this, take (17b) for I = 0 and I = -1. These two 
equations do not contain J1 + 1 and using them 
together we can eliminate J2 + 1. Substituting the 
explicit values of the Racah coefficients (e.g., using 
Ref. 4) into the equation obtained, we obtain after 
simple but tedious algebraic calculations 

R vpJ+1 

21 + 1 [(J + J I + J2 + 2)(J + J1 + J2 + 1)(J + JI - J2 + 1)(J - J1 + J2 + 1)]1 

x X(VIP1J1 , VaP2J2, vpJ + 1) 

= [(J + J1 + J a + 1)(-J + J1 + Ja)]l(VP(Jl 
- J2) + V2P2 _ VIPI)X(VIPIJI' VaP2J 2 vpJ) 

J(J + 1) J2 J I ' 

RvpJ 

+ 2J + 1 [(J + JI - Ja)(J - J1 + Ja)( -J + J1 + J a + 1)( -J + J1 + J2)]lX(VIPIJI , vapa12, vp J ..... 1) 

+ RV1P1Jl(211 + 1)(J - J1 + J2 + l)(J + JI - J2»)tX ( J _ 1 J J) 
2J

1 
_ 1 VIPI I ,V2Pa it vp 

+ RVIPIJI(212 + l)(J + J1 - Ja + 1)(J - JI + Ja),tX ( J J 1 J) 
21

2
-1 J VIPI I,VaP,. a- ,'JIP . (19a) 
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Similarly, using (17c) for I = 0 and I = -1, we eliminate the function X('''lPlJl , 'JI2P~2' 'liP J + 1) and obtain 

RVIPIJl+l(J + Jl + J2 + 2)(J + J1 + J2 + 1)(-J + J1 + J2 + l)(J + J1 - J2 + 1»)t 
(211 + 1)(211 + 3) 

X X('JI1Pl J1 + 1, 'JI2P2J2, 'JIpJ) 

= -[(J + J1 + J2 + 1)(J - J1 + J2)]t('JIP - 'JI1Pl(J - J2) - 'JI2P2)X('JIlPlJl' 'JI2P2J2' 'JIpJ) 
J J1(J1 + 1) J2 

+ WPJ[(J + Jl - J2)( -J + Jl + J2 + l)]tX('JIlPIJl' 'JI2P2J2, 'liP J - 1) 

+ RVIPIJI (J + J1 - J2)(J - J1 + J2 + l)(J - J1 + J2)( -J + J1 + J2»)t X( 
(2J

l 
+ 1)(2J

l 
_ 1) 'JIlPl J1 - 1, 'JI2P2J2' 'JIpJ) 

_ RV2PIJ2(2J2 + 1)(J + J1 - J2 + 1)( -J + Jl + J2»)tX( J J 1 J) (19b) 
2J

2
-1 'JIlPI 1,'JI2P2 2- ,'liP 

and, using (17a), we eliminate the function X('JI1P1 Jl + 1, 'JI2P2J2, 'JIpJ) to obtain 

RV2P2J!+1(J + J1 + J 2 + 2)(J + J1 + J2 + 1)(J - J1 + J2 + 1)(-J + J1 + J 2 + 1»)t 
(2J2 + 1)(212 + 3) 

X X('JI1PIJl' 'JI2P2J2 + 1, 'JIpJ) 

= [(J + J1 + J2 + 1)(J + J1 - J2)]t('JIP - '111 PI - (J - Jl)'JI2P2)X('JI1PIJl' 'JI2P2J2, 'JIpJ) 
J J1 J 2(J2 + 1) 

+ RvpJ[(J - J1 + J2)( -J + J1 + J2 + 1)JtX('JI1PIJl' 'JI2P2J2, 'liP J - 1) 

_ RVIPIJI (2J1 + 1)(J - J1 + J2 + 1)( -J + J1 + J2»)\( J _ 1 J J) 
2J

1 
_ 1 '111 PI 1 ,'JI2P2 2, 'liP 

+ RV2paJa(J + Jl - J2 + 1)(J + J1 - J2)(J - J1 + J2)( -J + J1 + J2»)t ( 
(212 + 1)(2J

2 
_ 1) X 'JI1PIJl, 'JI2P2 J2 - 1, 'JIpJ). 

Equation (19a) is valid whenever the triad (JIJ2J) 
forms a triangle. However, it is useful only when 
(J1J2 J + 1) also forms a triangle, since otherwise 
both sides of the equation vanish identically. If it is 
applicable, one can utilize it for calculating an X 
with larger J in terms of those with smaller J's. We 
can apply the same consideration to Eqs. (19b) and 
(19c). The only case when none of the equations 
(19) will work is if (J1J~) forms a triangle but none 
of the triads (Jl - 1 J2J), (Jl J2 - 1 J), or (JlJ2 J - 1) 
do. It is easy to check that this is only possible if the 
equations 

are satisfied simultaneously. This is only possible if 
one of the J's is zero and the other two are equal to 
each other. 

Thus, the only CG coefficients which we are not 
able to express in terms of those with lower values of 
the J's are coefficients of the type 

(21) 

(19c) 

Fortunately, however, we can find other RR's which 
involve just these coefficients. 

Let us return to Eq. (17a) and consider it for I = 1, 
J = 0, and'll = 0 [we have not so far utilized Eqs. (17) 
for I = 1]. For J2 = J1 , since U(IOJJ; lJ) = 1, this 
immediately leads to 

and, since 

U(lJOJ ± I;J ± 11) = U(I J ± 1 OJ;Jl) = 1, 

we obtain for J2 = J1 + 1 

(23) 
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and for J2 = J1 - 1 

ROpl X(VIPIJI' V2P2 J 1 - I,Opl) 

I( RYIPsJt = J 1 1 X(VIPIJ1' V2P2Jl' OpO) 
(2J 1 + 1) 

RYIPIJt ') + 1 X(V1P1 J 1 - 1, V2P2 J1 - I,OpO) . 
(2J1 - 1) 

(24) 

Substituting Eqs. (22)-(24) in (19c) with v = 0, 
J1 = J2, J = 1 and simplifying, we find 

2(J1 + 1) RYIPl Jl+1RY2P2 J , +1 

[(2J1 + 1)(2J1 + 3)]t 

X X(VIPI J 1 + 1, V2P2 J 1 + 1, OpO) 

= (8J~ + 8J1 + 4 - 4v~ - 4v~ 
_ p2 + p2 + 2 _ 2 V1PIV2P2 ) 

1 P2 J1(J1 + 1) 

X X(V1PIJ1' V2P2Jl' OpO) 

2J1 RV,P,J'R V2P2Jt 

[(2J1 - 1)(2J1 + 1)]1 

X X(VIPI J1 - 1, V2P2 J1 - 1,0pO). (2Sa) 

A special case of this relation, namely, with VI = 
'11

2 
= V = 0, was given in Ref. 6. 
For completeness, we also quote below two other 

relations of the above form: 

2(J + 1) RVIPtJ+lRvpJ+1 

2J + 1 
X X(OPI0, V2P2 J + 1, 'liP J + 1) 

= - ( 8J2 + 8J + 4 - 4'112 - 4v~ 

_ 2 + 2 + 2 _ 2 ')J PV2P2 ) 
PI P2 P J(J + 1) 

X X(OpO, V2P2J, vpJ) 

_ ~ R V 2P2J R vvJ 

2J + 1 

X X(OpO, V2P2 J - 1, 'liP J - 1); (2Sb) 

2(J + 1) RVIPIJ+IRvpJ+1 

2J + 1 
X X(VIPI J + 1, OP20, 'liP J + 1) 

= - ( 8J2 + 8J + 4 - 4'112 - 4v~ 

+ 2 _ 2 + 2 _ 2 VIPIVP ) 
PI P2 P J(J + 1) 

x X(VIP1J, OP20, vpJ) 

_ ~ RVIPIJR vpJ 

2J + 1 
X X(VIPI J - 1, OP20, 'lip J - 1). (2Sc) 

The procedure for calculating arbitrary CG coeffi
cients from Eqs. (19) and (25) is now obvious. In view 
of (15), we can restrict our attention to the X functions. 
Starting from a set of coefficients with given ('Ill PI , 
V2P2' 'lip), all of which have the same J1 + J2 + J, 
we utilize Eqs. (19) to raise J1 + J2 + J by alternately 
increasing J, J1 , and J2 , using Eqs. (25) whenever 
necessary. 

Let us introduce the concept of "minimal" CG 
coefficients. For a given set of invariant numbers 
(VIP1' V2P2, 'lip), we can calculate an arbitrary CG 
coefficient in terms of the minimal ones, using only 
Eqs. (19) and (25). We shall now show that the 
"minimal" coefficients can always be expressed in 
terms of a single "initial" CG coefficient. 

Let us make the following remark: The RR's which 
we have derived do not change ,if we change the sign 
of V and p, simultaneously. This, together with the 
fact that an arbitrary CG coefficient can, as will be 
demonstrated below, be expressed in terms of a single 
"initial" one, shows that the coefficients X(V1PIJI' 
')J2P~2' vpJ) and X(V1PIJ1, V2P2J2, -v - pJ) can differ, 
at most, by a factor, independent of the J's. It then 
follows from (11) that 

can differ, if at all, only by a phase factor. This, in 
combination with the results of Naimark3 and 
Mackey,' shows that, at least when considering the 
reduction of the product of two SL(2, C) representa
tions of the principal series, each irreducible repre
sentation appearing in the decomposition of the 
tensor-product representations appears only once. 

C. The "Minimal" CG Coefficients 

Triangular Case 

If the numbers VI' '112, and V satisfy a triangular 
relation, it follows directly from Eqs. (19a) and (25a) 
and from the fact that X(V1PIJ1 , V2P2J2, vpJ) = 0 for 
J < V, J1 < VI or J2 < '112, that all CG coefficients 
can be expressed in terms of a single minimal one, the 
"initial" coefficient 

N ontriangular Case 

In the nontriangular case, we have to specify a 
whole set of minimal coefficients and we shall express 
them directly in terms of a single "initial" one. 

Let us consider separate cases. 
(i) V ~ '112 < VI' VI > V + '112: In this case we have 

X(J1' J2 , J) = 0 if J1 + J2 + J < 2'111 (for brevity 
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we shall sometimes drop the ,,'s and p's in the CO 
coefficient). The minimal coefficients in this case are 

X("I, "2 + k, 'VI - 'V2 - k), O:S; k :s; "1 - "2 - ", 

(27) 

with J1 + J2 + J = 2"1; it is easy to see that (19) 
and (25) will now give any X(J1 , J2 , J) with J1 + 
Ja + J > 2"1 in terms of (27). 

Now let us find a separate RR for the minimal 
coefficients. Take (17b) for I = -1 and X(Jl> J2 , 

J - I) on the left-hand side where X(J1 , J2 , J) is a 
minimal coefficient. Remembering that these coeffi
cients are equal to zero for J1 + J2 + J < 2"1' we 
obtain 

R~J 1 
--[(JI - J2 + J)(J1 - J2 + J -1)] X(J1 ,J'!.,J) 
2J - 1 

= RVIPIJI+I(J1 + )2 - J + 2)(J1 + Jz -) + 1))1 
(2J2 + 1)(2Ja + 3) 

x X(Jl,J2 + I,J - 1). (28) 

This RR can be solved directly, and we obtain all the 
minimal coefficients in terms of the initial one: 

X("lPl"I' "ZP2 "2 + k, "P "1 - "2 - k) 

[

k-l RVpVI-Va-n ( ("2 + t + n)("l - "2 - n) )*1 
= !! RV'P, Vt+1+n (VI - "2 - n -1)(v2 + n + 1) I J 

X X("lPI"t> "2P2"a, "P VI - V2), 

for O:S; k < "1 - "2 -". (29) 

A completely analogous precedure can be applied in 
all other cases and we shall just give the results, 
expressing the minimal coefficients in terms of the 
corresponding initial one. Thus, 

(ii) "2 :s; " < "1, "1 > "2 + ,,: 
X("IPl"l, "2PZ "1 - " - k, "P V + k) 

= [IT RVIPIVl-,-n( (VI - V - n)(" + 1 + n) )!] 
n=O Rvpv+n+l (VI - V - n + 1)('11 + n + 1) 

x X(V1P1V1, V2P2 VI - v, VP'II), 

for O:S; k :s; VI - V2 - 'II; (30) 

(iii) 'II :s; VI < V2, V2 > VI + 'II: 
X(VIPI VI + k, "zPa'V2, VP "2 - "1 - k) 

_ [n RVPV.-Vl-n ( ('112 - VI - n)('IIl + n + i) )*] 
n=O RVIPI vl+n+1 ("2 - "1 - n - l)('III + n + 1) 

x X('IIIPl'lll, V2P2"2, 'liP '112 - '111), 

for O:S; k :s; -VI + V2 - 'II; (31) 

(iv) 'Ill :s; 'II < '112 , "2 > "1 + 'II: 
X("IPl V2 - 'II - k, "IPIV2, "P" + k) 

= [k-l R'lPl V2-
V
-

n
( ("2 - " - n)(v + n +!) )t] !! Rvpv+n+l (V2 - 'II - n + !)(" + n + 1) 

X X(VIP1 "a - ", "2P2V2, vpv), 

for O:S; k :s; -"1 + "2 - V; (32) 

(v) "1 :s; 'V2 < ", " > "1 + "2: 

X(VIPl" - "2 - k, VaP2 V2 + k, vp'II) 

[
k-l R'lPl v-VI-n 

= (_I)k n RV,PBvl+n+l 
n=O 

( 
(v - V2 - n)(v2 + n + i) )!] 

x (v _ V2 - n + 1)(v2 + n + 1) 

X X(VIPI'II - '112, V2P2'112, "pv), 

for O:S; k :s; -VI - '112 +,,; (33) 

(vi) "a :s; VI < ", V > "1 + '112: 

X("IPl 'Ill + k, V2P2 'II - VI - k, vpV) 

[

1:-1 RV.Pt,-vl-n 

= (_I)k n R'lPl'l+n+l 
n=O 

x ( (VI + n + i)(" - VI - n) )*] 
(VI + n + 1)(v - VI - n + !) 

x X(VIPIVl, VaPa V - VI' VP'II), 

for O:S; k :s; -VI - Va + v. (34) 

IV. THE PHASES OF THE CG COEFFICIENTS 

The basis vectors in the product space are chosen 
so that they constitute a canonical basis, i.e., they 
satisfy (2) and (3) and they are normalized according 
to (10). Thus, the over-all phase for each set 
(V1PIV2P2VP) can still be chosen arbitrarily. We shall 
do this in such a manner that all the CG coefficients 
are either real or pure imaginary (see Sec. VI). 

The Triangular Case 

If VI' V2. and V satisfy a triangular relation we choose 
the initial CO coefficient to be real and positive: 

(35) 

The Nontriangular Case 

Let us again consider the separate cases: 

(i) VI> max ('II, Va): We choose both possible 
initial coefficients to be real and positive, i.e., 

X(V1P1'll1, V2PZ VI - 'II, vpV) > 0, 

(36) 
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(ii) 'P2> max ('P, 'PI): Analogously, we choose 

X('P1P1 'P2 - 'P, 'P2P2'P2 , 'Pp'P) > 0, 

X('P1 PI 'PI , 'P2P2'P2, 'PP 'P2 - 'PI) > O. (37) 

(iii) 'P > max ('PI' 'P2): In this case, only one of the 
initial CG coefficients can, in general, be chosen to 
be positive. We choose 

X('P1P1'P1, 'P2P2 'P - 'PI, 'Pp'P) > O. (38) 

Equations (29)-(34) give relations between the phases 
of various minimal coefficients, and the choices were 
made consistently. This is best checked by considering 
the case when the two nonmaximal 'P'S are equal. 
Equations (29)-(34) also determine the phases of all 
the minimal coefficients, namely: 

(a) all the minimal coefficients are real; 
(b) if we have 'PI> max ('P2' 'P) or 'P2 > max ('PI' 'P), 

all the minimal CG coefficients are positive; 
(c) if 'P > max ('P1'P2) and we postulate (38), then 

the other "initial" coefficient satisfies 

phase {X('PIPI v - 'P2' 'P2P2'P2, 'Pp'P)} = (_ly-v
l-vl, 

(39) 
and the minimal coefficients satisfy 

phase {X(V1Pl 'P - 'P2 - k, 'P2P2 'P2 + k, vp'P)} 
= (_ly-vI-V2+k, 

phase {X(V1P1 'PI + k, 'P2P2 'P - 'PI - k, 'Pp'P)} 

= (-1)"'. (40) 

V. REVIEW OF THE RELATION BETWEEN THE 
CG COEFFICIENTS AND THE 0(3,1) TRANS

FORMATION MATRIX ELEMENTS 

Here we shall review some relations between the 
CG coefficients and the D functions which are 
essential for our purposes.1 

The transformation matrix elements for finite 
Lorentz transformations in an angular momentum 
basis D1M J'M,(g) have recently been given by a 
number of authors.s For our purposes, the most 
convenient one is essentially that of Duc and Hieu 
except that we have adopted the canonical angular 
momentum basis as defined by Naimark. For this 
choice, we have the following symmetry properties: 

D-:;:;:'-.(a) = D-:;;j._ia) = D ;;-J2;.(a) = DJ:Jsia). 
(41) 

Note that these properties are simpler than those given 
in Refs. 8c and 9 because oUr D matrices contain an 
additional phase factor such that they transform one 
canonical (Naimark) basis into another. 

Now consider formula (13) and let the Lorentz 
transformation operator Til act on both sides. We 
obtain 

(42) 

Substituting (II) into the right-hand side and com
paring the coefficients multiplying independent basis 
vectors, we obtain 

DV1P1 ( )DviPa ( ) 
Jt'Ml'.JtMl g Ja',Ms'.JaMa g 

= ~ L: (p2 + 4'P2) d P 

x 1 (V1P1J1M1' 'P2P2J2M21 'PpJ M1 + M 2) 
JJ' 

Analogously, acting with Tg on (11) and again 
comparing the coefficients multiplying independent 
basis vectors, we obtain the inverse formula to (43) 

D"J.M'.JM(g) 

= ~L:(4'P2 + p2)dp 

x L 1 ('P1PIJ1M1,'P2P2J2M21'PpJM) 
JIJ.M1MI Jl 'JI' Ml' M2' 

x (VIP1J{M{, 'P2P2J2M2/ 'PpJ'M') 

D
V1P1 . ()D VIP I ( ) (43') X Jl'Ml'.JlMl g Ja'M.',JaMa g , 

Now multiplying (43) by Dv:?~,.;M(g) and inte
grating over the group manifold, we obtain our 
previous result1 

'P1P1J1Ml' 'P2P~2M21 'PpJM) 

x \'P1P1J{M{, 'P2P2J;M; I 'PpJ'M') 

= I dgD1M.J' M,(g)Dj1ik"Jl' Ml,(g)D:;:k •. J.' Ma,(g)· 

(44) 
VI. SYMMETRY RELATIONS FOR THE 

CG COEFFICIENTS 

A. The General Procedure 

In this section we shall give some basic symmetry 
relations for the CG coefficients which follow directly 
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from the group theory. In view of formula (15), we 
can restrict ourselves to the "reduced" CG coefficients, 
i.e., to the functions X(l'lPlJl , V2P2J, vpJ). The rela
tions we shall give are those relating 

X(vlPlJ1, V2P2J2' vpJ), X(V2P~2' V1Pl J l , vpJ), 

X(vpJ, V2P~2' VlPlJl) and X(VlPlJl , vpJ, V2P~2) 

to the original CG coefficient. Other symmetries 
should, of course, also exist; in particular, more 
complicated ones of the type found by ReggelO for 
the 0(3) group. However, no attempt to establish 
them is made in this paper. 

The straightforward procedure that suggests itself 
to prove a symmetry relation between a given X and, 
say, an 2 consists of the following steps: 

(i) We find a substitution for X such that the RR's 
involving X go over into those involving 2; 

(ii) We establish the over-all phase of g depending 
on the group invariants VlPl' V2P2' vp so that it 
agrees with the conventions of Sec. IV; 

(iii) The RR's only determine the CG coefficients 
and, hence, also their symmetries up to a factor 
depending on the group invariants. We determine 
this factor in the symmetry relations using formula 
(44). 

It follows from these remarks and from the phase 
conventions that the symmetry relations can all be 
written in the form 

X(VlPlJ 1, V2P2J 2, vpJ) 
= ( -1 tlJl+aaJ.+aaJ3+/ltVl+P2V2+PV 

X g(V1P1, V2P2, Vp)f(J1J2J)X, (45) 

where the il'S and (3's are real constants and g and f 
are real and positive functions. In agreement with 
the above procedure, we obtain ill, il2, ila, and 
f(JlJ~) from the RR's {3l' {32' and (3 by matching 
the phase conventions for the initial CG coefficients 
and the function g by making use of (44). 

Let us now state the symmetry relations which we 
wish to prove. 

B. The Symmetry Relations 

For brevity, we shall sometimes drop the invariant 
parameters v and p in the X's. An interchange of, e.g., 
Jl and J2 , will, of course, mean a simultaneous inter
change of VIPlJI and V2P~2. 

Case (a) 

Parameters VI' V2, and v satisfy a triangular relation: 

X(V1PlJ1 , V2P2J 2' vpJ) 
= ( _1)Jl+Ja+J+vl+V2+VX(V1PlJl ,V2P2J2' vpJ), (46) 

X(V2P2J 2, Vlf!.lJ l' vpJ) 

= ( -lll+J2+J+Vl+V2+VX(V1PlJ1, V2P2J2, vpJ), (47) 

X(VpJ, VaP2J2, VlPI J 1) 

= (-1l2
-

V2 [(2J + 1)/(2J1 + 1)]* 

X X(V1PJ1,V2P2J2,VpJ), (48) 

X(V1PlJI , vpJ, V2P2J2) 

= (_1)JI-Vl[(2J + 1)/(2J2 + 1)]* 

X X(VIPlJ1,V2P2J2,VpJ). (49) 

Case (b) 

Parameters VI, V2, and v do not satisfy a triangular 
relation. We must again consider three separate cases: 

(i) VI > max (V2' v): 

X(J1, J2, J) = (_1)Jl+Ja+J+2vlX(J
1

, J2, J), (50) 

X(J 2,J1,J) = (_1)Jl+Jz+J+2VlX(J1,J2,J), (51) 

X(J, J2, J l) 

= (_1)J2+V-Vl[(21 + 1)/(211 + l)]*X(JI , J 2 , J), (52) 

X(J1,J,J2) 

= (_I)h-vl[(21 + 1)/(2J2 + l)]iX (Jl' J2, J); (53) 

(ii) V2 > max (VI' V): 

X(J,J2,J1) 

(54) 

(55) 

= (-ll,-V2[(21 + 1)/(2J1 + 1)]*X(Jl' J 2 , J), (56) 

X(J 1,J,J2) 

= (_I)h-vl[(21 + 1)/(2J2 + 1)]iX (J1' J 2 , J); (57) 

(iii) V > max (VI' V2): 

X(J J J) - (_1)Jl+J2+J+2VX(J J J) 1,2, - 1,2,', (58) 

X(J2, J
1

, J) = (_1)J1+J.+J+Vl+V2+VX(Jl,J2,J), (59) 

X(J, J2, J 1) 

= (_1)J2-v+vl[(2J + 1)/(2J1 + 1)]tX(JI,J2 ,J), (60) 

X(JI , J, J2) 

= (-1l1
-

V1 [(2J + 1)/(2J2 + l)]tX(Jl,J2,J). (61) 

c. Proof of the Symmetry Relations 

All the relations (46)-(61) can be proved in a 
completely analogous manner which we shall ex
emplify by the single case (52) (which is one of the 
most involved cases). We proceed in the three steps 
sketched above starting from (45). 
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(a) The substitution 

X(J,J2,J1) 

-+(_1)J2[(2J + 1)/(2J1 + 1)]iX (J1,J2,J) 

converts (17a) into (17b), (17b) into (17a), and (17c) 
into itself. This takes care of (Xl' (X2' (x, and j(J1J2J) 
in (45). 

(b) Formula (44) together with the explicit form1 

of DjlJ2A(a) gives 

IX(V1P1J1, V2P2J2, vpJ)12 

32 3 
= 1T L(J1A1,J2A2!JAl+A2)2 

(2J + 1)2 Al).. 

x LX) sh2a da DjJ).l H.(a)D''XJlAl(a)D J~"J2;'2(a). 
(62) 

Using this equation and the symmetries (41) of the 
D functions, one can easily check that 

IX(vpJ, V2P2J 2, V1P1J 1)12 

= [(2J + 1)/(2J1 + 1)] IX(VIP1J1' V2P2J2, vpJW. 

(63) 
Substituting 

X(J, J 2, J 1) = ( _l)J2+Pl Vl+P,V.+pv 

X [(2J + 1)/(2J1 + 1)]!g(V1P1' V2P2, 'lip) 

X X(J1, J 2 , J) (64) 

into (63), we obtain in this case 

g(V1Pl, V2P2, 'lip) = 1. 

Now let us consider the fJ's. According to (36) and 
(38), we have 

X(VlPlVl , V2P2 VI - V, 'liP'll) > 0, 
and 

X(vpV, V2P2 VI - V, VlPlVl ) > 0. 

Together with (64) this implies 

i.e., 
fJl = -1, fJ2 = 0, fJ = 1. 

This completes the proof of (52). 
Let us note that the symmetry relations of this sec

tion, as well as some further relations, can be proven 
directly using (44) and the phase conventions without 
using the RR's. In particular, it is easy to check 
symmetry relations 

X(V1PIJ 1 , V2P2J2' vpJ) 

= X(VlPlJ1 , V2P2J2' -v -pJ) 

= X(VIPlJ I , -'112 -P2J2' vpJ) 

= X(-VI -PIJI' V2P2J2' vpJ) 

= XC-VI -PlJl' -'112 -pJ2, 'JIpJ), etc. (65) 

VII. SPINOR REPRESENTATIONS AND 
ANALYTIC CONTINUATION 

The RR's presented in Sec. III are applicable to 
all representations of the homogeneous Lorentz 
group and, in particular, to the finite-dimensional 
(nonunitary) representations or the so-called spinor 
representations. We pass between the unitary and 
spinor RR's with the substitutions 

V+!ip - l~k and -v + tip - l~n, 

where k and n are integer of half-integer invariants 
which specify a spinor representation. Thus, the RR's 
for the unitary case are analytic continuations of the 
spinor cases. 

This leads to the important question as to whether 
the unitary CG coefficients can be obtained by "analyt
ically continuing" the known spinor CG coefficients. 
Indeed, they can be expressed in terms of a Fano 
function or 9-J symbol { } as follows11.12 

(kInIJ1M1, k2n2J2M2i knJM) 

= (_1)i(Hn)[(2J1 + 1)(2J2 + 1)(k + 1)(n + I)]! 

Here the conventions of Ref. 13 have been employed. 
We can, for instance, analytically continue the above 
coefficient by defining a ne~ Fano function with 
complex parameters in terms of analytically continued 
Racah or 6-J coefficients, e.g., through the relation 

In the above equation the a's and b's are complex 
while the J's are nonnegative integers and half
integers; thus, the y summation is finite. This con
tinuation can be performed explicitly because a 
Racah coefficient is expressible as a 4F 3 generalized 
hypergeometric function of unit argument,14 which 
may then be analytically continued. The crucial 
question is then whether these analytically continued 
spinor coefficients correspond to the unitary ones. 

We sketch here as an application of the RR's 
derived in this paper an approach to this question. 
It follows from the properties of the RR's that, if 
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one (e.g., spinor CG) coefficient analytically con
tinues to a unitary one, up to a factor of the invariants, 
then all the coefficients do so. More specifically, this 
follows from the two properties that, once a starting 
coefficient is specified, then all others are uniquely 
determined through the RR's and that the RR's for 
the various cases analytically continue into each other. 
This then reduces the problem of analytic continua
tion to the comparison of initial coefficients, and we 
hope to return to this problem in a future publication. 

VIII. RESULTS 

Recursion relations for the CG coefficients have 
been derived and, for any given set of the invariant 
parameters V1PI' V2P2' Vp, all CG coefficients can be 
calculated in terms of one single "initial" coefficient. 
The procedure is as follows: 

(a) Let VI' V2' and V satisfy a triangular relation, 
i.e., IVI - v 2 1 ~ V ~ VI + V2' We choose X(VIPIVI , 

V2P2V2, vpv) as the initial coefficient and use Eqs. 
(19) to raise the values of the J's, making use of Eqs. 
(25). 

(b) If VI' V2, and V are not triangular, the choice 
of the initial coefficients depends on the ordering of 
the v's. For example, for V ~ V2 ~ VI, we choose 
X(V1P1VI , V2P2V2, VP VI - V2) as the initial coefficient, 
introduce a set of "minimal" coefficients X(VIPIVI , 

V2P2 V2 + k, vp VI - V2 - k), with 0 ~ k ~ VI - V2 - V, 

which are expressed in terms of the initial coefficient 
by (29) and then again apply (19) and (25) to raise 
the J's. The procedure is analogous for all other 
orderings of VI' V2, and v. 

Certain phase conventions are introduced for the 
CG coefficients and some symmetry relations are 
established. 

A program is given for the study of a possible 
connection, through analytic continuation, between 
the CG coefficients for the coupling of finite-dimen
sional representations and those for the infinite
dimensional case. 
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For stochastic differential equations arising in physical problems, the objectives, limitations, and 
restrictive assumptions of the various methods are studied and some promising new methods are derived 
which eliminate various limitations and allow treatment of a wide class of applications in physics. 
(Among these, will be an adequate treatment of the propagation of an electromagnetic wave in a random 
continuum or a random d'Alembertian operator without assumptions of "small randomness" and other 
restrictions.) 

1. INTRODUCTION 

Although considerable literature exists on random 
equations, most of it applies to first-order differential 
equations or to equations with constant coefficients, 
with the element of randomness arising from either a 
random forcing function or random boundary con
ditions. These cases are fundamentally simpler than 
the case of stochastic coefficients because of the 
deterministic relationship of the probabilistic or 
statistical properties of the solution to the statistical 
properties of the random quantity. (These cases are 
well covered in a survey by Syskjl and will not be 
discussed here.) Studies of random operators on 
Banach spaces have usually been inapplicable to 
stochastic differential operators. Much of the related 
work in applications (propagation and scattering) 
has minimized the probabilistic aspects using methods 
whose validity is open to question and which are 
generally incorrect (averaging methods, sample
function approach, etc.). Finally, much interesting 
work has been restricted to special processes (white 
noise, etc.), and it would be desirable to consider the 
problem in greater generality. This paper will provide 
a basis for several papers concerned particularly with 
the linear random-operator equations 

where 

y = Je{x}, 

C{y} = x, 

of systems described by the stochastic differential 
equations, and we will make no attempt to discuss the 
numerous possible applications discussed elsewhere. Ii- 7 

Keller has distinguished two methods of solving 
random differential equations of the form Cy = x, 
where the operator C. involves a random parameter IX. 
In the first method, the solution y(r, t, IX) is deter
mined for each value of the random parameter IX. 
Thus, the randomness plays no real role in the process 
offindingy. Then the random nature of the solution is 
considered, and the expectation 

(y) = Ly(r, t, IX)P(IX) dlX 

is computed as a weighting of each specific solution 
with its probability. Higher-order statistics are simi
larly found. This is a sample function approach and is 
generally not valid. In the second method, a direct 
determination is made of the equations satisfied by the 
various moments of the solution. To do this, the equa
tion and a hierarchy derived from it (in a manner to be 
discussed) are averaged. This is also generally incorrect. 
The solution of the averaged equation is not always 
(or even usually) the average solution of the random 
equation. Furthermore, a so-called "closure approxi
mation" is involved which cannot be justified and, in 
actuality, is equivalent to the use of perturbation 
theory to some order in the first place. The first 
method is right in principle but asks too much. It 
involves obtaining a solution first and then obtaining 
the statistics. This is not always possible; in fact, it is 
essentially limited to the case of a first-order equation 

and the ay(t) and x(t) are stochastic processes (SP's). (considered by Tikhonov,8 Adomian,5 Astrom,S and 
The x(t) or x(t, w), where w is an element of a proba- others) since it involves the inversion of a stochastic 
bility space (.0, F, fJ), is to be taken as statisticaIIy matrix. Since only statistical information or ensemble 
independent of the ay(t) or ay(t, w) [although the averages are to be the end result, then elimination of 
ay(t) may be correlated with each other]. This, too, the intermediate step, which requires more than this, 
has been studied by many in the last few years; we should result in a cleaner and more useful method. 
refer particularly to the work of Samuels, I and Samuels The ultimate goal in such problems is the complete 
and Eringen! (cf. also Grenanderf). Some important statistical description of the output y from the statis
matters will not be discussed here, e.g., the stability tical knowledge of the coefficients and the input. 

1069 
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Often, however, it is sufficient to determine less 
complete "statistical measures" in the form of ex
pectation, correlation function, or spectral density. 
(The term "statistical measures" will be rigorously 
defined elsewhere; here, it will be "defined" by ex
ample and will simply stand for the useful quantities 
which can be calculated for a random process.) Of 
course, by the use of various approximations based 
on assumptions of slow variation of parameters, 
small fluctuations, and restricted classes of processes 
(white noise), etc., solutions can be found to a wider 
class of differential equations than the first-order 
equation, so that the statistical properties can be 
determined (e.g., Samuels,2 Chelpanov,lo Kellerll); 
however, we wish to eliminate these restrictions. To 
summarize, then, the first method usually requires the 
iterative approach; as used, it is often invalid. The 
second method involves unsupportable assumptions 
of separability and works only in highly restricted 
(Dirac measure) spaces or within a perturbation
theory framework. Our objective is a method for 
directly determining desired statistical measures of 
the dependent variable without averaging and un
justifiable assumptions. There are two possible ways 
of doing this: The first is a modification of Samuels' 
method and avoids the difficulty in sepanibility; 
the second, a stochastic expansion method suggested 
by Adomian,12 appears promising and some interesting 
results have been obtained. The question asked is 
whether one can find a stochastic Green's function for 
the desired statistical measure of the dependent vari
able analogous to finding a Green's function for an 
ordinary equation. 

Most equations of mathematical physics and engi
neering science are assumed to be in the form 

Lf{x) = sex), 

where L is a deterministic linear operator. (L may be a 
nth - order differential operator or a Hamiltonian 
operator, or the (self-adjoint) Sturm-Liouville oper
ator 

!!'-[P(X)!!.-J - q(x). 
dx dx 

It is usually assumed that to L corresponds an integral 
kernel or Green's function k(x, x') such that 

I(x) = L-1s(x) = L: k(x, x')s(x') dx' 

is the solution. 
The analogous equations for a stochastic operator 

can be written 

or 
Cf(x) = sex) 

f(x) = Jes(x). 

(Ua) 

(Ub) 

Both forms simply show a function being trans
formed into a new function by an operator, but it is 
convenient for both mathematical and physical rea
sons to consider the two equations separately. Equa
tion (Lla) involves a differential operator C and a 
function sex) which may be an ordinary function and 
specifically given, or a random function whose 
statistics are known. (Generalization to random fields 
and partial differential operators follows but will not 
be discussed specifically here. See Refs. 5 and 7.) Then 
the solution f(x) is a random function (stochastic 
process) whose statistics must be found. In the second 
form (Ub), sex) is again given, either as an ordinary 
function if deterministic or through its statistics if 
random. Je is a given random transformation which 
transforms sex) into another random function f(x). 
Je is a known operator, a measurement, or a process
ing of the signal sex) (by a known "black box" Je). 
Je is stochastic by virtue of parameters, one or more of 
which are random, but whose statistics are known to 
the necessary degree. We can consider Je to be a 
"stochastic filter" and the resulting theory a general
ization of ordinary filter theory. 

Ability to treat these two possibilities would give 
us a two-pronged attack on most physical problems, 
in which we would either determine the characteristics 
of the solution to a (stochastic) differential equation, 
or the (statistical) characteristics of the random 
function resulting from a stochastic transformation. 
Since the result in either case is a stochastic process, 
our knowledge of the process will be specified in the 
form of expectations, spectral densities, higher 
moments, or, at most, in a distribution function. 
We will lump these terms together under the term 
"statistical measures" for the process (and use it 
rather than the unsatisfactory term "statistics" used 
above).ls Thus, our objective will be to specify desired 
statistical measures for an output process in terms 
of the known statistical measures of the input process 
and an integral kernel depending upon the operator 
which we then call a "stochastic Green's function." 12 

Now, how do such stochastic or random operator 
equations arise? An operator may be fundamentally 
stochastic so such equations may conform more 
closely to the real problem than a deterministic 
analog. Or, it may simply be useful to assume a 
stochastic nature for C, because it sometimes provides 
more information to investigate a statistical solu
tion of a stochastic operator equation than the corre
sponding deterministic model. Why? Because either 
the deterministic solution is too difficult or too com
plex to specify completely-a differential equation 
which we cannot solve or a many-body problem-or 
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because we want to specify simultaneously an en
semble of possible situations, measurements, or 
deterministic operators. The nature of such problems 
may be clarified by some conceptual examples. 

Suppose we consider the propagation of waves in 
a continuous random medium where we have a linear 
stochastic (partial) differential equation. The coeffi
cients in the equation characterize the propagation 
medium, e.g., by the refractive index n(x), the density 
p(x), the dielectric constaut, etc. Thus, the random 
medium is an ensemble of media each labeled, e.g., 
with an n(x) or n(x, ~) with a probability p(~) for each 
valueY 

The general inhomogeneous term, which we now 
replace with g(x, t), is the source of the waves. It 
may be either random or deterministic. Similar prob
lems arise in the propagation of acoustic waves in a 
turbulent medium, or the statistical mechanics of a 
continuous medium. A number of authors, (e.g., 
Keller,ll Foldy,14 Meecham,15 Twersky16) have con
sidered another type of random medium, one which 
consists of a random distribution of discrete scattering 
objects in a fixed medium in which waves can propa
gate, as in impurities distributed through a solid 
material, the Mie scattering problem or any matter on 
a molecular level. For example, in the molecular 
scattering of light, if we consider the propagation of 
waves in a gas or in air and assume that the molecules 
do not move since the waves pass through so rapidly, 
one could, in principle, determine how the molecules 
scatter the wave from the specified location of all the 
molecules. This is not only too complex, it is also 
wrong! If it was only too complex, we would still hope 
that the observable characteristics of the scattering 
would be found by replacing the actual distribution of 
molecular positions by a random distribution or a 
collection of distributions with a probability attached. 
However, in this case the situation is even more in 
favor of a stochastic solution; the physical situation is 
random, so that a stochastic solution corresponds 
more to the physics. 

Most, if not all, of the equations of physics can be 
viewed as stochastic operator equations in this sense
either because the various parameters are subject to 
random fluctuations, or because of lack of a priori 
knowledge, or because it is simply convenient to view 
an equation as stochastic. As an example of the latter, 
suppose we are making a series of measurements 
where it is impossible to insure that the measurement 
is done in the same way each time. Each particular 
measurement is a deterministic operator; the ensemble 
is a stochastic operator. The flipping of a coin 
conceptually could be solved by knowledge of its 

launch-velocity vector, distribution of metals, and 
environmental influences. In actuality, it cannot be
cause the problem is too complicated and because 
extremely small perturbations in the launch velocity
beyond the control of the experimenter-are sufficient 
to change the result from one to the other of the two 
allowed outcomes. A similar example in engineering 
is a statistical prediction of performance of an ensemble 
of systems which vary from one another in some un
controllable fashion because of production tolerances 
or changes of some parameters of the system. (It is 
interesting to note that such statistical prediction 
sometimes is necessary even for a completely deter
ministic theory due to the finite velocity of propagation 
of physical irtfiuencesY) 

This work is being formulated by the author in the 
context of random operators on algebraic structures in 
a manner consistent with the work of the Prague 
school of probabilists or of Grenander.18 

2. OPERATOR FORMULATION 

Suppose a linear stochastic operator Je"p ... (or Je, 
for brevity) acts upon a random function {x(~, (0), 
£0 E .a}, which we usually write simply as x(~) and 
assume to be statistically known. Assume Je is statis
tically independent of x. Physically, Je may represent 
a filter, a scattering medium, a communication channel, 
or a measurement. ~a), f3a), . . . represent system 
parameters or parameters of the operator Je, at least 
one of which we suppose to be random. Je is then 
determined by the distributions of its parameters and 
represents an ensemble of operators H collectively 
represented by {H} or Je. Writing the stochastic 
equation 

y = Je,,[xJ, 

we see this represents an ensemble of equations 
depending upon the parameter ~ which ranges over an 
appropriate space A, in this case one in which a 
probability density p(oc) is defined. p(~) determines the 
probability of a given value for ~ and, therefore, of the 
corresponding equation of the ensemble. We view Je 
as mapping the random function x into the random 
function y. Conceptually, each H of {H} has an asso
ciated Green's function ha, rJ) which represents the 
response at ~ of the representative system H to a unit 
impulse 6(~ - rJ). Of course, one need never talk of 
6 functions. We can equally well use Stieltjes integra
tions or distributions in the sense of Schwartz. The 
latter approach is particularly interesting and leads 
to stochastic generalized functions or distributions. 
(See, e.g., Appendix 1 in A. M. Yaglom, Theory of 
Stationary Random Functions, translated by R. A. 
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Silverman, Prentice-Hall, Inc., Engelwood CHffs, N. J., 
1962.) Then the response of the H system to an 
input x is ya), where 

y(E) = Hx(E) = i: h(E, l7)x(l7) dl7 

if x is a defined continuous member of the x process 
(i.e., a realization) and H is a causal (physically 
reaHzable) system. This is not a sample-function 
approach. We can view y and x as random functions, 
i.e., output and input of a stochastic filter, and 
h(E, 17) as a random Green's function. For example, if 
e and 17 are the time coordinates t and 7', h(t, 7') = 0 
for t < 7'. 

We define now the autocorrelation of the trans
formed process y = Je(x] by 

RI/al, Ez) = E{yal)y*aZ)}H.", 

or 
~(el' ez) = (yal)y*aZ»H . ." 

where the notation indicates an averaging over both 
ensembles involved. Quite generally the expectation 
value symbols can be moved inside the integral 
(Fubini's theorem). Hence, RI/(El , Ez) is now 

0() 

= f f (hal' l7l)h*(Ez, l7Z)X(l7l)X*(l7Z» d17l drl2. 
-0() 

Recognizing (X(17l)X*(l7Z» as the autocorrelation 
function R",( 171, 17z) of the original process, we can 
separate the integrand into the product of ensemble 
averages for the system and the input by virtue of the 
statistical independence of Je and x. Thus, 

0() 

RI/(e1 , Ez) = f f(h(El' 17l)h*(;z, 17z»Ri17l' 'YJz) d17l dl7z 
-0() 

or, as a convenient general form, 
0() 

RJe.,(E1 , ;z) = f f GJe(El , Ez, 'YJl' 'YJ2)R"('YJI' 'YJz) d17l d17z 
-<i:J 

(2.1) 

i.e., the autocorrelation of the transformed process 
Je(xJ is given generally in the terms of the autocor
relation of the original process x(;) and a kernel 
function-in this case, GJe, which is itself an auto
correlation, depending on the stochastic system :re. 
This kernel function is called the "stochastic Green's 
function." In general, x might be a function of time, 
position, or frequency, and the Green's functions are 
appropriate to the operator. We wi11 discuss the 
representative case where x = x(t) and Je is a ran-

domly time-varying operator which may represent a 
medium of transmission or of scattering, or an ob
servation, experiment, or measurement: 

0() 

RJe.,(t1 , tz) = If GJe(tI' tz , 7'1' 7'z)R",('T1 , 7'z) d'Tl d'TZ· 
-0() 

The limits of integration may be finite in a particular 
problem and may depend on the range of definition 
of the processes involved and on the existence of 
causality and memory. 

We do not expect, of course, to find Green's 
functions for each and every realization, although 
this may be possible in the analysis of assumed mathe
matical models where we may generalize a Green's 
function for a deterministic problem to a stochastic 
Green's function for the corresponding stochastic 
problem.19 Rather, we hope to calculate the stochas
tic Green's function from statistical knowledge which 
would ordinarily be available. We emphasize that we 
do not make a sample-function approach. This is a 
formal relation which occurs generally and which 
suggests an approach directly through the stochastic 
Green's function. If, instead of sample functions or 
realizations, we consider a matrix or state-space 
formulation, the equation y = Jex relates the SP y to 
the SP x and the ha, 17) becomes a random Green's 
function. Taking the correlation of the SP y, we imme
diately obtain the same relationship between corre
lation function of "output" and "input" and the 
identification of the stochastic Green's function for 
that particular statistical measure of input and output 
processes. Details are discussed in Sec. 5. 

Let us now examine some forms of (2.1). Suppose 
x(t) is a stationary SP. Then, 

R.,( 7'1, 7'z) = R.,( 7'1 - 'Tz) ...:. R",( a). 

Suppose the transformation by Je preserves stationarity 
in the transformed process. (In general, it does not, 
but it can under special conditions; we defer these 
questions for now. Precise conditions will be stated in 
a later article.)Then, 

RJe.,(t1 , Iz) = RJe.,(tl - (2) = RJe.,((J). (2.2) 

Consequently, 

RJ(;.",«(J) = f gJe«(J, O')R.,(O') dO', 

where 

gJe«(J, 0') = J d7'(h(t, 'T)h(t + (J, '1' + 0'» (2.3) 

is the stochastic Green's function for the autocor
relation for the stationary case. By appropriate 
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transformation, the spectral density can be found: 

cf),,(J) = f K;re(s,f)cf)",(s) ds, (2.4) 

where2° 

K;re(s,f) = L: da L: d{3e2rriffle-21Ti'''g;re({3, a). 

Expression (2.3) must be satisfied for stationarity 
to hold, i.e., the kernel must not depend on time; so, 
the ensemble average must be time independent, 
which requires that the parameters of Je must at least 
be stationary. A following paper will give necessary 
and sufficient conditions for stationarity under sto
chastic transformation. In general, the spectral density 
does not exist since the output is nonstationary. If Je 
is ergodic, each member of the ensemble gives the 
same time average as every other member, so that 
it may be possible to find a single Green's function 
and, from it, the stochastic Green's function by 
suitable averaging. Thus, 

(h(t, -r)h(t + /3, -r + a» 
= lim J. iT du h(t + u, -r)h*(t + /3 + u, -r + a). 

T .... oo 2T -T 

Since the IX, p, ... enter into the h's, we have more 
explicitly 

lim J. iT du roo dlX 
T-+,r> 2T -T Jo 

x loo df3 ... p(lX)p(f3) ... h(lX, f3, ... , t + U,-r) 

X h*(a., p, ... , t + p + u, -r + a). 

3. PERTURBATION-THEORY APPROACH 

A. Introduction 

Let us suppose21 first that the random variations are 
sufficiently small so corrections to the deterministic 
solution are of low order. Then, perturbation theory 
is useful. Consider a linear operator L depending upon 
a parameter a. which ranges over a measure space or 
set A. Suppose p(a.) is a probability density defined 
over A (or appropriate subsets of A). Then Lil is a 
stochastic operator and we can consider the following 
stochastic equation: 

L,.u = g, 

where, at first, g is a given nonrandom element of the 
linear space. Assuming a unique solution u(a.) for each 
a., we see that the solution depends upon IX. Thus, 
u(a.) is a random solution and p(a.) determines the 
probability density of u(a.). The statistical measure of 
u which is of interest to us is specified to be the 
expectation (u) == SA. u(a.)p(a.) dlX. 

Assume that Lil = C(a., E) depends upon a small 
parameter E and that, for E = 0, L reduces to a deter
ministic operator L. Expanding Lil in powers of E, we 
may write 

L = L + EL1(1X) + E2L2(a.) + O(ES) 
and 

LU(a., E) = g. 

Thus, L is given by the sum of the operator L which 
is deterministic, and Ll and L2 which are random and 
represent stochastic perturbations of the deterministic 
operator L. Suppose, for simplicity, that <t1) = 
(L2) = O. If E = 0, the solution of the resulting deter
ministic equation Lu = g is Uo = L -lg, assuming 
L-l is defined. Now, 

u = Uo - EL-1L1U - E2L-1t 2u + O(E3). 

If we average to get (u), we have quantities like 
(L1U) or (L2U), which ordinarily would not separate 
further since they involve the operator and the depend
ent variable or solution process. However, they do 
now because we have assumed perturbation theory to 
be applicable. Thus, by iteration or successive sub
stitution, U = Uo + EU1 + E2U2 + . .. becomes 

U = Uo - EL-1L1UO + E2L-1(L1L-1L1 - L2)UO + O(E3). 

Taking the expectation, we have 

(u) = Uo + E2L-1(L1L-1L1)UO + O(E3) 

= L-1g(1 + E2L-l(L1L-IL1» + O(E3). 

Equivalently, since Uo = (u) + O(E2), 

(u) = L-1g + E2L-1(L1L-1L1)(U) + O(E3), 

(L - E2(L1L-1L1»(U) = g + O(E3), 

which is given. by KeIlerIl (and also found by 
Adomian22). 

We note it is not necessary that g be deterministic. 
If g is stochastic, L-1g is stochastic and, in taking the 
expectation, we get L-l(g). We find that averages 
involving L1 or L2 and g separate by only the statistical 
independence of Land g. Thus, we need make no 
further assumptions of an artificial nature in an 
attempt to separate (LU) into (L)(U). In general, L 
cannot be assumed to be statistically independent of 
u; but uo = L-lg is deterministic in the first case, so 
that it separates out. And in the second case, L-lg is 
stochastic, but the statistical independence of t and g 
is sufficient for the separations. To see this we proceed 
as follows: 

[L + ELI + E2L2 + O(ES)]U 

= go + Eg1 + E2g2 + O{ES). 
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Let Uo = L-lg0 . Then, 

Lu = go + egl + e2g2 - el:lu - e2
1:2u + 0(e3

), 

U = Uo + eL-l(gl - I:tuo) + e2L-l(g2 - 1:2UO - C1U1). 

Thus, the coefficient of the e term is u1 and the 
coefficient of the e2 term is u2 • We then have 

(u) = Uo + eL-l«gl) - (1:1)UO) 

+ e2L-l«g2) - (1:2)uo - (1:1L-Ig1) 

+ (C1L-lI:1 )UO) 

= L-I(g) - eL-I(C1)L-lgo - e2L-l(C2)L-lgo 
- e2L-l(C1)L-l(gl) - e2L-l(CIL-lC1)L-lgo' 

Combining the second and the fourth terms, we obtain 

(u) = L-l(g) - eL-l(C1)L-l(go + e(gl) + ... ) 
- e2L-l«C2) + (C1L-IC1»L-lgo 

= L-l(g) - e2L-l (C1L-IC1)L-l (g). 

if (C1) = (C2) = 0; this can be simplified further: 

(u) = L-l(g)(1 - e2L-l(1:1L-lI:1» 

or 
(L + e2(C1L-IC1»(u) = (g). 

Without the assumption of statistical independence 
of I: and g, additional terms appear, as Chen23 points 
out, which disappear only if either C1 and 1:2 or gl and 
g2 are zero, which is physically reasonable. However, 
in the case of statistical independence, it is not true 
that there is a coupling term e2L-I(C1)L-l(gl)' This 
term and the 1:1uo part ofu1 = L-l(g1 - 1:1UO) combine 
to give eL-I(1:1)L-I(g) , just as Uo + eL-l(gl) + 
e2L-l(g2) becomes L-l(g). 

The use of the perturbation theory follows from the 
requirement that the random part ofl: be small, which, 
in turn, arises from the need to make only Uo be 
involved in the (I:u) so that it will separate. Thus, we 
have seen that the desired "statistical measure" of u, 
in this case, the mean or expectation value, is given in 
terms of the same statistical measure of g (when g is 
random) and a functional involving only certain 
averages over L. 22 

B. Green's Function Method 

Let24 u = u(x) be a n-component vector function of 
a vector variable x. Then, L, C1 • C2 , ••• are repre
sented by nth-order matrices, each element of which 
is an operator (differential or integral operator). The 
inverse operator L-l is also a nth-order matrix which 
we shall represent as an integral operator. The 
kernel G(x, x') is the Green's matrix defined by 

LG(x, x') = Ib(x - x'), 

where I is the unit matrix and b is the Dirac b. Now, 

in general, 

L-Y(x) = f G(x, x')f(x') dx'. 

We had I:u(x) = g(x), so I: = C(x). Now, the equation 
for (u) derived earlier is written 

L(x)(u(x» + e<c1(x) f G(x, x')C1(x')(u(x'» dX) 

= g(x) + 0(e3
), 

(u(x» = f G(x, X')g(x') dx' 

+ e2f G(x, x'<1:1(X
1

) f G(x', x")C1(x") 

X (u(x"» dX). 

Suppose we do not immediately assume that the 
random part is small and simply assume that we can 
separate the operator into the sum of two operators 
L + R, where L is deterministic and R is random. 
We will later assume that R is zero mean, since the 
random quantity will be assumed to be Gaussian and 
the Gaussian product will be simpler. Now, Cu = g 
becomes 

(L + R)u = g 
or 

(3.1) 

where we assume that L-l is defined. Now, we pro
ceed as before but assume, for simplicity, that gl = 
g2 = 0 and (C2) = 0; i.e., we assume "small random
ness" by letting u = Uo + eUI + e2u2 • Then, we get 

(u) = L-Igo(1 - eL-l(C1) + e2L-l(C1L-IC1», 
the perturbation-theory result. However, suppose we 
simply call L -lg = Uo and let u = Uo - U1 + U2 ••• ; 

i.e., we say nothing about smallness of R. Now, since 

u = Uo - L-IRuo + L-IRul - L-IRu2 ' .. 

= L-lg - L-IRL-lg + L-IRL-IRL-lg . .. , 

(u) = L-lg - L-l(R)L-lg + L-l(RL-IR)L-lg ... 

= L-lg(1 - L-l(R) + L-l(RL-lR) ... ), 

we see that, if R is small, this is the same as perturba
tion theory. However, if it is not and the convergence 
can be established for cases of interest, the results may 
be of interest. Consequently, we will presently examine 
this in much more detail. 

4. HIERARCHY EQUATIONS 

A. Introduction 

This approach,ll which has received considerable 
use in theoretical physics,25 involves obtaining a 
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hierarchy of equations and using some truncation 
procedure (closure approximation) to terminate the 
hierarchy. Thus, given a scalar function U(X) , the 
following stochastic equation is satisfied: 

LU(X) = g(x), (4.1) 

where the stochastic operator L = L", + n(x) and g(x) 
is a deterministic function. Here we assume that L", is 
a deterministic operator; but n(x) is random [so, of 
course, u(x) is random]. If Eq. (4.1) is averaged in an 
attempt to find (u(x», we find that 

Lre(u(x» + (n(x)u(x» = g(x). 

But, in the second term on the left side, n(x) and u(x) 
are not statistically independent and cannot be 
separated for the determination of (u(x». If, to 
determine (n(x)u(x» , we multiply Eq. (4.1) by n(x) 
and average again, we get the term (n(x)L",u(x»; but 
L", does not commute, in general, with n(x). However, 
n(xl ) can commute with Lre; therefore, we multiply by 
n(xl ) and average to get 

L",(n(xl)u(x» + (n(xl)n(x)u(x» = (n(xl»g(X). (4.2) 

If we could solve this for the first term, evaluate the 
result as it approaches Xl = X and substitute back, we 
would get (u(x». Aside from the generally ignored 
question of the validity of letting Xl = x, we find that 
we now need the new moment (n(xl)n(x)u(x»; thus, 
it is necessary to repeat the procedure, multiplying by 
n(x2)' We are led to an infinite set of equations called 
the hierarchy equations for the hierarchy of moments. 
If we want also higher moments of u(x), we proceed 
in the same manner multiplying by U(XI), etc. Thus, 
the solution involves averaging first (which will later 
be shown to be wrong) and an arbitrary truncation 
procedure which has been justified only by its arbitrary 
assumption. 

If, at any level in the hierarchy, the "closure 
approximation" can be made, then the hierarchy can 
be terminated. Thus, if 

(n(xl)n(x)u(x» = (n(xt)n(x»(u(x» 

in (4.2), we can solve for (n(xl)u(X», evaluate at Xl = 
X, and substitute into Eq. (4.1) to "solve" for (u(x», 
assuming L", is a known operator and the initial con
ditions are specified. One other possibility exists but 
appears to be of little physical interest. If there exists 
a very small correlation length for n(x) compared to 
u, i.e., if n is varying very rapidly compared to u, the 
truncation may be justified. However, since a, in a 
sense, is the solution to be found, a priori assumptions 
on its behavior are undesirable. 

The same procedure has been used to get a corre
lation function for U or its higher moments. The 
general case gives the infinite set of equations26•27 

(hierarchy equations) 

L",(u(x)u(xl ) ... u(xj)n(xHl) ... n(xHk» 

+ (n(x)u(x)u(xl ) ... u(xj)n(xHl) ... n(xHk» 

= g(x)(u(xl ) ... u(xj)n(xHk»' j, k = 0, I, 2, .... 

The source term g(x) is assumed to be statistically 
independent of the parameter n(x). We see that an 
infinite set of equations are needed to find all the 
moments, i.e., that any moment involves all the 
moments of higher order and a closure procedure is 
necessary to get a cutoff. Thus, in the kth member of 
the hierarchy, we set 

(n(xt) ... n(xk_l)n(x)u(x» 

'" (n(xl) ... n(xk_l)n(x»(u(x». 

B. Connection to Perturbation Theory 

We set L2 = 0 for simplicity and also assume 
(L l ) = O. Taking g as nonrandom, we have 

LU=g, 

[L + €Ll(OC)]U(oc, €) = g + O(€3). 

The expectation [dropping O(€3)] is 

L(u) + €(LlU) = g. (4.3) 

But (LlU) is unknown and cannot be separated without 
perturbation theory. To see if perturbation theory can 
be avoided, we write, before averaging again, 

Lu + €LlU = g. 

We multiply by L-l 

u + €L-lLlU = L-lg. 

Now we multiply by Ll and average to get an expres
sion for (LlU). Thus, 

(LlU) + €(LlL-lLlU) = (Ll)L-lg = O. 

To avoid going on forever, we assume blindly (closure 
approximation or so-called "local independence") that 

(LlL-lLlU) '" (LlL-lLl)(U). 
Now, 

(LlU) = -€(L1L-lLl)(U), (4.4) 

Substituting Eq. (4.4) into Eq. (4.3), we obtain 

L(u) - €2(LlL-lLI)(U) = g, 

which is the same answer as derived by perturbation 
theory. The significance will be obvious shortly. We 
could go further in the hierarchy, of course, before 
invoking "closure." We can return to the expression 
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for u, multiply by LIL -ILl, and average to get Thus, if we write (assuming the separation) 

(L1L-IL1U) + E(LIL-ILIL-ILIU) = 0, L(OC(tl)U(t» + (OC{tl)OC(t»(u(t» = (oc(t1»(g) = 0, 

again separating the second term by assumption into 
(LIL -IL1L -11:1)(U). 

Now, let g be stochastic: 
LU=g, 

[L + ELI + E2C2 + O(E3)]U = g, 

L(u) + E(1:1U) = (g). 

In the perturbation approach, we have 

u = Uo - EL-1L1UO + O{E2). 

If we use this and multiply by L1, we obtain 

L1U = L1UO - EL1L-IC1UO + O(E2), 

(L1U) = (L1)(UO/ - E(L1L-1C1 )(UO) + O(E2) 

= -E(L1L-IL1)(UO) 

= -E(C1L-IL1 )(U). 
Therefore, 

L(u) - E2(L1L-IL1)(U) = (g) + O(E3), 

which is the same as the previous result if L2 = ° and 
(Ll/ = 0. Thus, as Keller has pointed out, when the 
randomness is small, i.e., when the perturbation
theory approach is useful, the average (L1L-IL1U) can 
be written (L1L-IL1 )(U) , and it is not necessary to 
assume it. It works for perturbation theory, but then it 
is not needed. If L is a differential operator, it is 
obviously wrong to assume statistical independence 
of L and its operand u, although it is reasonable to 
assume statistical independence of Land g. 

The hierarchy method has been widely used in 
statistical field physics, both for the linear and non
linear case. In the quantum-mechanical many-body 
problem or in the theory of turbulence:27 nonlinear 
stochastic equations arise. The dynamical equations 
lead to an infinite hierarchy of coupled equations in 
which given ensemble averages are related to succes
sively higher-order terms. This difficulty occurs, as 
Kraichnan27 has pointed out, in the linear case as 
well. The closure approximation (a truncation and 
closure of the hierarchy) is always assumed to find an 
approximation for the desired statistical quantities, 
but the validity or error involved has not been ade
quately discussed. It is interesting to note that, if we 
consider 

[L + oc(t)]u(t) = g, 

and average it to get 

L(u(t» + (oc(t)u(t» = (g), (4.5) 

difficulties arise even in truncating at the next level. 

it follows that 

L(OC(tl)U(t» = - (OC{tl)OC{t»(u(t», 

[it has been assumed that L (or L t ) commutes with 
oc(t1) which is the reason for not multiplying by oc(t)]. 
However, if we then evaluate at tl = t, a commutator 
is neglected. (Furthermore, the separation is not valid 
when tl = t.) Let us first solve the above for (oc(t1)u(t» 
by multiplying by L-1, i.e., 

Now, 

(OC{tl)U(t» = - Lt1(oc(tl)OC(t»(u(t» 

= -(OC(tl)L";-lOC(t»(u(t». 

(oc(t)u(t» = (oc(t1)u(t»tt=t 

= -(IX(t)L;IOC(t»(u(t). (4.6) 

By substituting (4.6), we can rearrange Eq. (4.5) as 
follows: 

(u(t» 

= L-l(g)[l + (oc(t)Lt11X(t»] 

= f/(t - T)(g( T»[ 1 + < lX{t) f/(t - T)IX(T) dT) ] dT 

= ft(t - T)(g(T» [ 1 + ft(t - T)Rit - T) dTJ dT, 

where R« is the correlation function for IX. We observe 
that we have (u) in terms of (g) and an integral kernel 
or stochastic Green's functions.1uo 

t(t - T{ 1 + f/(t - T)R«(t - T) dT]. 

where I and R« are given. • 
Suppose that, instead of multiplying by lX(t1) , we 

solve for u(t) and multiply by oc(t); thus, 

Lu(t) + lX(t)U(t) = g, 

u(t) = L-lg - L-IIX(t)U(t). 

Multiplying by lX(t), we obtain 

oc(t)u(t) = OC(t)L-lg - oc(t)L-1oc(t)u(t), 

and averaging, 

(oc(t)u{t» = - (oc(t)L-1oc(t»(u(t», 

if we assume the separability on the right and a zero 
mean process for u(t). This obviously gives the same 
result as the previous procedure if we substitute back 
into the first averaged equation (4.5). This avoids the 
commutator problem but makes it still less clear why 
the separation can be assumed, since oc(t) cannot be 
said to be statistically independent of u(t). 
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The basic error here is in the averaging. Averaging 
the equation LU = g results in (Cu) = (g). If L = 
L + R, we have L(u) + (Ru) = (g). If C is replaced 
by L, which clearly means throwing away the R so we 
have a simple deterministic equation, then (Cu) be
comes (Lu) = L(u), which can be rewritten (I:) (u). 
The misconception has appeared in the literature that 
the solution of the averaged equation is the expected 
value of the solution of the random equation, which 
we see is true ifC is replaced by L, i.e., if R = O. At the 
next level of the hierarchy, we write 

Lu + Ru = g, (4.7) 

u = L-lg - L-IRu, (4.8) 

(u) = L-l(g) - L-l(Ru). (4.9) 

To evaluate (Ru) in (4.9), we return to (4.8) and 
multiply by R to get 

Ru = RL-lg - RL-IRu, (4.10) 

which we average to get 

(Ru) = (R)L-l(g) - (RL-IRu). (4.11) 

If (R) = 0, 
(Ru) = -(RL-IRu). (4.12) 

Now, just as we replaced L by L in order to separate 
(Cu), we now replace RL-IR by (RL-IR) in the right
hand side of (4.12). Then (Ru) = -(RL-IR)(u). 

Thus, 
(u) = L-l(g) + L-l(RL-lRu) 

becomes 
(u) = L-l(g) + L-l(RL-lR)(u). 

(u) is the solution of the averaged equation with the 
operator RL-IR replaced by its average. We, of course , 
throwaway the random part of RL-IR, just as we 
would throwaway the random part of L if we did this 
at the first stage of the hierarchy. 

It clearly is not true that the averaged equation 
gives the expectation of the solution of the stochastic 
equation since, at both levels of the hierarchy dis
cussed, we have replaced a random operator by a 
deterministic one and, therefore, have lost something. 

[In Ref. 28, p. 14, we see that the replacement of the 
operator by its average should not give the expectation 
(y) since all the terms involving correlation5 of IX 

would be lost.] 
Many treatments of random equations in applica

tions-particularly for waves propagating in a random 
medium-while differing in detail, are essentially 
variations of the hierarchy or perturbation methods 
and, further, involve many questionable and restrictive 
assumptions. The methods which follow remove many 

of the restrictions. Applications based on the present 
discussion will be separately reported. 

5. ITERATIVE METHOD 

A. Introduction 

Suppose we consider29 the stochastic differential 
equation Cy = x, where 

.. dY 

C = Iay(t) ~ 
y=o dt 

and x(t) and the ay(t) are random functions (or 
stochastic processes) whose statistics (statistical meas
ures) are known. It is assumed that x(t; w) is statis
tically independent of the a.(/; w). The objective is to 
determine the stochastic Green's function for the 
desired statistical measure of y, expressed directly in 
terms of the statistics of the coefficients ay(t). Then, 
the solution in a statistical sense will have been ob
tained and we will have avoided asking for a "solution" 
of the stochastic equation, which is then to be used to 
find the statistics. The following is based on the earlier 
work of Samuels2.3 and on a suggestion of Adomian12 

for an approximation method eliminating the unjusti
fiable assumptions of a priori spectral separation or 
the closure approximation. The method is elementary 
in principle but can be extended to partial differential 
equations and random fields. 7 Suppose that L = L + R, 
where L is a deterministic operator and R is a random 
operator. Then, we can write 

Ly = x - Ry. 

To do this, we assume, for example, that 

ay(t) = (ay(!» + IXv(t). 
Thus, 

.. dY 

L = I (ay(t» -
v=o dtY 

and 
.. dV 

R = IlXy(t) ~. 
v=o dt 

Now, writing t(t, T) as the ordinary Green's func
tion corresponding to the deterministic operator L, 
we have 

y = L-1x - C1Ry 

I
t It n d"y(T) 

= t(t, T)X(T) dT - t(t, T) IIX.(T) -,,- dT 
o 0 y=o dT 

n 

+ Ic"cfo.{t). 
,,=0 

For simplicity we will take coefficients in L to be 
constants; t(t, T) is actually t(t - T). The limits are 
a matter of choice. The upper limit can be written 
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IX) as well since the Green's function is zero if t -
T < 0 for a realizable system. The lower limit can be 
- IX) or to depending on the memory involved. Using 
to implies that the earlier values are not significant. 
The rP. are a set of independent solutions of the 
homogeneous equation Ly = 0 and the c. are arbitrary 
constants. This can be written as 

where 

y(t) = F(t) - f k(t, T)Y(T) dT, 

F(t) = f t(t, T)X(T) dT + ~oCvc/>.(t). 
[It is interesting that the first expression is similar 

to that for a closed system with feedback. In the first 
term, t(t, T) is the impulse function of the forward 
loop and, in the second term, k(t, T) is the feedback 
impulse function.] 

Integration by parts of the remaining integral or 
use of Green's formula in terms of the adjoint operator 
yields 

n dV 
k(t, T) = I( -1)" -v ["'v(T)t(t, T)]. 

v=o dT 

The expectation of y is 

(y(t» = (F(t» - f(k(t, T)Y(T» dT. (5.1) 

The difficulties arise in the last term in attempting to 
separate the ensemble average or expectation into the 
product of averages over k and over y, since y is not 
statistically independent of the '" involved in k (i.e., in 
R). It is desirable at this point to avoid the use of a 
priori spectral separation or either explicit or implicit 
assumptions of small amount of randomness in C. 

If we let the random part be small (e.g., if we let 
each coefficient ai = Yi + EOCi and use the same E in a 
perturbation series for y), we can then achieve a 
separation. But without assuming a small random 
part, slow variations, or white noise, we use in the 
place of a perturbation series a simple alternating 
series yet) = Yo - Yl + Y2 - ... ; i.e., 

00 

yet) = I (-I)iyi(t). 
i=O 

This is suggested by the Born expansion and Born 
approximation used in a most important class of 
problems involving continuous eigenvalues-that of 
scattering theory. The state function for an elastic 
scattering problem satisfies the partial differential 
equation 

(V'2 + k 2)tp(r) = U(r )tp(r) 

or, in operator form, 
F[tp(r)] = g(r) == U(r)tp(r). 

By the Green's function method we write 

1p(r) = F-l[g(r)] 

= 1po(r) + f G(r, r')U(r')tp(r') dr', 

where 1po(r) is the solution of the homogeneous 
equation F[1p(r)] = 0 or (V'2 + k2)1po = O. The general 
problem is a difficult one involving the solution of the 
integral equation subject to the boundary conditions 
and the proper asymptotic form for "p at large distances 
from the scattering center. One solves by iteration 
taking "Po as a zeroth approximation and the nth 
approximation from tpn-l in the integrand. If the 
scattering is small, the first approximation is sufficient. 
We will now proceed in the same manner taking F(t) 
as Yo' Thus, Yo is the solution, neglecting R in the 
original equation. For simplicity, we write (alt» = 
av • If the av are constants, t(t, T) = t(t - T). We 
assume the av(t) are zero-mean random processes so 
that ("'v(t» = O. Ifthe OCv are zero, the solution is just 
F(t). We will neglect the homogeneous solution rPv for 
the purposes of this paper. We will not consider 
stability questions here but only stable solutions. We 
now have 

Yo = F(t) = f t(t, T)X(T) dT 

and each successive Yi is given in terms of the preceding 
Yi-l; thus, 

Yi = f k(t, T)Yi_l(T) dT, i = 1,2, .... 

The convergence question is crucial to get more than 
a formal solution and we will return to it. However, 
the immediately interesting point is that the identi
fication of F(t) as the first term and the iterative 
procedure result in the desired separation of ensemble 
averages of the ",' sand y. This is because each term of 
Yi can be worked backward through Yi-l, Yi-':2, to Yo, 
or F(t), which depends only on t(t, T) and on x(t) but 
not on the ",'s. Thus, the assumption of statistical 
independence of C. and x is sufficient, and one does 
not need to invoke separation of Y and the ",'s by 
assuming it a priori or using a "closure" approxima
tion. Further, we get a reversed hierarchy, where each 
term involves the one before it rather than the one 
after it. If the randomness is small, this gives the same 
result as perturbation theory. That is, the perturbation 
expansion accomplishes the same result but is only 
valid if the expansion parameter is small (small 
randomness). If the randomness is not small, the 
number of terms can go to infinity. Before considering 
the matter further, let us see if the procedure appears 
useful for higher moments. We can, e.g., find the 
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correlation function Ritl> t2) = (y(tl)y*(t2» by multi
plying y(tt) and y*(t2) and averaging. Thus, 

Ritl' (2) 

= (y(tt)y*(t2» 

= ([F(tt) - f k(tt, TI)Y(Tt) dT!] 

X [F*(t2) - f k*(t2' T2)y*h) dT2J) 

= (F(tt)F*(t2» - f (k(tl' T1)F*(t2)yh» dTl 

- f(k*(t2, T2)F(tt)y*h» dT2 

+ ff(k(tt, Tt)k*(t2, T2)yh)Y*(T2» dTt dT2. 

Examination of this expression term by term will 
show that all the averages will separate in the manner 
we have discussed when the iteration series is sub
stituted. This is because, each time a Yk is worked 
backward to Yk-t, another k and another integration 
appear. When we get to Yo, statistical independence of 
x and the IX'S allows us to separate the entire average 
into a product of two averages, one over the product 
of all the k's and the other involving only the x, which 
is identified as the autocorrelation of x. Examining 
the expression for R,uCtl' t2) term by term shows that 
the separation always occurs. Thus, the first term is 

(F(tt)F*(tz» = f dT f dol(tt, T)t(t2' a)(x( T)X( a» 

= f dT f dat(tt, T)t(t2' a)R",(T, a). 

The integrand of the second term RlI with the series 
substitution is 

(k(tt, T1)F*(t2)yh» 

= (k(tt, Tt)F*(t2) [YO(T1) - Yt( Tt) + ... J). 
The first term of this is zero, since 

(k(tt, Tl)F*(t2)Yoh» = (k(t1, T1)F*(t2)Fh» 

= (k(t1 , Tl»(F*(t2)Fh» 

=0, 

because (IXv) = o. The second term of the same ex
pression (second term of Ru) is 

(k(tl' Tl)F*(t2)Yl( Tl» 

= < k(t!, T!)F*(t2) J k(Tl' a)F(a) da) 

= f da(k(tl' TI)k(Tt, a»(F*(t2)F(a». 

The third term of the same expression is 

(k(t2, Tl)F*(t2)Y2h» 

= ff(k(tt, Tl)kh, (J)k({J, y»(F*(t2)F(y» d{J dy. 

Thus, it is clear that the separations always occur, but 
successive terms of the kernel will go to higher and 
higher moments even though only the correlation of 
the output is required. Remembering that the terms we 
discussed and the higher moments not explicitly 
shown were for the second term of Rl/' we can write 
down similar expressions by inspection for the third 
term of R", etc. Finally, we consider the last term of 
the expression, 

f f dTt dT2(k(tt, Tl)k*(t2' T2)Y( Tt)Y*( T2» 

= if dTt dT2(k(tl, TI)k*(t2, T2) 

x [YO(Tt) - Ybt) + Y2(Tt) - ... J 
x [ycih) - yih) + Y:(T2) - ... J). 

To shorten the writing, let f dTl f dTz be denoted by 
f dT and k(tt, Tl)k*(t2, T2) = klk2 which results in 

I dT(k1k2Yoh)yrih» - I dT(ktk2Yo(Tt)yi(T2» 

+ I dT(k1k2Yoh)y:h» ... 

- f dT(kl k2Yl( T1)Yci( T2» 

+ f dt(k1k2Yth)yt(T2» - ... , 

all of which separate. Thus, in the general expression 

Ritl' t2) = II GJe(tt, t2, 'ft, 'f2)R.,(TU T2) dTt dT2' 

we can identify and calculate the stochastic Green's 
function GJe as a series of terms involving moments of 
IX. Assumption of stationarity simplifies the expres
sions. If the IXv are assumed to be Gaussian, products 
involving an odd number of k's, like (ktk2ka) , are 
zero. The even product (klk2kak4) involves three 
averages by pairs; thus, 

(klk2kak4) 

= (klk2)(kak4) + (k2ka)(klk4) + (k1ka) (k2k4)· 

The term with 6k's involves 15 averages by pairs, 
etc. However, all of these are given in terms of the 
autocorrelation of the IX, which is known. Thus, the 
output autocorrelation (statistical measure) is given 
in terms of the input autocorrelation and a stochastic 
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Green's function, depending only on the known auto
correlation of oc.(t). 

Of course, the input and the operator need not be 
time dependent. The Green's function can be the 
response for an impulse in time or frequency or 
position depending on the quantities of interest in a 
physical problem. If an explicit expression for G:re is 
written for the Gaussian case, the results should 
correlate with the stochastic Green's function for the 
first-order stochastic differential equation.19 

Further results for the iterative approach will deal 
with the case of a differential operator involving a 
single random coefficient. 

B. Differential Operator with One Random Coefficient 

In the stochastic differential operator 

n dV 
t = Ia,(t)-, 

11=0 dt' 

let all the av(t) be deterministic except one. Because 
it will be easier to show boundedness, we will suppose 
the one random coefficient is ao(t) = (ao(t» + oc(t) 
and assume that the nonrandom coefficients are 
actually constants, so that t(t, T) = t(t - r). The 
random coefficient need not be ao; it can be ai(t) 
where i < n and the same treatment will apply since, 
in (L + R)y = x, 

y = L-1x - L-1Ry 

= Et(t - r)x(T) dr - ft(t - r)Rrfy(r)] dT 

= ft(t - r)x(r) dr - fR; [t(t - r)]y(r) dT 

= Et(t - r)X(T) dT 

_ (t( _1)i d
i 
. [t(t _ T)oclT)]y(r) dT 

10 dT' 

= yo(t) - fk(t, T)Y(T) dT, 

(S.2a) 

(S.2b) 

(S.2c) 

(S.2d) 

(S.2e) 

where only the form of k changes if i ~ O. Expression 
(S.2c) is obtained by use of Green's formula (the 
bilinear concomitant is zero). 

However, we consider the case where aD is random 
as stated. The equation to be considered is, therefore, 
of the form 

[L + oc(t)]y(t) = x(t), 

where L is the deterministic operator and oc(t) and 
x(t) are stochastic processes. We write 

yet) = F(t) - fk(t, T)Y(T) dT, 

where 

F(t) = ft(t, T)X(T) dT. 

Here F(t) properly includes the solutions of the homo
geneous equation, which we have neglected for sim
plicity, t(t, T) is the Green's function for L, and 
k(t, T) = t(t, T)OC(T). We let yet) be given by 

00 

yet) = 2 (-I)iyi(t) 
i=O 

and identify F(t) as Yo' Then, 

yet) = F(t) - fk(t, T)YO(T) dT + Ltk(t, T)Y1(T) dT 

- fk(t, T)Y2(T) dT + ... 

= F(t) - Ek(t, T)F(T) dr 

+ J:dr LTdyk(t, r)k(r, y)F(y) 

- J:dr J: dy f d<1k(t, r)k(T, y)k(y, (1)F(<1) 

+ fdr J: dy J: d<1 50" d;k(t, r)k(r, y) 

x key, (1)k(<1, ~)F(~) - .... 

Taking the expectation, we obtain 

(y(t) = (F(t) - fdr(k(t, r»(F(r» 

+ J:dT f:dY(k(t, r)k(r, y»(F(y» 

- fdr f:dy f d<1(k(t,r)k(r, y)k(y, (1»(F(<1» 

+ fdr fdY fd<1 L"d~ 
x (k(t, r)k(-r, y)k(y, (1)k(<1, ~»(F(m ... , 

where the ensemble averages all separate [assuming 
only the statistical independence of 0( and x, since 
eachYi is expressed in terms oftheprecedingYi_l until 
we get to Yo which is F(t) and which depends only on 
x]. We assume F(t) ~ 0 and have implicitly assumed 
the operator L can be written as the sum of Land R 
and that the Green's function for L exists. Since the 
central limit theorem is so often involved in physical 
applications, it is of interest now to investigate the 
result if O(t) is assumed to be Gaussian. Also, for 
simplicity, let both oc(t) and x(t) be stationary pro
cesses. 
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The assumption that lX{t) is a (zero-mean) Gaussian 
process causes the terms involving the expectation of 
an odd number of k's (or IX'S) above to vanish. Thus, 

(y(t» = fd'rI(t, T)(X(T» 

Let 

and 

+ EdT f:dy J:dM(t, T)t(T, y)t(y, b) 

x (IX(T)IX(Y»(X(<5» 

+ fdT J:dY J:d<5 J:da La dr]t'(t,T)t(T, y) 

x t(y, <5)t(<5, a)t(a, TJ) 

X (IX(T)IX(Y)IX(<5)IX(a»(X(17» + . . . . (5.3) 

(IX(T)IX(y» = Riy - T) 

(1X(7)IX(Y)IX(<5)IX(a» 

=~~-~~0-b)+~0-~~0-~ 
+ R«(a - T)R«(<5 - y) 

because of the Gaussian property. Now, 

(y(t) = fdTt(t, 7)(X(7» 

+ fdT J:dY J:dM(t, T)t(T, y) 

X t(y, <5)Riy - T)(X(<5» 

+ fdT J: dy J: d<5 J: da La dTJt(t, T)t(T, y) 

X t(y, <5)t(<5, a)t(a, TJ) 

X [Riy - T)R«(a - <5) + R«(<5 - T)Ra.Ca - y) 

+ Ria - T)Ri<5 - Y)](X(TJ» + .... 
We now make the following changes of variables: 

In the second term, y - T = ~, dy = d~; in the third 
term, y - 7 = ~,dy = d~; also a - <5 = p; () - Tis 
unchanged; a - y = <5 + p - T - ;, a - T = () + 
p - T, and () - y = () - T - ;. 

With these changes we have 

(y(t» = Edrt(t, T)(X(T» 

+ J:dT frd~ J:+r dM(t, 7) 

X t(T, T + ;)t(T + ~, 6)R(~)(x(6» 

+ EdT frd~ J:Hd6 f6dp L6+
P 

dTJt(t, 7) 

X t(T, T + ~)t(T + ~, <5)t(tJ, <5 + p)t(<5 + P,17) 

X [R(~)R(p) + R(<5 - T)R(<5 + p - T - ~) 

+ R(c5 + p - T)R(<5 - T - ~)](X(1j» + .... 

We note that the first term 

ltdTt(t, T)(X(T» = L-1(t)(x(t» 

by definition of the Green's function t(t, T). 
In the second term, the similar integral 

(s+r 
Jo dM(7 + ~, <5)x(6) 

becomes L-l(T + ~)(X(T + ~» or L-l(T + ~)(x(t» 
since x is stationary. The second term becomes 

fdT f/n-l(~ + 7)t(t, T)t(7, 7 + ~)R(~)(x(t» 

= EdTt(t, T)f(7) = rl(t)f(t), 

if we let 

f(T) = frdn-l(~ + T)t(7,7 + ~)R(~)(x(t». 
Therefore, the second term is 

L-1(t) frdn-l(~ + t)t(t, t + ~)R(~)(x(t» 

= L-1(t) fdTL-1(7)t(t, T)R(T - t)(x(t» 

= L-1(t) EdTt(t, T)f(T) 

= r 1(t)L-1(t)L-1(t)R(O)(x(t». 

In the third term, 

(HP Jo d1jt(<5 + p,1j)g(1j) = L-1(<5 + p)g(<5 + p); 

thus, the entire term can be written 

fd7 f/~ J:+sd<5 f/ PL-
1

(<5 + p) 

X t(t, T)t(T, T + ~)t(7 + ~, <5)t(<5, <5 + p) 

x [R(~)R(p) + R(<5 - T)R(<5 + p - T - ~) 

+ R(<5 + p - T)R(<5 - 7 - ~)](x(t». 

Now, the p integration can be written as 

J: dpL-l(p)t(t, T)t(T, T + ~)t(T + g, <5)t(<5, p) 

x [R(~)R(p - <5) + R(~ - T)R(p - T - e) 

+ R(p - 7)R(<5 - 7 - ~)](x(t» 

= f dpt(<5, p)f(p) = L-1(<5)f(<5) 

= rl(<5)L-l(~)t(t, T)t(T, T + ~)t(T + ~, <5) 

X [R(~)R(O) + R(~ - T)R(~ - T - ~) 

+ R(c5 - T)R(~ - 7 - ~)](x(t», 
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where we let p' = p + tJ and dp' = dp (and then drop 
primes). The entire term is 

(tdTJo d; (TH dtJ (above expression) 
Jo -T Jo 

= fdT fTd; J:+; dM(T + ;, tJ)f(tJ) 

= fdT fTd;L-1(T + ;)L-l(T + ;)L\T + ;) 

X t(t, T)t(T, T + ;) 
x [R(;)R(O) + R(;)R(O) + R(;)R(O)](x(t). 

Let T + ; = ~' and d~ = d;' (and then drop primes). 
The above becomes 

fdT J: d;L-1WL1(;)L-1(;)t(t, T)t(T, ;) 

X [R(; - T)R(O) + R(; - T)R(O) 

+ R(; - T)R(O)](x(t) 

= fdTt(t, T)f(T) = L-1(t)f(t) 

= L-1(t) fd;L-1(;)L-1(;)L-1(;)t(t, t)t(t, ;) 

X [R(; - t)R(O) + R(; - t)R(O) 

+ R(; - t)R(O)](x(t) 

= Ll(t) fdU(t, ;)f(;) = L-1(t)L-1(t)f(t) 

= L-1(t)L-\t)L-1(t)L-1(t)L\t) 

X [R(O)R(O) + R(O)R(O) + R(O)R(O)](x(t) 

= 3[L-1(t)]5R2(0)(x(t). 

Therefore, 

(y(t) = Ll(t)(X(t) + [L-1(t)]SR(O)(x(t) 

+ 3[L-l(t)]5R2(0)(X(t) + ... 

= LtdTG(t, T)(X(T), 

where the "stochastic Green's function" for this 
particular "statistical measure," i.e., the expectation or 
mean, is 

G(t, T) = t(t, T)[l + [Ll(T)]2R..(0) 

+ 3[L-1(T)]4R!(0) + .. ']. 
Additional terms can be constructed without difficulty, 
since in Eq. (5.3) it is easy to write the following terms 
by inspection and use the expression in products of 
the correlation function for the expectation of the 
product of six, eight, or more oc's. Then the procedure 
followed above is repeated over two additional inte
grations each time. Actually, the general term30 can 
be found and the problem is easily adapted to machine 

computation. We see that the stochastic Green's 
function is an infinite series beginning with t(t, T) with 
the next term involving a twofold integration, the next a 
fourfold integration, etc. If oc is small enough so that 
R,,(O) is small enough, G(t, T) ---+ tel, T). The result 
here corresponds to the perturbation-theory result for 
the first-order correction since the Gaussian assump
tion does not affect the first correction term. Thus, 
(y) = L-l(X) + L-l(ocL-1oc)L-l(X). However, we are 
not limited to a perturbation result and no nonvalid 
assumptions are incorporated in the separation of 
(Ly) into (L)(y). In operator notation, one can write 
immediately 

[L + x]y = x, 
y = L-1x - L -locy 

= L-IX - L-IOC(yO - YI + Y2 - ... ] 
= L -IX - L -locL -IX 

+ L-IOCL-IOCL-1x - ... , 

(y) = L-l(X) + L-l(ocL-1oc)L-l(X) + ... , 
where as before it is assumed that expectation and 
integration can be interchanged. Thus, the problem 
has become completely elementary. If we assume 
stationarity, this will give us the same result as before 
with the stochastic Green's function G(l, T). Also, if 
L is a constant coefficient operator, t(t, T) is t(t - T); 
however, we wi11leave it in the above form. 

The result for the Gaussian case can now be re
written in the following convenient form: 

+ (tdTl (
T1

dT2 ('2dTS t3dT4t(tI' Tl) Jo Jo Jo Jo 
X t( T1 , T2)t( T2' TS)t( T S ' T4) 

X (OC(Tl)och)och)oc(T4)(F(T4) + . , .. 
The general term is the n-fold integral 

fdT1 J:ldT2 · . . J:"-ldTnt(t, T1)t(Tl' T2)' .. t(Tn_I' Tn) 

X (OC( T1) ... OC( T n)(F( T .. ), 
where n = 0, 2, 4, 6, .... 

Writing OC(Ti) = OCi for convenience, we note that 

(OC1OC2) = R12 , 

(OC11X2 IXaIX4) = R12R34 + RISR24 + R14R23 

or three terms involving two pairs each of six averages. 
Similarly, (OC11X2' .. oc6 ) gives five terms of three pairs 
each or fifteen averages; (OCI ... ocs) gives seven terms 
offour pairs each or twenty-eight averages; (oci ••• IXn) 
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for even n gives n - 1 terms of in pairs each, so that 
th~ number of averages involved is always (;). 

For the general term, (ocl ... ocn ) can be represented 
by eUk ' •• RijRkl ... , where the number of indices 
involved is n and each index varies from 1 to n. The 
symbol e is a number defined to be zero, if any of the 
indices i, j, k, /," . are repeated, and zero, unless 
the second symbol of each pair is greater than the 
first; thus,j > i, I> k, etc., so that they are always in 
the natural order. The symbol e has the value of one
half if none of the above conditions is violated. Thus, 
e123 .. ' = i. The summation rule applies jf any index on 
e and an index on R are the same. Equivalently, e = 1 
and we add the condition that 1= 0 if the R's are 
reversed from the natural ascending order. Thus, 
RIZR34 is nonzero, but R34R12 is zero. This amounts 
then to a commutation pairwise and throwing out of 
terms which are really the same since the internal 
order of ,the oc's or the order of the R's does not 
matter. Now, 

(y(t» = (F(t» + ... + fdTl ... J:"-l dT n 

x I(tl' Tl)/(Tl' T2}' .. I(Tn_l' Tn) 

X eijk ... RijRk! ••. (F( Tn» + ... , 
with n = 2,4, ... , 00. 

We will assume a bounded input x(t) in an interval 
[0, TJ and a time-limited3l stationary stochastic 
process lX(t), by which we mean R vanishes for It I ;;::: T. 
If I(t, 1') is continuous in the interval, it must be 
bounded. Similarly, lX(t) is assumed continuous with 
probability one so that almost all sample functions 
are bounded. The absolute value of the general term 
is less than MlM:M;+ltn/n!, if Ml is the bound for 
x(t), Mz is the bound for IX, and Ma is the bound for I. 

yet) = L-1x(t) - L-1oc(t)y(t) 

= F(t) - L-loc(t)y(t), 

Integration of the n-fold integral 

rt (,"-1 Jo '" Jo dTl ... dT n 

gives tnjn!. 
For finite observation times, the series converges 

since the series for et converges. By placing the bound 
on F(t) rather than x(t), we can combine M z and Ma 
to write not only the general term but also the nth 
partial sum as less than MeM't. Actually, since only 
even values of n occur here rather than all, we have 

M[i(eM't + e-lIf't) - 1] = M[cosh (M't) - 1] 

as the bound. Thus, at t = 0, the bound is zero and 
(y(t» = O. Att = T, the bound is M[cosh (M'T) - 1], 
where M is the bound for X(/) in [0, T]. 

y is not necessarily stationary and we observe that, 
for the non-Gaussian case, the odd terms do not then 
drop out. However, it is easy to see convergence holds. 
Of course, the mean value and the correlation do not 
specify a general random function x(/) uniquely. But 
random functions encountered in physical problems 
are often assumed to be Gaussian, so that all their 
finite-dimensional distribution functions can be as
sumed to be multidimensional Gaussian. Then the 
mean value and the correlation completely specify 1X(t) 
since they determine all distribution functions. 
Stationarity in the strict sense and wide sense do not 
need to be distinguished for Gaussian processes, and 
both the mean and the correlation are finite. The 
higher moments (OC(TI)'" OC(Tn» depend only on 
elements of the covariance matrix (and the mean 
which was assumed zero). That the limit as T -+ 00 of 
R(T) is zero is usually clear from physical considera
tions. 

In the correlation case we proceed as before: 

Ry = (y(t1)y(t2» = ([F(tl) - L-1(tl)OC(t1)y(tl)][F(t2) - L-l(t2)a:(tZ)y(t2)] 

= (F(t1)F(tz» - L -1(t1}(OC(tl)F(t2)y(t1» - L -1(tz)(oc(tz)F(tl)y(t2» + L -1(t1)L-l(tZ) (lX(t1)IX(t2)y(t1)y(t2». 
Let yet) = yo(t) - YI(t) + Y2(t)- ... , where yo(t) = F(t) = L-1x(t); then, 

14 = (F(t1}F(t2» - L-l(t1)(OC(t1)F(t2)[YO(tl) - Yl(1l) + Y2(t1) .. '1> - L-l(t2)(OC(t2)F(tl)[YO(t2) - Yl(t2) 

+ yz(tz)' . '1> + L-1(tl)L-l(t2)(1X(t1)IX(tz)[YO(t1) - Yl(/ l )' • ·J[Yo(tz) - Y1(t2) + .. 'J) 

= (F(t1)F(tz» - L-l(t1)(rx(tl)F(tz)YO(tl» + L-l(tl)(rx(t1)F(tz)Y1(t1» - L-l(t1)(OC(/1)F(tz)YZ(tl» ... 

- L -1 (tz)(oc(tZ)F(tl)YO(tZ» + L -1 (t2)(IX (t2)F(t1)Y1 (t2» 
- L-l(t2)(OC(tz)F(t1)Y2(t2» ... 
+ L -1(t1)L -1 (t2)(rx(t1)1X(t2)yoCtl)yo(/2) > 

- L-l(t])L -1(t2)(OC(t1)OC(t2)[YO(tl)Y1(t2) + YO(t')Y1((1) + ... ]) + L-l(fl)L-l(f2)(oc(tl )IX(tZ)YO(t1)Y2(t2) + .. '). 
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The first term is 

(£(t1)F(t2» = (L -IX (t1)L -IX (tZ» 
= L -1 (/1)L -I(tZ)(X(t1)X(t2». 

The second term is 

-L-l(t1)(O«t1)L -1(t2)X(t2)L-l(t1)X(t1» = o. 
since (0() separates out and is equal to zero. The next 
term is . 

L -I(t1}( 0«t1)F(t2)L -1(/1)0«t1)F( t1» 
or 

L -1(t1)(0«t1)L -1(t1)0«t1) ) (F(t2)F(t1» , etc. 

We see the separations occur, but the labor of calcu
lating terms becomes repellent and the convergence 
question becomes still more complicated. However, 
the solution can be carried out as before. 

6. GENERAL STOCHASTIC OPERATOR 

For stochastic differential operators which are 
completely random rather than a sum of a deter
ministic and a random operator or for calculating 
higher moments, it is still desirable to find other 
methods of proceeding. An attack on this general 
problem was suggested in 1961.19 The method attempts 
to find a stochastic Green's function for the desired 
statistical measure of the dependent variable and is a 
generalization of Green's function theory. Considera
tion of the example19 of a first-order stochastic differ
ential equation as well as the form of the solutions for 
the "random sampling" operator19 suggests that the 
approach is feasible for the general case. The reasons 
for this are clear, even though more work is needed. 
An nth-order differential equation can be given as a 
system of first-order equations and a first-order equa
tion can be solved in the desired form.19 

The general approach has led to determination of 
the power spectral density for a random process which 
is randomly sampled in time according to a probability 
law and to the correlation function of the first-order 
stochastic differential equation (also obtained by 
Tikhonov8). In principle, it should lead to complete 
statistical determination and can be generalized to the 
nonlinear (stochastic) equations calJed "reducible to 
linear" by Pugachev. 

The preliminary work has been discussed previ
ously,S.12 and its extensions will be reported later. 
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We derive the crossing relations for the canonical amplitudes, starting with the case of four particles of 
nonzero rest mass. We give the results for both the center-of-mass- and the Breit-frame amplitudes and 
compare two different points of view.The definition of the "Breit system" is adapted to a unified treat
ment of all the three types of momentum transfer. It is shown that the Breit-frame amplitudes need no 
preliminary adjustments of constraints or the definition of a "generalized" amplitude in the alternative 
point of view. We also show that the usual convention about the continuation of the covariant spinor 
amplitudes involve, for the particles to be crossed, a rotation 1T of the "physical" spin about the direction 
of the continued momentum. The corresponding results for the helicity and the transversity amplitudes 
are derived as corollaries. Finally, we discuss the case of amplitudes involving zero-mass particles and 
some remarks are added concerning the kinematic singularities. The definition of the canonical and the 
transversity amplitudes are compared and some useful Lorentz-transformation formulas are collected 
together. The transformations connecting the center of mass and the Breit frames are parametrized in 
terms of the invariants. The well-known invariant amplitudes for 1TN scattering are used to verify our 
canonical formula. 

1. INTRODUCTION versity ones. Hence, we start by showing, in this paper, 
As a part of a program of a systematic study of that we obtain very simple "diagonalized" crossing 

certain properties and possibilities of direct applica- matrices for the canonical amplitUdes, when the 
tions of the canonical amplitudes, we will derive in scattering plane is chosen to be the (x, y) plane, the 
the following sections their crossing relations using particle spins being projected along the z axis, which 
both the center of mass (c.m.) and the Breit systems. is normal to the scattering plane. 
(We consider only the case of two initial and two Having mentioned this, we should immediately 
final particles.) These results for the canonical ampli. make the necessary distinction between the so-called 
tudes (Appendix A), where one uses space-fixed "transversity" amplitudes for which also the spins 
projections of the physical spins involved, comple- are said to be projected along the normal to the 
ment the study of crossing relations for amplitudes scattering plane (particularly since the present author 
involving body-fixed spin projections, such as helicity has realized from certain discussions that some con
and transversity amplitudes.1- 5 fusion is, unfortunately, apt to arise). The similarities 

Though in this paper we will not carry our study and distinctions between these two amplitudes are 
far enough to include a discussion of the L-S-coupled discussed at length in Appendix A and Sec. 3. Here we 
partial-wave development,S to which the canonical may just mention that when one speaks of projec
amplitudes lead in a natural fashion, we would like tions along the normal, a pertinent question is: What 
to mention that one of our principal aims in studying is it exactly that is being projected? As shown in 
these amplitudes is to display as explicitly as possible Appendix A, a pos~ible source of confusion lies here. 
the physical significances of the orbital angular Again, as is shown in Sec. 3, if, when we transform 
momentum contribution in the L-S-coupling mode. from one amplitude to the other, we also rotate the 
Interesting examples occur when one considers such momentafrom the (x,y) to the (z, x) plane, the coeffi.
aspects as the behavior of the amplitudes at the thresh- cients regroup themselves, giving a direct one-to-one 
olds and pseudothresholds7 and selection rules in proportionality,1° though for the same choice of 
some Regge pole models.s Apart from the above- scattering plane [say, (x,y)planela canonical amplitude 
mentioned and other possibilities of application, corresponds to a somewhat complicated superposi
there is also the agreeable fact that the transformation tion of transversity amplitudes (and vice versa). The 
properties of the physical spin acquire an intuitively factor of proportionality is, however, not trivial, 
appealing and, indeed, visualizable form9 in the since it includes (for the s channel) the scattering 
canonical representation. However, some authors angle Os which, in general, becomes complex when 
seem to be under the impression that systematic continued to the t-channel physical region. (See the 
and convenient crossing properties are prerogatives, remarks in Sec. 5 concerning the effect of this term 
among "physical amplitudes" (as contrasted to on the kinematic singularities). One interest of the 
covariant spinor amplitudes having a less direct above-mentioned relation would be to give directly an 
physical significance), of the helicity and the trans- L-S partial-wave expansion of the transversity 

1085 
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amplitudes (in terms of the canonical series), instead 
of passing via the helicity amplitude and helicity 
coupling, and then trying to decouple and recouple 
the various terms in order to bring out the channel 
spins and the orbital contributions. 

Let us now come back to o,:!r main interest, namely, 
the direct derivation of the canonical crossing rela
tions. We will derive the helicity and the transversity 
crossing matrices (in both the c.m. and Breit systems) 
as corollaries, indicating also their direct derivations 
as a check on the various signs and phases involved. 
The inverse procedure of starting with the helicity 
(or transversity) amplitudes and then deriving from 
them the required results for the canonical case would, 
of course, have been possible. But, in our opinion, 
this would have tended (as will be seen from the 
discussion that follows immediately) to obscure 
certain fundamental features of the problem we wish 
to emphasize. In our derivation (Sec. 2) we have tried 
to display step by step, and as explicitly as possible, 
the consequences of the successive fundamental 
postulates concerning continuation and crossing, in 
terms of the physical canonical amplitudes. l1 There 
are the two following principal aspects of the problem: 

(a) Suppose we start with an s-channel c.m. 
amplitude (P3(f3, P4(f41 T IPI(fI, P2(fz); we want to 
relate it after continuation and crossing to the t
channel c.m. amplitudc<s <P3(f~, PI (f~1 T IP4(f~, Pz(f~) 
(Throughout, we denote the particles to be crossed 
as particles 1 and 4.) The essential point to note is 
that the particle momenta satisfy different constraints 
in the s- and t-channel c.m. amplitudes and that, for 
the results to be consistent, the process of continua
tion itself must not violate the constraints one has 
at the starting point of continuation. 

In the technique we have tried to emphasize (Sec. 
2A), one expresses (using the in variance of the T 
matrix under Lorentz transformations), before starting 
the continuation and using only real transformations, 
the s- and t-channel c.m. amplitudes in terms of 
amplitudes with particle momenta, say P~ and P;, 
respectively, with i = 1, 2, 3, 4, such that -P~'" 
P;", P;", -P:" are, respectively, exactly the same 
function of the invariants sand t as 

(The s and I values for the two sets belong as yet to 
the two distinct physical regions.) 

As will be shown explicitly (Figs. 5-10 and Appen
dix D) Condition I is fulfilled when p; and P;' refer to 
the "Breit frame" 12.13 in the sand t channel, 
respectively. 

However, in the rather particular case when P3 -
Pi = P2 - P4, which gives the momentum exchange, 
is a timelike 4-vector with positive energy (which is 
possible to have for suitable mass values), we can, 
using strictly real tran~formations, satisfy Condition I 
with P;' = Pi' That is, we obtain, transforming only 
the s-channel amplitudes, the typical "I-channel 
constraints" in the sense of Condition I. In fact, this 
is the case we study first in Sec. 2A, since it enables us 
to derive in a relatively simple fashion all the necessary 
final formulas (2.6)-(2.13), which [as will be shown in 
Secs. 2B and 2D, consistency check (iii)] remain 
essentially valid for arbitrary momentum transfer.!4 
In particular, in Sec. 2 we check the consistency of this 
point of view with the one adopted by TW.l 

In this connection, one point must be noted; The 
adjustment of constraints involves in our formalism 
pure Lorentz transformations followed by rotations 
(2.5) and (2.6) or (B12) and (B20) , whereas for TW 
it seems that only a pure Lorentz transformation is 
sufficient to obtain what they call the "generalized 
amplitude," the one to be continued directly. The 
source of this apparent contradiction lies in the 
result (A23), namely, a pure rotation about the y axis 
gives no extra phase factor for the (z,xD -plane helicity 
amplitudes. Indeed, cos oc~ [Eq. (2.16)] corresponding 
to their general amplitude becomes complex when the 
momenta are continued to their final I-channel values. 
Turning the whole t-channel configuration through 
any constant angle about the normal is somewhat 
trivial, but oc~ is a definite function of s and I, involving 
singularities. This has to be re-absorbed through an 
extra rotation as indicated. If the continuation process 
is itself allowed to violate such a constraint, then the 
logical necessity of the pure Lorentz transformation 
itself is no longer evident. The necessity of the rota
tion in question would become apparent even for 
helicity amplitudes, if we start with a scattering plane 
different from (z, x). 

It is, of course, good to know that a p~rticular 
simplification occurs in the (z, x) plane and to profit 
from it, but totally ignoring the logical role of the 
rotation does not seem to be justified. All these 
problems do not arise when we consider the Breit
frame crossing relations, since Condition I is already 
satisfied; hence, no preliminary adjustment or 
"generalization" is necessary. This fact makes the 
Breit-frame crossing relations (2.39), (3.18), and 
(3.19) particularly simple. 

(b) Having adjusted the constraints (necessary for 
the c.m. amplitudes), we have to tackle the problem 
of continuation. For the c.m. amplitudes we have to 
continue both the transformed amplitude and the 
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transformation coefficients [as, for example, the two 
factors on the rhs of (2.6)]. 

First, let us take up the central problem of continua
tion of the amplitude to the t-channel physical region 
(Sec.2C). 

With regard to proofs, it is now usual to refer to 
the field theoretical results of Bros, Epstein, and 
Glaser, 15.5 concerning a certain possible path of 
continuation for the covariant spinor amplitudes 
involving only massive particles, and to the works of 
Hepp and Williams.l5 We will throughout adopt the 
following attitude: We will assume that the covariant 
spinor amplitudes can be continued (without any 
change in the spin indices or the phase) from one 
given point in the s-channel physical region to another 
given point in the t-channel one-not necessarily 
restricting ourselves to points corresponding to space
like momentum transfer and eventually including 
(Sec. 4) amplitudes with zero-mass particles. Without 
trying to specify the path, we will examine the con
sequences of the foregoing postulate for the physical 
canonical amplitudes by expressing them in terms of 
the spinor amplitudes. Equations (2.25) and (2.26) 
give the precise content of this statement. 

The crucial point is that in the transformation 
coefficients (2.21)-(2.23) the sign of the energy is to be 
taken into account in such a way that such coefficients 
be invariant under the substitution Pp. -+ -Pp.. This is 
essential since [see the discussion following (2.34)] the 
canonical states Ip, a) and I-p, a) transform in the 
same way and so do the spinor states Ip, A) and 
I-p, A). This last point can be seen readily on writing 
the generators of the two fundamental spinor repre
sentations as 

Ms = - iP x 1.. + S, ap 
Ns = _iPo~ ± is. ap (Ll) 

Hence, the coefficients that transform one basis into 
another must evidently preserve this property. 

When the sign of the energy is thus taken into 
account [Eq. (2.23)], the coefficient [p]+ continued 
to - P becomes [ - P]+, which is different from 
[-Pl- = [+Pl+· As a consequence of Eqs. (2.27) and 
(2.28), the physical spins (of the particles to be crossed) 
undergo a rotation ±7T (depending on the determination 
of a square root) about the final direction of the 
momentum P. 

When the z axis is normal to the scattering plane, 
this involves [Eq. (2.31)] simply a change of sign 
along with an extra phase factor for the canonical 
spin indices. l6 In our formalism, the continuation of 

the helicity indices (in any plane) involves a phase factor 
(3.13), though a very simple one. This is to be com
pared with the convention of TW.l The simplicity 
of the Breit-frame helicity and transversity crossing 
relations (3.18) and (3.19) is noteworthy. 

So far we have said nothing about the continuation 
of the transformation coefficients. There, however, 
ambiguities may arise only through the different 
possible continuations of certain square roots involved, 
such as J s in lis of (2.37). The example considered in 
(C9)-(CI8) will, it is hoped, suffice to illustrate the 
essential point,17 

In Sec. 4 we introduce "mixed amplitudes" in
volving particles of zero mass. The formalism is based 
on the zero-mass representation studied elsewhere18 

and may be compared with the approach of Ader, 
Capedeville, and Navelet.19 

In Appendix C, we compare our general canonical 
formulas, for the case of "7TN scattering," with 
those obtained through the use of the well-known 
invariant amplitudes. Again, the simplicity of the 
Breit-frame case (C21)-(C23) is to be noted. 

2. CROSSING RELATIONS FOR CANONICAL 
AMPLITUDES 

A. Transformations Leading to I-Channel Constraints 

We start by considering a canonical scattering 
amplitude (see Appendix A) in the s-channel c.m. 
frame, with the z axis perpendicular to the scattering 
plane and with the directions of the momenta Pi' 
i = 1,2,3,4, as shown in Fig. 1. (For the present, we 

'I 

x 

FIG. 1. s-channel (c.m.). 
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'I 

Flo. 2. After Aul ' 

consider only particles of nonzero rest mass. The 
case of zero-mass particles will be taken up in Sec. 4.) 

We propose to express it in terms of an amplitude 
satisfying the "t-channel constraints." As already 
explained, we mean by this that the 4-momenta corre
sponding to the final transformed s-channel amplitude 
(Fig. 3) must satisfy the following condition: _p;", 
p;",p;", -p;", fl = 0, 1,2,3, must be the same func
tions of the invariants sand t and the masses as the 
respective t-channel momenta (Fig. 3) Pi, P:, PC, P: . 
The values of sand t will, of course, correspond to 
different regions for the two sets. 

Thus, we must have, 

P" 
2 

P" 
4 

'I 

p" pit 
I 3 

x 

'I 

----~~------~~-----4~----x 

FlO. 4. ,-channel (c.m.). 

with P; parallel to Pa as indicated. The angle between 
P; and p; is to be (71" - 0;), where 0; is the same func
tion of sand t as the t-channel scattering angle Ot. 

We shall reach configuration 3 (Fig. 3) from 
configuration 1 (Fig. 1) in two steps. Let A(t) be a 
pure Lorentz transformation such that (Appendix Bl) 

A(t) . (P3 - P1) = (.Jt,O) = A(t) . (P2 - P4)' (2.1) 

In general, such a Lorentz transformation is a com
plex one. But let us start by considering a case where 
Pa - P1 is a time/ike 4-vector with positive energy when 
(using the positive determination of Jt) A(t) is a real 
Lorentz transformation. We have 

(P3(f3' P4(f41 T / P1 (f1 , P2(f2) 

= (Pa(fa, P4(f41 A(t~TAct) /P1(f1' P2(f2) 
= (p~(fa, p~(f41 T /P{(f1' P~(f2) e-iCW1(Jl+Wlaa-W8(J8-W,a,), 

(2.2) 

where the Wi' i = 1, 2, 3, 4, are the respective Wigner 
rotations, undergone by the canonical spins around 
the z axis, and 

(2.3) 

The configuration of the p; are shown in Fig. 2. Let 
Ot, be the rotation (in the positive or counterclockwise 
sense) undergone by the momentum Pi under A(t). 

As a consequence of (2.1), we have (counting all 
the rotations in the positive sense) 

Ot3 = (Ot1 - Os), 

Ot4 = (Ot2 - Os)· (2.4) 

(The scattering angle Os is given in Appendix B). The 
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angles IXI and 1X2 may be obtained explicitly from the 
formulas in Appendices A and B. 

Let us now consider the rotation R.( -IXI) leading 
to Fig. 3. We have 

(P~(13' p~(1,1 R;l( -lXl)TRi -1X1) Ip{(1l, P~(12) 

= (P~(13' p;(1,1 T Ip~(1H P~(12) eilal+dS-aa-d')«l. (2.5) 

Hence, from (2.2) and (2.5), we obtain 

(Pa(13' p,(1,1 T IPl(1l, P2(12) 

= (p~aa, p~(1,1 T Ip~(1l' P~(12) ei<p, (2.6) 
where 

lp = -(wlal + W2a2 - Waaa - w,a,) 

+ (0'1 + 0'2 - as - aJ1X1 

= -(xlal - X2a2 - Xaaa + X4a,) - (1X2 - 1X1)a2 

+ (lXa - 1X1)(1a + (IX" - 1X2 + 1X2 - 1X1)a, (2.7) 
and 

Xl = -(IXI - WI), Xa = -(lXa - Wa), 

X2 = +(1X2 - W 2), X, = +(IX, - w,,). (2.8) 

The additional negative signs for Xl and Xa are to 
compensate for the fact that, under A(t) , PI and Pa and, 
hence, the respective canonical spins turn in a negative 
(clockwise) sense, while P2 and p, undergo positive 
rotations. With this definition we can take sin Xi as 
positive for all the i's in a uniform fashion. These 
angles are given by the formulas in Appendices A2 
and B2, and expressed in terms of the invariants, 
they become (in the notation of Appendix B) 

(s + m~ - m~)(t + m~ - m~) + 2m~~ 
cos Xl = - , 

S12 tal 

· 2ml.jcfJ 2 2 2 2 
sm Xl = ---, ~ == m2 + m3 - ml - m" 

S12 tal 

(s + m; - m~)(t + m~ - m!) - 2m:~ 
COSX2 = , 

· 2m2.jcfJ 
SInX2 = ---, 

S12 t42 

S12 t'2 

(s + m; - m!)(t + m~ - mD - 2m;~ 
COSXa = , 

sa"tal 
· 2ma.jcfJ 

smXa = , 
S34tal 

(s + m! - m:)(t + m! - m~) + 2m:~ 
~~=- , 

S34t'2 

· 2m,.jcfJ 
SIn X, =. (2.9) 

S34t"2 

Further, it may be verified that, just as 

(lXa - 1X1) = (IX" - 1X2) = -Os, (2.10) 

so 

(2.11) 

where 0; is obtained from Os given in Appendix B by 
the interchanges 

(2.11') 

This is consistent with the relation implied by Fig. 4, 
namely, 

1X2 + (11" - 0;) + (-IXI ) = 11". (2.12) 

Thus, finally, 

lp = -[(Xl(1l - X2(12 - Xa(1a + X,(1,,) 

+ Os( aa + a,) + 0;«(12 - a,)]. (2.13) 

So far we have been considering a timelike momen
tum transfer, and the transformed momenta and the 
relevant rotation angles have all been real. For space
like momentum transfer, the preceding transforma
tions and the corresponding momenta and rotations 
become complex. For lightlike momentum transfer 
the transformed momenta even become infinite. For the 
spacelike case, we may try to proceed by invoking the 
invariance of the T matrix under complex Lorentz 
transformation and using the corresponding complex 
parameters in (2.2) and (2.5). 

If we want to confine ourselves to real transforma
tions, we may use a different approach, indicated in 
Figs. 5-10. We start by relating the center of mass 
to the Breit frame in both channels. 

To be more precise, in the s channel we use the 
pure Lorentz transformation A(B) (instead of Aw), 

'1 

____ ~~--__ ~,+~~----~----- x 

FIG. S. s-channel (c.m.). 
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where 

with 

y 

FIG. 6. After A(B) • 

pi 
a 

v = (P2 + Pa)2 = s + t + ~, 
11 = m~ + m~ - mi - mi. 

x 

(2.14) 

(2.15) 

Then, instead of R.( -~1) of (2.5) we use R.( -~;) 
corresponding to the rotation undergone by P2 (Fig. 6). 
Similarly, in the t channel we successively use the 
pure Lorentz transformation reducing P2 + Pa to 
rest and then the rotation R.( - (32) (Fig. 9) com
pensating the rotation undergone by P a . 

y 

FIG. 7. After R.(-ott). 

y 

FIG. 8. t-channel (c.m.). 

The explicit expressions for the useful parameters 
corresponding to these transformations are given in 
Appendix B. The result immediately essential for us 
is that, corresponding to the Figs. 7 and 10, -P;", 

If,. If,. If,. d p",. p",. p",. p",. th P2 ' Pa ' -P4 an l' 2' a' 4 are e same 
functions of the invariants sand t for each of the 
indices 1, 2, 3, and 4, respectively (Condition I). If 
we leave out, as we shall do, the extremely particular 
case where P2 and Pa are both light like with parallel 
3-momenta, A(B> and, hence, the rotations that follow 
are always real. 

Thus, we see that, using strictly real transforma
tions, we can reach in both channels frames which 

y 

x 

FIG. 9. After A(B) . 
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y 

x 

FIG. 10. After R.( -fJa)' 

possess the remarkable property that Condition I 
is already built in, no preliminary adjustment being 
necessary. This fact renders the derivation of the 
crossing relation between these channels particularly 
simple in terms of Breit frames for any momentum 
exchange, if we assume the rule for continuation of 
the amplitude (to be discussed in Sec. 2C) to be valid. 

The crossing relations between the s- and t-channel 
c.m. frames can be obtained by passing via the Breit 
frames, again for any momentum exchange. As we 
will verify later on, the result thus obtained for the 
c.m. frames would be the same as that obtained from 
a somewhat different and quite convenient point of 
view, which we will now discuss in the following 
subsection. 

B. Alternative Method: Continuation of Arbitrary 
Real Transformations 

Instead of using A(t) and R.( -OC1) [Eqs. (2.2) and 
(2.5)], we may also start by considering an arbitrary 
(real) pure Lorentz transformation, A, say, followed 
by the rotation R.( - ex), where 

I Pl' (A. PI) 
cos OCI = . 

IpIIIA. PII 
(2.16) 

The next step is to continue the parameters of the 
transformations and, hence, the momenta such that 
at the end of continuation 

(-A· PI> A· P2. A· Pa. -A· P4)contlnued 

= (PI' P2 , Pa, P4.), (2.I7) 

the I-channel c.m. values. 

Our object is to verify that this would give the same 
final result as that obtained by formally writing the 
right-hand side of (2.6) not only for timelike but for 
any momentum transfer [with cp given by (2.1) and 
(2.13)].and then continuing the sand t values to their 
end-point t-channel ones (assuming, of course, that 
such a continuation is possible). This involves the 
continuation of the transformed amplitude and that 
of the transformation coefficient. The necessary rules 
regarding the continuation of the amplitude will be 
given in the next section. But since, concerning this 
point, the same basic convention is to be used in both 
cases (or even if we start from Breit instead of c.m. 
frames), all we need verify is that the transformation 
coefficients obtained in Secs. 2A and 2B match at the 
end of continuation. This is practically evident, but 
still we would like to make it quite explicit. 

From the formulas given in Appendix A2 (and 
utilized in Appendix B) we find the various rotations, 
undergone by the 3-momenta and the respective 
canonical spins, to be given (for a Lorentz trans
formation corresponding to the 4-velocity u", say) in 
terms of p?, (A . Pi)O, and u"o, i = 1,2, 3, 4, and such 
expressions as Ipi x u"l. Since starting from the same 
initial energies we arrive (by definition) after con
tinuation at the same final energies, we need only 
check the last expression. 

In the method of Sec. 2A we start [Eq. (B27)] with 

Ipi x u"l = (PinPfi sin Os) = (~) , (2.18) 
t! (8) 2( st)! (8) 

the subscript indicating that the values of the invari
ants are in the s-channel physical region. In the method 
of Sec. 2B the corresponding expressions can easily 
be seen to reduce (at the end of continuation) to 

I (A • Pi) x (A • PI + A • P2) I 
\ s! continued 

/PIIIP21 sin Ot <pl 
= Sf = 2(st)!' (2.19) 

which is just the continuation of the right-hand side 
of (2.18). As a final check we note that, since in Sec. 
2B the senses of the rotations are to be determined 
at the end of continuation (Fig. 11), we obtain, 
exactly as in Fig. 4, negative rotations about the z 
axis for particles 1 and 3 and positive ones for particles 
2 and 4. Hence, our verification is complete. 

C. Continuation of the Transformed Amplitude 

In terms of the covariant spin or amplitudes (using 
the conventions of Ref. 5 for positive energy), we can 
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y 

FIG. 11. After continuation. 

write the canonical ones as 

where 

and 

Ip, (J). = Ip, A). ~~a([P).)' 

.(p, (JI = .(p, AI ~1a([P).C), 

I 11 Po C = -1 ,E = - = ±1, 
IPol 

[pl. = m + E(PO + p. 't') 
[2m(m + IPo!)]! 

x 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(See the remarks, concerning the foregoing use of E, 

in the Introduction.) Then, factoring out the Wigner 
rotations, we can write Eq. (2.6) as 

(Pa(J3, P4(J41 T IPl(Jl' P2(J2) 

= (P;A3' P~All T Ip~Al' p;A2) 

x ~Sl([pn+)Alal ~S2([P~)+}'ha2 
X ~.~:a.([p~)+C)~1!o)[p~)+C)eiq>. (2.24) 

In the method of Sec. 2B we have an exactly similar 
expression, where p; and cp are given in terms of 
arbitrary parameters to be continued. In any case, 
our postulate concerning the continuation of the trans
formed canonical amplitude can be expressed as 

«P~(J3' p~O',1 T Ip;(Jl' P;O'a»continued 

= (PaA3 , -p,A,1 T I-PIAl' P2A2) 

X ~1~a'<[ -PI]+)~1~al[ +P2)+) 

x ~~:0'3([ +P3]+c)~j:0'.([ -P,]+C) (2.25) 

where the Pi are the final t-channel c.m. values. But, 

[-PJ=l[-PJ+ = [+p]:;:l[_p]+ 

_ m + Po - p. 't' -Po + m - p. 't' 

- [2m(Po + m)]! • [2m( -Po + m)]! 

-p.'t' A .'.1 .. 
= -- = ±iP. 't' = e±tuP'2 

[_P2] , 

(2.27) 

according to the determination of the square root 
chosen. Here the carat denotes the unit vector. Thus, 
for particle 1, we have on the right-hand side of (2.26) 

a rotation (=t=)7T about the direction 1\. [We will use 
the + sign in (2.27) unless otherwise and explicitly 
specified.) 

Similarly, 

C-1
[ - p)=l[ - P]+C = (iP . 't')*, (2.28) 

the complex conjugate of the above rotation. Let us 
note the following alternative forms for eventual 
uses: 

~s(ip. 't') 

= ,])s(cp, 26, -(7T + q?» (2.29) 

= '])s( 7T + cp, 7T - 0, O)'])s(O, 0, 7T) 

x '])S-l( 7T + cp, 7T - 6,0) (2.30) 

= '])8(cp, 7T + 0, O),])s(O, 0, 7T)'])S-\Cp, 7T + 6,0). 

(2.30') 
In particular, for P3 = ° or 0 = !7T, 

'])~'f1( cp, 77, -( 7T + cp» = ( _1)8-rr ei( .. +2q»rrbO',_rr' (2.31) 

= (_l) S ei2q>O'ba ,_,," (2.31') 

Since in the t-channel c.m. system (Fig. 4) CPl = 7T 
and CPI = ot, we finally obtain 

«P3(Ja, P4(J4\ T \PlO'l' P20'2»continued 

= (Pa(J3' -P4 - (J41 T I-PI - 0'1' P2(J2) 
x (_1)Sl-al+8'-0"e-inl-i(,,+26t)a4 . (ei"')Continued' 

(2.32) 

The same argument gives the following result for 
the Breit frames (Figs. 7 and 10): 

«P3(Ja, P4(J41 T IPI(Jl, P2(J2)(B»contlnued 

= (Pa0'3' -P, - 0'41 T I-PI - 0'1' P20'2) 

x (_l)Sl-0'1+S,-a'e-i"(0'1+0'.)-i2(61 a1+8.f1 .). (2.33) 

The relevant angles are given in Appendix B. 

D. Crossing = (PaO'a, -p,(J~1 T I-PIO';, Pa(J2) 

X ~~llal([ -Pl]=l[ -Pd+) 

x ~~:a.(C-I[ _p,]=l[ -P,]+C), 
So far we have been discussing adjustment of 

(2.26) constraints and analytic continuations. Let us now 
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consider what may really be termed "crossing"
namely, replacing an ingoing by an outgoing state 
(and vice versa) with the components of the 4-mo
menta changing sign. (Internal quantum numbers, 
not exhibited explicitly, are to be charge conjugated.) 

When we explicitly take into account both signs of 
energy, the generators of rotations and pure Lorentz 
transformations can be written in the canonical 
representation as (see, for example, Ref. 20, p. 78) 

M = -iP x 1.- + S oP , 

N = _ ipo 1.- _ P x S , 
oP po + €m 

(2.34) 

where 
€ = pOflPol, m = +.jp2

• 

The S are well-known (2s + I)-dimensional Hermitian 
generators of rotation. 

As a consequence, under the transformations 

U(A) = e-iM.ft8 or e-iN.6l , 

the following canonical states (Appendix A) are 
multiplied by the same Wigner rotation matrices, 
namely, Ip, a) and I-p, a). Hence, noting the 
relation 

~~a.(R) = (-l)a-a·~~:._a·(R), (2.35) 

we find that the states I-p, -a) and (_l)s-a (p, 0'1 
again transform in the same way (the choice of the 
constant part of the phase being, of course, arbitrary). 
Hence, we postulate the crossing relation 

(Pa(Ja, -P4 - 0'41 T I-PI - O'l' P20'2) 

= (-1)~( _1)Sl-a1+S,-a, (Pa(Ja, PIO'II T IP'0'4' P2( 2), 

(2.36) 
where 'YJ is a constant phase factor. 

From (2.32) and (2.36) we finally obtain for the 
c.m. systems, denoting by Os the value (in general 
complex) of e s continued to the I-channel physical 
region, 

«Pa(Ja, P4(J,1 T IplO'l, P20'2»contlnued 

= (-l)lIexp {-i[Os(O'a + 0'4) + 6tC(J2 + 0'4) 

+ 7T(O't + 0'4) + (xlal - X20'2 - Xa0'3 + X40'4)j) 
x (P30'a, Pl(Jll T IP,O'" P20'2)' (2.37) 

The angles x., i = 1,2,3,4, are given by (2.9). 
Denoting by Al;:t) and Al::tI respectively, the s- and 

I-channel c.m. amplitudes expressed in terms of the 
invariants, we will often write the relation as 

A(/) = (_1)-~e-i[68(a.+a.I+6t(a2+a,I+ .. (al+a,) 
O'salta,aa 

X e'(llal-xaas-X1a.+x,a,IA(BI (2.38) 
O'S0'4,al 17 1 

where l(s) denotes the value continued to the t
channel physical region. 

In an analogous way, for the corresponding Breit
frame amplitudes ($(s), $<tl say), we obtain,ex
pressing everything in terms of the final I-channel s 
and I values, 

(2.39) 

We may note the following checks of consistency: 

(i) Instead of transforming back to canonical ampli
tude, as in (2.26), and then using (2.36), we could 
first utilize the usually accepted crossing relation for 
the spinor amplitudes, 

(PaA.a, -P,A.41 T I-PIAl' P2A2) 

= (-1)'" (PaA.a, PlAll T 1P4A" P2A2). (2.40) 

The final result would be the same. We prefer to break 
up the process into two stages [(2.26) and (2.36)] in 
order to display as explicitly as possible the different 
assumptions involved in terms of the physical-spin 
indices themselves. 

(ii) As a consequence of (2.27) and (2.28), we get 
back exactly the same results, (2.38) and (2.39), if we 
pass via the spinor amplitudes 

(PaAa, p,A41 T IplAl , P2A2), 

instead of via (2.24). 

(iii) Passing via the Breit frames, namely, using (2.39), 
(BI6) and (B21), we obtain for the c.m. amplitudes 

.it;~~)ov,as = (-It" exp {i[7T(O'l + a,) 

+ 2(f)10'1 + 840'4) - ips + ipt]}A~8:a"alaa' 
(2.41) 

where CPs denotes ips continued to the I-channel 
physical region. Now, we have to note that 

Xi = (i: + xD· (2.42) 

(In fact, ;(. remains real for s < 0.) As a consequence, 
(2.41) reduces exactly to (2.38). 

Finally, we note that, if in Fig. lOwe add an extra 
rotation making P: coincide with the x axis (with a 
corresponding extra rotation in Fig. 7), then the phase 
in (2.39) becomes just (_l)~e-i("+2flu)al. This gives 
the simplest possible crossing matrix when 81 = O. 
Similarly, we can choose to make P; coincide with 
the x axis. 
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3. RELATIONS WITH THE HELICITY AND 
TRANSVERSITY AMPLITUDES IN THE 

(z,x) PLANE 

We will now discuss the relations between the 
(x, y)~plane canonical amplitudes and the (z, x)~plane 
helicity and transversity amplitudes. Let us first take 
up the c.m. amplitudes and, subsequently, the corre~ 
sponding Breit-frame ones. Let 

(3.1) 

Then, starting with the s-channel c.m. canonical 
amplitude (Fig. 1), we have 

(PaGa, P4G,1 T IPIGI , P2(2) 

= (P3Ga, p,G,1 U-ITU IPIGI , P2( 2) 

= eihcO"I+0"2-0"3-0"') (p~O"~, p~O"~1 T Ip{O"{, p~O"~) 

(3.2) 

where the momenta p; are now as indicated in Fig. 12, 
with 

Ip~1 = IPil, 
and the us; are (in the notation of Kotansky4) the 
matrices corresponding to R.,( -t1T), namely, 

~S(t1T, t1T, -t1T). 

They diagonalize the d matrices corresponding to the 
rotations about the y axis, giving 

(us. dS(O) . uS·)O"'O" = ei90"~0"0",. (3.3) 

(A detailed study of the properties of US can be found 
in the papers of Kotansky.4) 

x 

z 

FIG. 12. a-channel c.m. amplitude in the (z, x) plane. 

Let us now define the (z, xl-plane helicity amplitudes 
(Appendix A) as 

= (P~A3' P~A41 T Ip{AI' P~A2) 

x d~:'),1(0)d~:'),J(1T)d~:'),3(Os)d~,·')..(1T + Os). (3.4) 

In the above formula we have introduced 

(3.5) 

instead of the more habitual convention (which we 
distinguish here by a ""' sign) 

(3.6) 

in order to obtain the simplest possible correspondence 
between the canonical and transversity amplitudes 
[see the comments following (3.10)J. The relation 
between the two definitions is given by 

(p~, A41 = ( _1)s'e-i ")', (p~, A41- = ( -1)s,-)', (p~, A,I-. 
(3.7) 

In the language of "tetrads" (see Appendix A) the 
factor (-1 )-),. corresponds to a rotation 1T of nCl) 
and n(Z) about the axis p~ . 

The transversity amplitude is defined as 

(p~A3' P~A41 T Ip{AI' p~, A2) 

( ' 'I T I I ') 81· S2· S3 S. = PaT3' P4T" PITI' P27'2 UTi).1 UT2).2UT3),8UT,.I., . (3.8) 

Hence from (3.2), (3.4) and (3.8), using (3.3) (and 
other relevant properties of US;), we obtain 

(Pa0"3, P4G41 T /PIO"l, P20"2) 

Similarly, for the I-channel c.m. systems (Figs. 4 
and 13), we obtain, , 

(P30"3' PIO"I/ T \p,0"" P2( 2) 
= eihcO",+0"2-<73-0"1)+iIl'C0"2-0"1)+i9,C<Ts+a,) 

X (P~7'3' P{7'11 T /P17'4, P~T2)~TlaJjT2a2~T3aa~T'0"" 
(3.10) 

Had we chosen the convention (3.6) [instead of 
(3.5)], we would have obtained in (3.8) a factor 
(_I)S,-a'eio"'(1!-98)~ instead of e-i (H9s)0"4b and, 

64..-r, (74 1, 

similarly, a factor proportional to ~Tt -0"2 in (3.9) 
instead of b We have chosen our convention in 

TaD'2· 

order to avoid such changes of sign. 
Substituting (3.9) and (3.10) in (2.37), we obtain 

the simple crossing relation for the c.m. (z, xl-plane 
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x 

______ ~~ __ ~~~~--~-----z 

FIG. 13. ,-channel c.m. amplitude in the (z, x) plane. 

transversity amplitudes as 

«PaTa, p,T,1 T IPITl' P2T2»continued 
= (_1)"e, .. <r1+T,)-i(X1Tl-x2Ts-xaTa+x,f.) 

X (PaTs, PITII T IP,T" P2T2)' (3.11) 

For the helicity amplitudes we obtain 

«PaAs, p,A,1 T I PIAl , P2A2»continued 

= (_1)"(uS1: ei( .. -xdTIUS1")(US2, eiX2T2uS'*) 
Al T1 T1Al A. f. T.A2 

X (u s." ei)(3TaUS3 )(US4, ei(lT-X4lr'US4 ) 
As'Ta rSA.s l41'4 roll" 

Hence, 

«PsAa, p,A,1 T IPIAI , P2A2) )continUed 

= ( _1)~eilT(.t1'-A4') (Pal.; , PIA{I T IP4A~, P2A~) 

X df:')}Xl) dfh.( -X2) df:'AS(Xa) df"'A,( -X,)· 
(3.12) 

[If we prefer to change the signs of X2 and X, in 
(3.12), we have to use the relation df,A(X) = 
(-1)'<'-'< df,..( -X)·] 

As a consistency check for the different phases and 
signs involved, it is interesting to note how the above 
relation (3.12) can be directly obtained for the 
helicity amplitudes. This may be done in the following 
steps: 

(i) Corresponding to A(t) of (2.2), the d matrices 
appearing in (3.12) are directly obtained for the 
helicity amplitudes by using (A22) and noting the 
signs in the definitions (2.8). 

(ii) The rotation Ry( - ocl ) gives no extra phase factor, 
as may be seen from (A23). 

(iii) As is particularly evident from (2.30) and (2.30'), 
the continuation gives the phase factors corresponding 
to 

,])S1(0,0, 17') and ,])8'"(0,0,17'); 

i.e., the factor 

e--i .. u 1'-;.,'1 = ( _1)-2(S1+S')eilT ().1'-;'4'). (3.13) 

(iv) The consistency of transformation properties 
leads to the crossing relation [to be compared with 
(2.36)] 

(PaA;, -P,A~I T I-PIA{, P2A~) 
= ( -1)"( -1 )2(81+8,1 (PaA;, PlAn T IP,A~, P2A2). 

(3.14) 

The above constant phase factor, rather than (see 
Ref. 1) such a one as (_1)81-).l'+s,-).,·, is a direct 
consequence of our definition (3.5) and may be 
verified as follows: In the (z, x) plane (p making an 
angle 0 with the z axis), 

I-p, A) = I-p, 0") d,,;.{1T + 0) 

~ (p, -0"1 (_1)8-" d,,;.{1T + 0) 

= (p, A'I df.,-tJ( -0)( -ll-tJ d,,;.{ 17' + 0) 

= (p, A'I (-1)B+).' d_J., • ..(1T) 

= (p, A'I ( _1)28. (3.15) 

Hence, (3.12) is exactly verified. Before comparing 
our results (3.11) and (3.12) with the corresponding 
ones of Ref. 5, various differences of convention are 
to be taken into account, such as a change of sign of 
XS and X4, the reversal in Ref. 5 of the projection 
axis after crossing, and so on. 

Let us now consider the Breit-frame amplitudes. 
Starting with the configuration of s~channel Breit 
frame (Fig. 7) and using U [Eq. (3.1)] to pass to the 
corresponding configuration in the (z, x) frame, we 
obtain [omitting the primes in Fig. 7 and using p~ 
for the (z, x) plane momenta as in (3.2)] for the 
transversity amplitude [instead of (3.9)] 

(PaO"a, P40"41 T Ip10"1' P20'2)(B) 

= ei!lT(", +tJ.-tJ3-".)+H2!r-8, )a,-i( .. +O. )a. 

X i lTtJ
• (p;T3' p~T,1 T Ip{T}, p~T2)(B) drltT1dT2".dT.0".dT'''' 

(3.16) 

= ( _1)281eir!lT(tJ1+tT.-tT.-",)+lT<"2-tJ,)-i(81"1+0, .. ,ll 

X <P~T3' P~T41 T Ip{T1 , p~T2)(B) dr1tJ,dr2tT2<5Ta0'3d"",. 

(3.16') 
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[The suffix (B) indicates the Breit frame.] Similarly for 
the I-channel, starting from Fig. 10, we obtain 

(P3a3 , Plall T IP,a" P2(12)(B) 

= eir! .. (<14+<1S-<1S-<1ll+ .. (<1S-<1l )+(81 al +6,a.)] 

X (P~T3' P{TII T IP~T4' P~T2>(B) bTlal 0T2azbT.a.bT4a4' 

(3.17) 

[It should not be forgotten that ()l and (), correspond 
to different s and I values in (3.16) and (3.17), corre
sponding to sand t physical regions.] 

From (3.16), (3.17), and (2.39) we obtain the cross
ing relation for the Breit-frame transversity amplitudes. 
This is extremely simple, namely, 

$(t) = (_1)-~ei"(TI-T').i(S) . (3.18) 
T9''''4'2 '3'4,1172 

The corresponding relations for the helicity amplitudes 
are 

Thus, even for helicity amplitudes, we obtain a very 
simple "diagonalized" crossing matrix. The direct 
derivation of (3.19) is very easy. We need only note 
that, of the steps (i)-(iv) needed to derive (3.12), we 
no longer need (i) and (ii). The operations (iii) and (iv) 
give the required phase factor. 

4. AMPLITUDES INVOLVING PARTICLES 
OF ZERO REST MASS 

In this case we use a "mixed amplitude." The 
particles of zero mass will be taken, as is natural, in 
helicity eigenstates, the helicity being restricted to 
circular polarizations (J.. = ±S). For the other 
particles of positive rest mass, we will continue to use 
the canonical spin projection. The scattering plane 
will again be taken as the (x, y) plane. We will 
consider c.m. amplitudes. [When we have four zero
mass particles and total initial and final lightlike 4-
momenta, the c.m. frame is, of course, no longer 
defined. There may also be other special features for 
four zero-mass particles. We will exclude such a case.] 

Elsewherel8 we have discussed how the canonical 
representations for particles of zero and positive mass 
can be considered in an entirely unified way. The 
essential point is that, though the usual factorization 
of the Wigner rotations corresponding to the passage 
via the rest frame of massive particles, namely, 

~s(Rw) = ~s([A' prl
• A· [p]), 

is no longer well defined when the mass tends to zero, 
the total expression for Rw exhibits no such problem. 
Hence, without insisting on passing via the different 
little groups for the two cases, we can continue to use 

essentially the same transformation formula (Appen
dix A) for the zero-mass particles with the additional 
simplification that, for m = 0, the canonical spin 
rotations become identical with those undergone by 
the 3·momentum p. That is, we have (t) = IX both for 
pure rotations and pure Lorentz transformations when 
the mass is zero. This, of course, implies the conserva
tion of helicity. For further details, Ref. 18 may be 
consulted. As an explicit example showing how the 
gauge is fixed in our representation, we refer to the 
Sec. 4 of Ref. 21 which shows how for photons we 
directly obtain the vector potential in the Coulomb 
gauge. 

For 

p = /pl (cos 0, sin 0, 0), 

we define the (x, y)-plane helicity states in terms of 
the above mentioned zero-mass canonical states as 

Ip, J..) = Ip, a) d<1i!1T)e-i6a. (4.1) 

(This convention differs somewhat from that used in 
Ref. 18, but is more convenient for our present 
purpose.) 

Let A be a pure Lorentz transformation in the 
(x, y) plane. Then 

U(A) Ip, J.) = IA . p, (1) e-i(JJa d~;.(!1T)e-i6a 

= IA . p, J..') df.i!1T)ei (Il-(JJ)a d~).(!7T) 

= IA . p, J.), since w = ~. (4.2) 

Similarly, for any rotation about the z axis, 

U(Ricp» Ip, J.) = IRz • p, A). (4.3) 

Thus, in our formalism there is no contribution to 
the phase factor cp of Eq. (2.6) from the zero-mass 
particles. 

With regard to the continuation of the transformed 
amplitude (Sec. 2C), we note that, since we consider 
only circular polarization (J.. = ±S), the canonical 
states differ from the corresponding covariant spinor 
states only by a factor (Po)±s. [See Sec. 3 in Ref. 18 
and, in particular, the remark following Eq. (3.9).] 
Hence, exactly as the spinor states, our helicity states 
should be continued without any change of the 
helicity index or additional phase factors. 

Corresponding to the crossing convention (Sec. 2D) 

1-p, (1) ~ (p, -al (_1)S-a , 

we have for our (x, y)-plane helicity states 

1-p, A) = 1-p, a) d~;'(i1T)e-;(I1+6)" (4.4) 

----+- (p, - al ( _1)8-a df,,(!17)e-i (H6)<1 

= (_1)-8 (p, J..'I df..-a( -i1T) d~;.(t1T) 

= e-ilfl (p, AI. (4.5) 
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A different convention, if used in writing the rhs of 
(4.4), may lead to a different over-all constant phase 
[( _1)28, for example). But such differences are not 
essential for our purposes. 

The above-mentioned results, when put together, 
lead to the conclusion that the only difference owing 
to the presence of zero-mass helicity states in the 
crossing relation (2.38) is the additional simplification 
that, when a (fi is replaced by Ai' it is simply to be 
suppressed in the coefficients of the sand t dependent 
angles (Xi' 0., Ot). This is, we may write the crossing 
relation (2.38) as 

A W = (_l)-~e+i .. Cal+a·)e+i"'iCS) (4.6) 
aSO'l,a"a2 0'30'4, a}l" 2 , 

where 

"p = 08(a3 + 0",,) + fJla4 + (2) 

+ (X1a1 - X2a2 - X3a3 + x"a,,). (4.7) 

Then, when one or more of the (fi are invariant helicity 
indices Ai' they should be replaced by zeros in the rhs 
0/(4.7). This is all that needs be done. For example, 

A~~al.).4).2 = (-l)-~ 
x exp [i1T( a1 + /.4) 

• - -Cs) + l(Osa3 + Xlal - X3aa)]Aas).4al).2' (4.8) 

This example includes Compton scattering as a 
particular case. 

So far we have discussed only c.m. amplitudes. The 
corresponding results for Breit (or other particular) 
frames, as well as those for other types of combina
tions of spin projections for the different particles 
involved, may be obtained readily. The above discus
sion is sufficient to illustrate the basic features of our 
formalism. 

5. REMARKS 

Though we do not intend to give a systematic 
discussion of the kinematic singularities of the 
canonical amplitudes in this article, let us conclude 
with a few relevant remarks. (The proofs of these 
remarks will not be given here, but the verifications 
are not difficult.) 

In comparing the canonical [Eq. (2.38)] and the 
transversity [Eq. (3.11)] crossing relations we should 
not consider the extra factors in (2.38) necessarily as 
sources of additional complications. To take just one 
example, let us consider (in Fig. 4) the t-channel 
threshold t = (m" + m2)2. The possible poles and 
branch points of the transversity amplitudes at this 
threshold22.23.5 are exactly cancelled out by the Ot 
term making the canonical amplitude regular at this 
threshold. Elsewhere, however, (such as at t = 0) 
the () t term may indeed create an additional singularity. 

Similarly the simplicity of the Breit-frame crossing 
relations (2.39), (3.18), and (3.19) does not necessarily 
simplify the discussion of the kinematic singularities, 

since $(8) (unlike i IS» cannot be taken to be free of 
t singularities even when it is not on the physical 
boundary. 

The inevitable conclusion is that each type of ampli
tude has its particular advantages and difficulties. 
Since the crossing relations and other related proper
ties of the helicity and the transversity and also those 
of the spinor24 amplitudes have fairly often been 
discussed recently, we have tried to draw attention 
to the corresponding basic properties of the canonical 
amplitudes, for reasons already mentioned in the 
introduction. 

APPENDIX A 

1. Comparison of the Definitions of Canonical 
and "Transversity" States 

Starting with a state at rest of mass m and spin 
projection (f along the z axis, we define the canonical 
state20 for an arbitrary momentum p as 

ip, a) = U(A<;D i(m, 0), a), (AI) 

where A(p) is a pure Lorentz transformation such that 

A cp ), p = (m, 0). (A2) 

(Unless otherwise specified, we will consider particles 
of positive rest mass. The discussion of the zero-mass 
case is confined to Sec. 4.) 

In this representation the canonical spin operator, 
defined25 as 

l(w _ WO p) 
m po+ m ' 

(A3) 

reduces to its simplest form, namely S, the well-known 
(2S + I)-dimensional generators of rotations (e.g., 
S is simply i't' for spin t in terms of the Pauli matrices). 
This simple form of S is valid for an arbitrary frame. 
We are not obliged to pass via the rest frame each 
time in order to define the parameter (f in (AI), this 
being the eigenvalue of 

Sz = S . te, ~ = (0,0, 1). (A4) 

For a state defined as 

ip, ~) = ip, a) ~~(R), (AS) 

where R is an arbitrary rotation, the parameter , 
may be considered to be the eigenvalue of 

S, = S • ~' , where te' = R • ~. (A6) 

In particular, when R is R(O, cp), corresponding 
to the direction of the momentum p, we have 

(A7) 
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This is called the helicity projection, the helicity 
states being usually denoted by Ip, A.). 

If 

then 
R = R"(i1T)R(O, q;), 

({' = R.,( -i1T) • p. 
Thus, for example, in Fig. 14 

P = (sin 0, 0, cos 0), 

(AB) 

(A9) 

{{' = (sin 0, cos 0, 0). (AlO) 

Such a projection is used when the so-called "trans
versity" states are defined in terms of the helicity 
states as 

Ip,7') = Ip, A) ~f,(R.,( -i1T»· 

Thus, we see that, according to the definition (A3) of 
the canonical spin, the "transversity" projection is 
not, in general, along the normal to the (z, x) plane, 
though it lies in the (x, y) plane. 

However, since for {{' given by (AlO) 

S .({, = [R.(O). S] . [R.(O) .({'] 

= [RiO)· S] . {{" , where {{" = (0, I, 0), 

(All) 
by modifying the definition of S to 

S' = R.(O) • S (AI2) 

(an additional rotation about ({" may be included), 
we can consider it to be projected along the normal or 
yaxis. (In fact, it becomes a question of mere terminol
ogy, since by suitably modifying the definition of the 
operator to be projected we can consider it to be 

A 

k' 

z 

FiG. 14. "Transversity" projection. 

projected on any axis whatsoever. This does not 
affect the transformation properties of the state in 
question.) 

In the language of "tetrads," 5.9 the definition (A3) 
corresponds to the particular choice 

where 
Si = m-1W' nw, i = 1,2,3, (A13) 

n(;) = A~\ . 1'(;) , (A14) 

with A(p) as in (A2), and 

V(1) = (0, I, 0, 0), V(2) = (0, 0, 1, 0), 

V(3) = (0,0,0, 1). (A1S) 

However, we can replace A(p) by A;p) , such that 

(A16) 

and R is any rotation and R' is one about the axis p, 
and still have the relations 

A;;f(m,O) = p, p' n(iJ = 0, n(iJ' n(j) = -bij, 

where 
(A16') 

, A'-l 
n(i) = (1))' vii) • 

Such arbitrariness is often exploited in the choice of 
tetrads (see Ref. S for some relevant choices). In 
particular, along with other differences, it makes it 
possible to introduce [in terms of the canonical spin 
(A3)] such a redefinition as (AI2) for particles whose 
momenta are not collinear with the z axis. While 
this is quite legitimate, such arbitrariness must not 
become a source of confusion when we talk about 
spin projections normal to the scattering plane for 
the different cases of canonical and transversity 
amplitudes. 

2. Some Useful Transformation Formulas 

Let us consider a pure Lorentz transformation A, 
corresponding to the 4-velocity u", such that 

A . (1, 0) = u", (A17) 
and let 

A·p=p' or A·u=u', with u=p/m. (AlB) 

The angle ex turned through by p is given by 

u' u' 
CoS(1.=--

and 

lullu'l 
= U2(U~ + 1) - (uou~ - u~)(uo + u~) (A19) 

(u~ + 1) lullu'l 

. ±Iu x u'l (uo + u~) I I (2 1)1 
sIn (1. = , U = uo-

(u~ + 1) lullu'l 
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[for zero mass we just replace u and u' by P and p', 
respectively, in (AI9)]. The positive or negative sign 
is to be chosen according to the sense of rotation 
from u to u' (or un). 

Under this transformation the state (AI) undergoes 
a Wigner rotation, the canonical spin turning in the 
same sense as u (about the same axis u x u'). The 
angle of rotation is given by 

±Iu x u"l 
tan tw = (A20) 

(1 + Uo + u~ + u~) 
The difference (IX - w) can be verified to be given by 

, 2 " , " 

( ) PoPo - m Uo UoUo - u o (A2l) cos IX - W = = 
Ipllp'l lullu'l 

(for zero mass w becomes equal to IX). 
In helicity states, when both p and p' are in the 

(z, x) plane, we have, with 

p = Ipl (sin (J, 0, cos (J), 

U(A) Ip, A) = Ip', (J/) d~u(w) d~;.((J) 

= Ip', A') df,u'(-(IX + (J» d~,;.(w + 0) 

= Ip', A') df,;.(c.) - IX). (A22) 

[If we use the convention (3.6) for p or p' below the 
z axis, then additional phase factors may arise for 
those cases.] For the general case the helicity trans
formation formula is much less simple in terms of IX 
and W,26 but (A22) will be sufficient for our purpose. 

For a pure rotation about the y axis [with p in the 
(z, x) plane], putting w equal to IX in (A22), we obtain 

where 'f) = 'f)1 '1/2 'f)a '1/4' Hence, such amplitudes must 
vanish unless 

APPENDIX B 

1. Transformations from c.m. to Breit Systems 

Our aim is to express the parameters corresponding 
to the s- and t-channel Breit systems (as indicated in 
Figs. 7 and 10, respectively) and also the transforma
tion coefficients connecting them to the c.m. systems 
in terms of the invariants sand t. 

Let us start with the well-known formulas for the 
s-channel c.m. system. We have (corresponding 
to Fig. 1 or 5) 

S = (PI + P2)2 = (Ps + P4)2, 

t = (Pa - PI)2 = (P2 - P4l, (Bl) 
and 

4 

S + t + u = L m;. 
i=1 

The scattering angle (J s is given by 

(J set - u) + (m; - m;)(m; - m:) 
cos s = (B2) 

S12S34 
and 

. 2s!<J>! 
sm (Js =--

S12Sa4 
where 

Sij = sji = {[s - (mi + mj)2][s - (mi - m;)2])! 

(B3) 
and 

R,lrp)lp, A) = Ip', ),). (A23) <P = stu - sCm; - m:)(m~ - m~) 

The fact that there is no phase factor on the rhs has 
an important consequence for the crossing relations. 

Finally, let us note briefly the consequences of 
parity conservation. Under the parity operation P 
the canonical states can be shown to transform as 

Pip, (J) = 1J 1£, (J), (A24) 

where l!.. = (Po, -p) and 'f) is the intrinsic parity. 

Hence, for a canonical amplitude with the momenta 
taken to be in the (x,y) plane, considering the com
bined operation of parity and a rotation TT about the 
z axis, we have for parity conserving interactions 

(Pa(Ja, p,(J41 T IpI(JI, P2(J2) 

= (Pa(Ja, p,(J,1 U-ITU IpI(JI' P2(J2)' U = R.( TT)P, 

= 'Yje-i7T
(Ul+U2-Ua-u.) (Pa(Ja, p,(J41 T IPI(JI, P2(J2)' 

(A25) 

- t(m; - m;)(mi - m!) 

- (m; + m: - mi - m;)(m;m! - m;mi). (B4) 

For the momenta we have 

o S + m; - m~ 
Pi = (BS) 

where 
2Js 

i = 1,2 +--* j = 2, 1, 
and 

i = 3,4 +--*j = 4, 3. 
Thus, 

Pin = IPII = Ip21 = S12/2JS 
and 

Pli = IPal = Ip,1 = Sa4/2../s. (B5') 

[The corresponding I-channel expressions are given 
by analogous expressions through the substitutions 
(2.11 ').] 



                                                                                                                                    

1100 A.· CHAKRABAR TI 

Now, (corresponding to Fig. 6) let us consider the where 
pure Lorentz transformation i = 1, 4 ~ j = 4, 1. 

where 

v = (P2 + Pa)2 = (P2 + PI + Pa - Pl)2 

= S + t + 2(pg + p~)(p~ - p~) 

= s + t + il, il = m~ + m~ - m~ - m!. 

We may also note the relation 

(v - m~ - m:) = -(u - m~ - m:). 

(B6) 

(B7) 

(B8) 

If uH be the 4-velocity corresponding to Am) [in the 
sense of (Al7)], then 

u" = v-!(p~ + pL -P2 - Pa) 

and, hence, 

" 2s + il u ----
o - 2(sv)! . 

(B9) 

Let 

Then, 

,0 v + m~ - m; 
P2 = 2")v ' 
and 

10 V + m: - m~ 
Pa = 2..)v 

10 s - t + m~ - m; 10 S - t + m~ - m; 
p, = 2..) v PI = 2..) v 

(BIO) 
We may also note that 

I 'I I 'I V2a 
P2 = Pa = 2..) v ' 

where 

V2a = {[v - (m2 + ma)2][v - (m2 - ma)2J}1. (B11) 

Let us consider the (positive) rotation undergone by 
P2 under Am)' Using (AI9), (B2), (B5), and (BlO), 
we finally obtain 

. , vies + m~ - m;) + s!(v + m~ - m~) <p! 
sIn ()(2 = !! 2 

«s + v) - t)S12V23 
(B12) 

The angles (J~, O~, and O~4 in Fig. 7 are given below. 
(We may omit the primes for the angles without 
causing any confusion. We have only to remember 
that s- and t-channel expressions, though apparently 
the same functions of the invariants, correspond to 
different sand t values.) We obtain 

4Ip;llp;1 cos 0; = p;2 _ p~2 + 4p;2, 

4Ip~llp~1 sin 8~ 

= {[4p~2 - (lp~1 + !p~f)2Jl4p;2 - (Ip{i - Ipm2]}l, 
(B13) 

Thus, 

4v Ip~llp21 cos O~ 

= v~a + (s - t)(m: - m~) + v(m~ - m~) 

and 

4v Ip~llp21 cos O~ 

= V~3 + (s - t)(m~ - m;) + v(mi - m~). (BI4) 

Similarly, 

4v Ip~llp~1 cos O~, = (,12 - 4st - V~3)' (BI5) 

Denoting the s-channel c.m. and Breit frame 
amplitudes by A(') and $('), respectively, we obtain 
(for z axis, normal to the scattering plane) 

where 

lPa = -(W{O'I + W20'2 - W~0'3 - W~0'4) 

+ (0'1 + 0'2 - 0'3 - 0'4)(X~ 

= (O{O'I + OlO',) - ()s(O'a + 0',) 

(BI6) 

- (X:O'I - X;0'2 ...:... X;O'a + X:O',) (B 17) 

and [in terms of the differences (oc - w) of (A21)], 
in an obvious notation, 

X: = -(txi - wD, X~ = -(tx; - w;), 
X; = (tx2 - W2), x~ = (tx~ - w~). (BI8) 

[As in (2.8), we have again introduced extra negative 
signs for particles I and 3 to compensate for the fact 
that PI and P3 turn in the negative sense. A careful 
consideration of the senses of the different rotations 
is essential for all the terms of (B17).] 

The corresponding formulas for t channel may be 
similarly obtained. It may be verified that (Fig. 9) 
- p~o , p;o, p;o, _ p~o are respectively given by the same 
formulas (B10) as p~o, p~o, p~o, p~o. The angles (Jl' 8., 
and (}14 (Fig. 10) are again the same function of the 
invariant as ()~, ()~, and (}~4' respectively [giving the 
required correspondence (2.15)]. The initial differences 
between the s- and t-channel c.m. parameters are 
compensated by the fact that now, instead of (B9), 
we have 

1/ 2t + d u ----
o - 2(tv)1 

(BI9) 

and the rotation 13; undergone by p~ (Fig. 9) is given 
[as compared to (B12)] by 
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Corresponding to (BI6), we now have 

A (t) _ .<nUl eitp' 
(13C11,cr,al - (J'Sal,a,aJ ' (B21) 

where 

-CPt = (01<11 + 0,<1,) - Oi<1, + (12) 

( t t t+t) - X1<11 - X2<12 - Xa<1a X,O', (B22) 
and 

xi = -({J1 - WI)' X: = -({J2 - W2), 

X~ = ({Ja - W3), X: = ({J, - w,). (B23) 

(Again it is crucial to note the senses of the different 
rotations. ) 

2. The Lorentz Transformation A(t) of (2.1) 

Let us now consider A(t), the pure Lorentz trans
formation introduced in (2.1), which is real for the 
special case of timelike momentum transfer considered 
there. 

Here 

Hence, 

u"o = tl/2(st)l, ~ = m~ + m: - m~ - m:. (B2S) 

For the particle I, we have 

10 PI . (P3 - PI) 2p~ + (t - p~ - p~) 
PI = tl = - 2tl 

(B26) 

and, similarly, 

2 2 
10 t + m3 - m1 

P3 = t ' 
2t 

10 t + m: - m~ 
p, = - 1 

2t 

Thus, we see that _p~o, p~o, p~o, _p~o are given 
respectively by the same functions of t as the corre
sponding t-channel c.m. energies (Fig. 2), 

P~ , Pg, P~, P~. 

We may verify readily that exactly the same corre
spondence holds, as required, between the space 
components of p; and Pi . 

Again, 

I "1 PinP/i sin Os <l>t . 1 2 3 4 p; x U = 1 = --1' ,= , , , . 
t 2(st) 

(B27) 

Thus, substituting (B26) and (B27) into (AI9) and 
(A20), we directly obtain (Xi and Wi' In fact, we need 
only calculate [in view of (2.13)] the relatively simple 

expressions (A21) along with 

, . mill>! (B28) Ipillp;1 8m «(X; - Wi) = ± --t . 
2(st) 

Thus, we immediately obtain the expressions (2.9). 

APPENDIX C: VERIFICATION OF THE 
CANONICAL CROSSING RELATIONS 

FOR "1TN SCATTERING" 

We now propose to derive the canonical crossing 
relations for the s-channel elastic scattering of a spin
zero boson and a spin-l fermion (7TN scattering being 
a particular case) via decomposition into invariant 
amplitudes and the use of Dirac formalism. The pur
pose is to verify that this well-known technique gives 
a result consistent with the general formulas for 
canonical amplitudes derived in Sec. 2. 

As is well known, we can write the amplitudes 
(assuming parity conservation) as 

A~~~ = UAp3)[A + lEy' (P2 + p,)]Ua(P1), 

7TN --+- 7TN, (Cl) 
and 

A~!~ = ua,(Pa)[A + lEy' (P2 - P,)]vaCP1 ), 

7T7T --+- N N. (C2) 

In our formalism the solutions u and v of the Dirac 
equation are 

_ 2-l l [p]+' X± I u± - , 
[p]+l . X± 

v± = 2-t 1 [p]+C-
1 

• X± I, 
[p]+lC' X± 

where 
(C3) 

C = 1-1 11, (C3') 
m + Po + P .'t 

[p]+ = 1 ' 
[2m(m + Po») 

and 

X+ = 1 ~ I, X- = 1 ~ I· 
The form (C3) of the solutions implies the following 
representation of the y matrices: 

1 
121 5 1/2 1 Yo = 12 ,y = -/2 ' 

CI = yoy = ,'t -'t " (J = l't 't I = 1'5C1 , (C4) 

the solutions being eigenfunctions of the canonical 
spin projection ~., where E [see (A3) and the follow
ing comments] is given in the Diracrepresentationl5 by 

po iCl x P «(J • P)P 
E = - (J + -- - (CS) 

m m m(Po + m) 
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Let us first consider the c.m. amplitudes. Let 

pO = p~ = p~, qO = pg = p~. (C6) 

Then, with the momenta in the (x,y) plane (Fig. 1), 

A~~ = (2m)-1{(po + m)[A + B(po + qo - m)] 

- (Po - m)[A - B(po + qo + m)]e=Fi88
} (C7) 

and 
(C7') 

where e s is given by (B2) with 

m1 = ma (= mN) = m, (C8) 
and 

m2 = m4 (= mg ) = #. 

In continuing the rhs of (C7) to the t-channel 
physical region where s < 0 and t > 0, with A and B 
supposed holomorphic, the only ambiguity arises 
from the two possibilities 

st --+ ±i(-s)t. (C9) 

(Here we assume <l>l to be positive at the end of 
continuation, as in Ref. 5.) Denoting all the continued 
parameters by adding a ".-." sign, we obtain, corre
sponding to the two signs of (C9), 

[exp (-dJs)](±) 

= S2 

{( -st)l + [-(st + S2)]l}2 
= - S2 (ClO') 

where 
S2 = [s - (m + ,u)2][S - (m - ,u)2]. (ClO") 

Similarly, 
_ . s + m2 

- ,u2 
(Po)(±) = +1 l' 

2(-s) 

_ . s +,u2 - m2 

(qo)(±) = +1 1 (Cll) 
2(-s) 

Substituting (CIO) and (CII) into (C7) and carefully 
rearranging the terms, we finally obtain 

( 
;{:(8» _::r:' (-st)l + [-(st + S2)]l -iu(t) 

.no++ (±) - ,l S e .1C++ 

(CI2) 

and 

(
A(s» = ± i (-st)l ± [-(st + S2)]! iXA(t) 

__ (±) e __ , 
S . 

(C13) 

where 

e=FiX = -(s + m2 
- ,u2)tt + i2m[ -Cst + S2)]! 

Set - 4m2)! 
(Cl4) 

The t-channel amplitudes may be written in terms of 
the invariants as 

A~~ = +[(Pm-lA - Q cos etB) ± iPom-lQ sin erB], 

(ClS) 
where 

Po = Ht)!, P = l(t - 4m2)!, Q = Ht - 4#2)! 

(Cl6) 
and 

ei8t = (s - u) + i2[ -Cst + S2)]* 

(t - 4m2)!(t - 4Ii)! 
(CI7) 

Also, consistently with the continuation of (C7'), we 
have 

A~(t) - 0 .no±,!, - • (ClS') 

In order to compare (eI2) and (C13) with (2.37) or 
(2.38), we have to note that from (2.9) and (C8) 

e=Fli (;t1-xs) = e=Fi(h+x) 

= +ie=Fix. (ClS) 

Hence, putting 0'2 = G4 = 0 in (2.37) or (2.38), we 
obtain 

irs) = (_1)~+1e=Fi*ise'fiXA(t) 
±± ±±. (C19) 

If, for example, by starting from (CIO') we utilize the 
determination 

(C20) 

we must then have 

(-1)"+1 = 1, (C2l) 

for (CI2) and (C13) to agree with (CI7). In ,any case, 
we have the required consistency to within a constant 
over-all phase factor, which we make no attempt to 
determine explicitly. It is possible to choose other 
determinations of the square root leading to a different 
value of 'YJ. It depends also on the relative sign of u 
and v. 

It is amusing to note that, for the parity conserving 
amplitudes discussed above, the coefficient from the 
rotation R.( -OCl) given by (2.5) becomes unity and 
the role of this operation is hidden just as for the 
helicity amplitudes in the (z, x) plane. Its necessity 
becomes evident if we add into (CI) the parity 
changing terms Y5(C + !Dy . (P2 + pJ) with a corre
sponding modification of (C2). 
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Let us now consider the canonical Breitframe 
amplitudes. We start again with (CI) and (C2), re
placing A(8) and A(t) by the symbols $(8) and $(1), 

respectively, to indicate that the momenta now satisfy 
the Breit-frame constraints, namely those indicated 
in Figs. 7 and 10, respectively. Of crucial importance 
is the fact that the momenta now satisfy Condition I. 
The explicit forms are given in Appendix B, but are 
not even necessary for our present purpose. All we 
need to note is that, as a direct consequence of Con
dition I, 

Since in our case the momenta lie in the (x, y) plane, 
it is quite easy to verify that 

(C23) 

where we have used for the sake of definiteness the 
first determination of the square root indicated in 
(2.27). Thus, referring to the angle 0l in Fig. 10, we 
have 

m(8) = :r'",'e'fi91(j)(t) 
..J~t1'a T ..J,)a'a· (C24) 

This agrees with (2.39) to within a constant phase 
factor. Thus, we see that for Breit-frame amplitude 
the verification involves very little calculation. 

We would like to mention one final point. If we 
write the positive and negative energy solutions of 
the Dirac equation 

(y' P - m)1jI = 0 
as 

(C2S) 

where 

Q(E)(p) = Em + yO(y. p) = m + qO(y . p) (C26) 

[2Em(Em + po)]! [2m(m + IPoD]! 

is the canonical transformation introduced in Ref. 
25 with the role of the sign of the energy mode explicit, 
we find that 

vi +p) = (_1)!-"y5u~;( +p) 

= ( -l)!-"u~-;( - p). 

Hence, (C2) can be written as 

A~~~ = ii~t)(P3)[A + ty . (P2 - P4)] 

(C27) 

X « -1 )i-au~-;)( - PI»' (C28) 

Thus, in terms of u~'), the language becomes quite 
consistent with that of the general canonical case 
[compare (2.36)], where the rotation and Lorentz
transformation properties are sufficient to determine 
the crossing behavior, without it being necessary to 
invoke other mutually distinct aspects of a particle 
and its antiparticle. 

1 T. L. Trueman and G.-C. Wick, Ann. Phys. (N.Y.) 26,322 
(1964). 

21. J. Muzinich, J. Math. Phys. 5, 1481 (1964). 
3 E. L. Surkov, Yad. Fiz. 1, 1113 (1965) [Sov. J. Nucl. Phys. 1, 

792 (1965»). 
'A. Kotansky, Acta Phys. Polon. 29, 699; 30, 629 (1966). 
5 G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann. Phys. 

(N.Y.) 46, 239 (1968). 
8 A. Chakrabarti, J. Math. Phys. 5, 922, 1747 (1964); thesis, 

University of Paris, 1965 (other important sources are cited in the 
above articles). 

, S. Frautschi and L. Jones, Phys. Rev. 167, 1335 (1968); J. D. 
Jackson and G. E. Hite, ibid. 169, 1248 (1968); J. Franklin, ibid. 
170,1606 (1968). 

8 M. Barmawi, Phys. Rev. 166, 1846 (1968). 
t A. Chakrabarti, Nuovo Cimento 43, 576 (1966) (Sec. 1.1 and 

Appendix A). 
10 In Sec. 3 we choose our conventions so as to make this corre

spondence as simple as possible, avoiding any change of sign of the 
spin indices. This is also reflected in the crossing relations. 

11 Again, it is for this very reason that we do not perform the 
continuation and crossing, in terms of the spinor amplitudes, at one 
stroke [Sec. 2D(i»). 

12 By "Breit frame" we mean the one in which the uncrossed 
particles 2 and 3 have equal and opposite momenta, chosen, more
over, for the canonical amplitudes, to be along the x axis. Thus, 
for example, for 71'N scattering (Appendix C) the nucleon and the 
meson would not appear to be reflected separately at the "brick 
wall," which is the y axis in our case. Instead, the incoming meson 
(nucleon) would be "reflected" as the outgoing nucleon (meson). 
This is not the usual choice. But it is an essential one for our 
purposes and need not cause any confusion. 

13 J. Bjerneboe and Z. Koba, Nucl. Phys. B7, 53 (1968); Z. 
Koba, ibid. B8, 351 (1968). A different definition of the "Breit 
frame" is used by these authors, which is related to the reduction 
of the 4-vector momentum exchange corresponding to the u channel 
of the form (0,0,0, y -u) for u < O. (They replace u by t, con
sidering crossing between sand u channels.) This leads to expressions 
for the momenta with quite interesting properties. As will be evident 
from the argument in the following section, for these frames [satis
fying also (A3)] our formalism for continuation (Sec. 2C) would 
give again the canonical crossing relation (2.39), where now (), and 
(). will refer to angles in these frames. For the transversity and 
helicity amplitudes we would get back (3.18) and (3.19), respectively. 

For u> 0, Eq. (A3) may be attained by first reducing PI - pa 
to (yu,O) in both the sand t channels. For u· = 0 we have to 
adopt yet another prescription. Our transformation (B6) is applic
able uniformly to all the above-mentioned cases. 

14 This exercise also serves to indicate without ambiguity the 
final t-channel configuration (Fig. 4) at which we must arrive after 
continuation and crossing. Turning the entire t-channel configura
tion around the z axis through any arbitrary angle (not a function s, 
t) is rather trivial. But let us compare the configuration (Fig. 4) to 
the one obtained from it through a rotation 71' around the x axis. 
The corresponding amplitude may be'shown to be related through 
the reversal of sign of all the canonical spin indices, as well as 
through a phase factor. Thus, if the crossing relation between the 
amplitudes, corresponding to Figs. 1 and 4, conserve, as it will turn 
out, all the spin indices including their signs, then those between the 
amplitudes for Fig. 1 and Fig. 4, rotated as above, must reverse all 
the spins including those of the uncrossed particles. This last possi
bility never arises in our formalism and, as should be particularly 
clear from the discussion in Appendic C, is certainly not related to 
the ambiguities because of the different possible continuations of 
the square roots involved. This feature should be compared to the 
comments referring to Fig. 5 of Ref. 3. 

16 J. Bros, H. Epstein, and V. Glaser, Commun. Math. Phys.l, 



                                                                                                                                    

1104 A. CHAKRABARTI 

240 (1965); K. Hepp, Helv. Phys. Acta 36, 355 (1963); D. N. 
Williams, Lawrence Radiation Laboratory, University of California, 
Berkeley, Preprint, UCRL 11113. 

11 Since there is again another change of sign [Eq. (2.36)] involved 
in the crossing over of the two particles, the final crossing formula 
(2.37) conserves all the spin indices with their signs, allowing us to 
really "diagonalize" the crossing matrix. 

17 The simultaneous consideration of the alternative possibilities 
of continuation becomes important when one studies the continua
tions of cross sections and density matrices. We do not, however, 
intend to discuss these aspects in this article. 

JOURNAL OF MATHEMATICAL PHYSICS 

18 A. Chakrabarti, J. Math. Phys. 7, 949 (1966). 
19 J. P. Ader, M. Capedeville, and H. Navelet (private communi-

cation). ' 
10 H. Joos, Fortschr. Physik 10, 65 (1962). 
II A. Chakrabarti, J. Math. Phys. 8, 1367 (1967). 
II A. Kotansky. Nuovo Cimento 56A, 737 (1968). 
23 A. McKerrel, J. Math. Phys. 9, 1824 (1968). 
24 R. Hwa, Phys. Rev. 180, 1588 (1968). 
25 A. Chakrabarti, J. Math. Phys. 4, 1215 (1963). 
26 V. I. Ritus, Zh. Eksp. Teor. Fiz. 40, 352 (1961) [Sov. Phys.

JETP 13, 240 (1961)]. 

VOLUME 11, NUMBER 3 MARCH 1970 

Radiation from a Dipole Imbedded in an Inhomogeneous Media 
with Critical Coupling Regions 

E. BAHAR 
Electrical Engineering Department, Univer:rity of Nebraska, Lincoln, Nebraska 68508 

(Received 23 June 1969) 

. Maxw.ell's equ.ations for ~nh~mogeneous media are transformed into loosely coupled first-order 
ddrere~tlal equations by ta~lOg IOto ac:ount the local features of the refractive index profile. A set of 
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1. INTRODUCTION 

It was first pointed out by Galejs102 that, for 
vertically polarized waves propagating in an inhomo
geneous medium with an exponential profile, there 
exist rigorous solutions in terms of standard tabulated 
functions. Until recently this was apparently the only 
case for which standard, full-wave solutions were 
known for the propagation of vertically polarized 
waves in inhomogeneous media. It is well known that, 
for horizontally polarized waves, there exists an 
extensive family of dielectric profiles for which the 
solutions may be written in terms of standard func
tions.2-4 Several analytical solutions have been 
developed in the past to extend the solutions for the 
propagation of horizontally polarized waves in a 
medium with an arbitrarily varying dielectric profile. 
These include iterative solutions, infinite series ex
pansions, and uniform asymptotic expansions.2- 8 In 
addition, extensive numerical methods have been 
developed.2-4.9 However, the problem of propagation 
of vertically polarized waves in inhomogeneous media 
has not been treated as extensively in the literature. A 
principal factor that contributes to the special difficulty 
associated with vertically polarized waves is that, for 
this case, rigorous solutions to the problem of propa
gation in linearly stratified media do not exist. The 
existence of such rigorous full-wave solutions for 

horizontally polarized waves (the Airy integral func
tions) has contributed immensely to the understanding 
of the behavior of these waves in regions of critical 
coupling (where regular WKB-type solutions fail) and 
to the development of uniform asymptotic expan
sions.? 

Since the propagation from an electric dipole in an 
inhomogeneous dielectric medium involves differ
ential equations similar to those governing vertically 
polarized waves, we shall, in this paper, consider this 
problem in detail. In an attempt to obtain a better 
understanding of the behavior of vertically polarized 
waves in regions of critical coupling, an appropriate 
substitute is found for the Airy integral functions. 
The method used here to solve this problem is based on 
the development of a set of loosely coupled first-order 
differential equations by taking into account the local 
features of the refractive index profile. This is referred 
to as a generalized WKB solution.10 It is shown that 
these solutions merge with the regular WKB-type 
solutions for regions in which the refractive index 
profile is slowly varying. 

2. STATEMENT OF THE PROBLEM 

The electromagnetic fields radiated by an electric 
dipole immersed in an inhomogeneous dielectric 
material are derived. The dielectric coefficient of the 
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medium of propagation E(Z) is assumed to be an 
arbitrary function of the z coordinate. An electric 
dipole of strength Ills is assumed to be oriented along 
the z axis at the point z = Zo' (See Fig. 1.) The 
electric-current density vector J in a circular, cylindri
cal coordinate system is 

J = J.a z = (Ids/27Tp)b(z - zo)b(p)a., (2.1) 

in which d(z - zo) and d(p) are Dirac d functions of z 
and p, respectively, and az is the z-directed unit vector. 
An eiwt time harmonic dependence is assumed through
out this paper. From the symmetry of the problem, 
we note that the magnetic field has only an H", 
component. Thus, using Maxwell's curl equations, 
it follows that 

and 

oH", 
- - = iWEE OZ P' 

! .! (pH",) = iWEE. + J z' 
pop 

oEp oE. . 
- - - = -lw{toH4I , oz op 

(2.2) 

(2.3) 

(2.4) 

in which Ep and E. are the p and z components of the 
electric field, respectively, and the permeability {to is 
assumed to be the same as that for free space. Elimi
nating E. from (2.4) by using (2.3), one obtains 

oEp 2 2 oj. 
iWE - - LAH",] - k n 11. = - -, (2.5a) oz op 

in which k = WCt-tOEo)t is the free-space wave number, 
n is the refractive index (a function of z), and the 
operator Lp is defined as 

(
0

2
10 1) L[H]= -+---- H 

p '" :l 2 :l 2 ",. up pup p 
(2.5b) 

z 

HORIZONTALLY STRATIFIED 

MEDIUM 

Inspection of the operator Lp indicates the following 
separable form for H.: 

H. = 1';<) h(z, A)JI(Ap) dA, (2.6) 

in which JI(Ap) is the Bessel's function of order I and 
argument Ap. The problem then reduces to determining 
the expression for h(z, A), which is a function of z and 
the variable of integration A. In view of the expression 
(2.6) for H"" we express the Dirac d function b(p) in 
terms of its Fourier-Bessel transform.H Thus, 

b(p) =100 Jo(Ap»). d). (2.7a) 
p 0 

and 

cU. Ids lOO -;- = - - b(z - zo) A2JI(Ap) dA. (2.7b) 
up 27T 0 

Hence, (2.5a) reduces to the following differential 
equation: 

oEp 2 2 Ids iOO 2 
iWE - - k q Hp = - b(z - zo) A JI().p) d)', oz 27T 0 

(2.8a) 
in which 

(2.8b) 

In the above expression, the square root is chosen 
such that q lies in the fourth quadrant. In view of (2.2) 
and (2.8), it is obvious that Ep has the same p depend
ence as H",. Hence, we write Ep as 

Ep = lOOe(z, A)JI(Ap) dA, (2.9) 

in which e(z, ).) is as yet an unknown function of z 
and A. Eliminating Ep from (2.2) and (2.8), we obtain 
the following differential equation for H",: 

L [H ] _ 02H. din (n
2

) oH", 2 2 

• '" = OZ2 - dz OZ + k q H. 

Ids 100 
= - - b(z - zo) ).2JI ().p) d)', 

27T 0 
(2. lOa) 

in which 

dIn (n
2
) = 1...! (n2). 

dz n2 0z 

Thus, using (2.6), we derive the following ordinary 
differential equation from (2.10a): 

L.[h(z, A)] = -(Ids).2/27T)b(z - zo). (2. lOb) 

For a homogeneous dielectric, the Green's function 
solution for h(z, ),.) is known.I2 Thus, for n = 1, we 
obtain, 

FIG. ]. Radiating electric dipole located in horizontally stratified 
medium. h(z, ).) = (IIls),.2/47Tikq) exp (-ikq Iz - zoD (2.11a) 
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and 

H", = - _1_ exp (-Jkq Iz - zol),1.2 d,1.. Iflsi<X> J (,1.p) . 
47T 0 ikq 

(2. 11 b) 
Thus, noting that2 

e-ikR 100 J (,1.p) -- = _0_ exp (-ikq Iz - zoD,1. d,1., (2. 11 c) 
R 0 ikq 

we obtain 

H", = _ Ills ~(e-ikR), (2. 11 d) 
47T op R 

in which R = [p2 + (z - zo)2]!. Using (2.3) and (2.4), 
it is now possible to solve for Ep and Ez • In the general 
case, however, for an arbitrarily varying function 
E{Z), it is not possible to obtain a solution for h(z, ,1.) 
in terms of standard tabulated functions. The problem 
of radiation from the electric dipole considered here 
is related to the problem of propagation of vertically 
polarized waves incident upon an inhomogeneous 
dielectric medium. Until recently, there was appar
ently only one nonuniform refractive-index profile (the 
exponential profile) for which the solutions could be 
expressed in terms of standard tabulated functions.1. 2 

In the next section, we shall study this special case 
and then proceed to consider the general case in which 
E(Z) is an arbitrary function of z. This, of course, is the 
main purpose of this paper. In this latter case, we shall 
find it more convenient to directly use primary equa
tions (2.2) and (2.8) for Ez and H", rather than the 
secondary equations such as (2.9). 

Using (2.6) and (2.9), we can factor the common p 
dependence of Ep and H", in (2.2) and (2.8). Thus, we 
obtain the ordinary first-order coupled differential 
equations for e and h, 

dh . -= -IWEe 
dz 

(2.12a) 

and 

de 2 2h Ills ~2.Q( ) 
iWE - = k q + - ,.. u Z - Zo • 

dz 27T 
(2.12b) 

In the following sections, solutions will be derived 
for the above equations (2.12). These solutions for 
h(z, ,1.) can then be substituted into the expressions for 
H",[(2.6)]. If one only seeks far field solutions, it is 
possible to apply the familiar saddle-point methods to 
solve (2.6) since the principal contributions to the 
field at the receiver come from a narrow range of the 
values of ,1. (corresponding to a thin beam centered 
around the ray linking the receiver to the source). 
In general, however, it may be necessary to compute 
the integral (2.6) numerically. 

3. RADIATION FROM AN ELECTRIC DIPOLE 
IMMERSED IN A MEDIUM WITH AN 

EXPONENTIALLY VARYING 
DIELECTRIC COEFFICIENT 

We consider here the special case in which the 
refractive-index profile is given by 

n\z) = n~e/lz, (3.1) 

in which no is the complex value of n at the reference 
level z = O. The constant parameter ~ is assumed to 
be a positive real number in this section. 

For the case ~ > 0, the Green's function solution to 
(2.l0b) is 

h(z, A) = hovJv(v)H~2)(VO)' Z < zo, 

in which 
= hovH~2)(V)J.(vo), z> zo, (3.2a) 

v = (2k/~)n (3.2b) 
and 

11 = [1 + (2Af ~)2]t, (3.2c) 

where the square root is chosen such that Re 11 > O. 
The constant ho is determined by the discontinuity of 
the derivative of h(z, A) at z = Zo. Thus, it follows 
that12 

ho = _ IflsA
2/27T = I_ll_. s,1._2 , 

voWo (dvo/dz) 4lkn 
(3.2d) 

in which Wo is the value of the Wronskian W[Jv(vo), 
H!2)(VO)] at Vo = (2k/~)n(zo). The Debye-Watson or 
WKB expansion for H!2)(V) (assuming no is real) is2 

H~2)(V)R:! (7T~cteXp(!i7T)eXp (-ifCdV), (3.3a) 

for v» 1 v» 1 and v/v« 1, where 

C = [1 - (1I/V)2]! R:! [1 - (Ajkn)2]! = q/n. (3.3b) 

Similarly, 

Jv(v) = (7T~Ct cos (fc dv - i 7T ). (3.4a) 

The above asymptotic solutions are appropriate for 
the region above the critical coupling layer z = z" 
with v(zr) == 11 and e(z,) == 0, for a particular value of 
,1., and for which the location of the dipole Zo is above 
this critical layer z = z,. Note that for z > Zo the 
solution exhibits the characteristics of an upgoing 
wave and that for z < Zo it exhibits a standing wave 
behavior. The ratio of the amplitudes of the upgoing 
to the downgoing waves R at a reference level Z R can 
be calculated using (3.4a): 

R = i exp ( -2i fR C dV), v« VR = V(ZR) < Vo. 

(3.4b) 
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Furthermore, using the series expansion for J.(v) for 
large negative values of z (v -4- 0), we get for v » I 

(tvY kno e).z 
J. (z.,-+ - (0) = - -4- - - -4- O. (3.5) 

v! P v! 

Thus, below the critical layer (z -4- - (0), the solution 
exhibits the behavior of an evanescent wave. We now 
investigate the behavior of the solutions in the 
vicinity of the critical coupling layer. For the case 
Zo > Zr and Z R:O Zr' the uniform asymptotic expansion 
for J.cv) may be written asI3 

J.(v) R:O (~)! Ai (;in , (3.6a) 
1 - u 2 

V 

in which Ai is the Airy integral function 

gi = In C + (lu - U

2

)!) - (1 - u2)!, (3.6b) 

and 

Thus, for 

v» 1, Z R:O zr' U R:O 1 + !P(z - zr), 

and 'R:O -(t)ip(z - zr), (3.7a) 

we get 

J.(v) R:O (2/v)! Ai [-vi(t)ip(z - zr)] 

R:O (2M! Ai [_Aip!(z - zr)]. (3.7b) 

The above expression for J.(v) clearly indicates the 
transition from a standing wave solution for Z > Zr to 
an evanescent wave for Z < zr. Similarly, for the case 
when the source is located below the critical level 
Zo < zr' the uniform asymptotic expansion for H!2)(V) 
in the vicinity of the critical level Z = Zr is 

It can be shown that3 •14 

Ai ['e-hi] = -tehi[Ai <') + i Bi(O]. (3.9) 

Now, comparing (3.9) with (3.8), , = -Aip!(z - Zr). 
Thus, the uniform asymptotic expansion for H!2)(V) 
demonstrates the transition from upward and down
ward evanescent waves for z < zr to an upward 
traveling wave for Z > Zr. Comprehensive presenta
tions of the properties of the Airy integral functions 
are given by Budden3 and Wait. 2 

Since the parameter A determines the critical level 
z = Zr and A is the variable of integration in the 
expression (2.6) for H"" we see how the field of the 

dipole, imbedded in a homogeneous or inhomogeneous 
medium (2.11a), (3.2a), may be regarded as a super
position of vertically polarized waves that are either 
propagating or evanescent. Indeed, AJkn (2.8b) or 
v/v (3.3b) may be regarded as the local sine of the 
angle of incidence of these elementary waves at any 
level z in the horizontally stratified medium.2 How
ever, for the case of the exponential profile, it can 
also be seen how the classification of the elementary 
waves as propagating or evanescent is dependent on 
the variable Z and on Zo. With the aid of the uniform 
asymptotic expansions, we are able to follow the 
transition of a particular elementary wavelet (A = 
const) from a traveling to an evanescent wave as a 
function of z. 

The discussion in this section is essential to the 
analysis presented in the following section, in which 
the problem of radiation from a dipole imbedded in a 
medium with an arbitrarily varying refractive-index 
profile is studied by regarding the medium of propa
gation as consisting of infinitesimally thin layers with 
exponentially varying profiles such as (3.1). Of course, 
in the general case the parameter p is also a function 
of z. 

4. TRANSFORMATION OF THE EQUATIONS 
FOR e(z, A) AND h(z, A) INTO LOOSELY 

COUPLED FIRST-ORDER DIFFERENTIAL 
EQUATIONS 

The refractive-index profile, which is an arbitrary 
function of z, may be expressed as 

n2(z) = n~ exp fp dz, ( 4.1a) 

in which p and no are defined as 

(4.1b) 

and 

(4.1c) 

Thus, P is proportional to the relative slope of the 
refractive-index profile. On substituting (4.1) in 
(2.10b), we cannot obtain a general solution for 
h(z, A) in terms of standard functions unless, for 
instance, p = const (Sec. 3). Therefore, the primary 
first-order differential equations (2.12) for h(z, A.) and 
e(z, A) are solved instead of (2.10b). Noting that both 
hand e may be expressed in terms of two linearly 
independent functions, we define hand e as 

(4.2a) 
and 

(4.2b) 
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in which 1>1 and 1>2 are independent functions corre
sponding, for example, to upward and downward 
propagating waves in an isotropic homogeneous 
medium. 

The functions G1 and G2 may be chosen arbitrarily, 
with the restriction G1 =F G2 • Substituting (4.2) into 
(2.12), we get 

and 

d 
- (1)1 + 1>2) = 0 11>1 + 0 21>2 
dz 

(4.3a) 

n2 ..!!.. (011)1 + 0 21>2) 
dz n2 

Itl.s)..2 
= -k2q2(1)1 + 1>2) - -- ~(z - zo). (4.3b) 

27T 

Multiplying (4.3a) by G2 and subtracting it from (4.3b) 
yields 

1>~(01 - O2) + 1>1[010 2 + k2q2 + n2(01/n2)'] 

+ 1>2[0~ + p q2 + n2(02In2)'] 

= -(Itl.s)..2/27T)~(Z - zo). (4.4) 

A similar expression for 1>~ can be written directly by 
inspection. It is obvious that the set of equations for 
1>1 and 1>2 would be greatly simplified if the coefficient 
of 1>2 in (4.4) were made to vanish by an appropriate 
choice of the functions G2 • However, on setting this 
coupling coefficient equal to zero, we obtain a non
linear differential equation for G2 • In order to trans
form it into a linear differential equation we make the 
following substitutions10 : 

0
1 

= din gl = g; and O
2 

= din g2 = g~. (4.5) 
dz gl dz g2 

Substituting (4.5) into (4.4), we get 

1>~ - g~ 1>1 + W( g2 ) L.(gl)1>l 
gl g2' gl 

= gl L.(g2)1>2 + glg2 Itl.s)..2 ~(z - zo), 
W(gl' g2) W(gl' g2) 27T 

(4.6a) 

in which the operator L. is defined in (2.10a) and the 
Wronskian W is defined as 

W(gl' g2) = - W(g2' gl) = glg~ - g2g;· (4.6b) 

A similar expression involving 1>~ is obtained by inter
changing subscripts 1 and 2 in (4.6a). From the ex
pression (4.6a), it is obvious that the differential 
equations for 1>1.2 decouple only if we can choose gl.2 
such that L.(g1.2) = o. 

Thus, for the case of the homogeneous dielectric, 
we choose gl.2 = e'f'ilcq and, for the case of the ex
ponential refractive index profile, we may choose 

(1) 

gl.2 = VH~2)(v) 

as defined in (3.2). In these cases, of course, we would 
obtain solutions for h(z,)..) and e(z,)..) no different 
from those derived in the earlier sections. While in 
Secs. 2 and 3 we determine the Green's function 
solution for second-order differential operators, here 
we seek the Green's function for a first-order differ
ential operator. In this paper, we are considering 
radiation in a medium with an arbitrarily varying 
refractive index for which no standard solution to 
L(gI.2) = 0 is known. The special solutions considered 
earlier will only assist us in making a judicious choice 
for the auxiliary functions gl and g2 . This aspect of the 
problem is now considered in some detail since it is of 
primary importance. 

Equation (4.6a) and a similar one involving 1>~ can 
be written in matrix form as follows: 

1>' - G1> = S1> + D~(z - zo), (4.7a) 
where 

(4.7b) 

and the elements of the matrix S are 

and 

(4.7d) 

Thus, in order to make the equations for 1>1.2 loosely 
coupled, we must generate IS12I« IG11 and IS21 I «IG21. 
If this is achieved, we note that the functions G1•2 (the 
logarithmic derivatives of gl.2) can be interpreted as 
local propagation coefficients. Thus, for slowly varying 
media, we refer to solution (2.lla) and set G1•2 = 
~ikq; thus, (4.5) yields 

gl.2 = expJ.· Tikq dz. (4.8) 
'0 

The above solutions constitute the well-known phase 
memory concept. In this case, it can be shown that 

S11 = S22 = -S12 = -S21 = ! ~ In (n2). (4.9) 
2dz q 
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Thus, if we neglect the cross coupling terms (S12 , S21) 
only and assume outward going waves for Izl- <Xl, 

we obtain for rpl,2 expressions in terms of the familiar 
WKB solutions 

rpl = ~; exp (-ikJ.:q dZ), Z > zo, 

= 0, z < zo, 

and 

rp2 = 0, Z > zo, 

= ~; exp (+ik f.:q dZ), Z < Zoo (4. lOa) 

The constant A is determined by the discontinuity in 
the value of rpl,2 at Z = Zo which is equal to D1,2' the 
coefficient of ~(z - zo) [(4.7d)]. Thus, we obtain 

A _ I~S'),,2(_1 ) 
- l' 

47Tik q n Z=Zo 

(4. lOb) 

Obviously, these WKB solutions are not appropriate 
if the refractive-index profile is rapidly varying or if it 
consists of regions of critical coupling (q - 0). To 
overcome this problem, we shall seek expressions for 
gl,2 from the solutions in Sec. 3. Thus, noting that the 
functions G1 2 are equal to the logarithmic derivatives 
of the "locai" solutions, we assume that 

and 

= exp - [In vH(2)(v)]kn dz I.z d 

Zo dv 

I.z d 
= exp - [In vH~l)(v)]kn dz, 

Zo dv 
(4. 11 a) 

in which the argument v and the order 'JI of the Bessel's 
functions are given by (3.2b) and (3.2c), respectively. 
Note, however, that in this case fJ is a function of Z 

[(4.1)]. The symbol for the partial derivative %z is 
used whenever we wish to imply that fJ is to be re
garded as an independent variable. Thus, partial and 
total differentiation with respect to Z may be expressed 
in terms of dJdv as follows: 

o ov d d 
-=--=kn-, 
OZ OZ dv dv 

.!:.. _ dv .!:.. _ (1 _ 2fJ')~ 
dz - dz dv - p2 dv' 

(4. 11 b) 

In regions for which fJ = const, g1,2 reduce to 
VH;2) (v) and VH;I) (v) , respectively, and all the coupling 
coefficients vanish. In general, however, the above 
choice [(4.11)] for g1,2 results in the following ex
pressions for S11 and W(gl' g2): 

S11 = 7TVH~2)(.V)H~I)(V)({.! In [VH~2)(V)]}2 
2lkn OZ 

- fJ :z In [VH~2)(V)] + k2q2);2 ~~ , 

g1g2 7TvH~2)(v)H~1)(v) 
= 

W(gl , g2) 4ikn 
(4.12) 

To obtain the expression for S22, we simply inter
change the orders of the Hankel functions. These 
expressions for the coupling coefficients (4.12) are not 
singular for regions of critical coupling (q _ 0). 
Also, for regions in which n2 is rapidly varying, fJ is 
large and the coupling is small. Furthermore, for 
slowly varying media (v» 1), the Debye-Watson 
expansion for the Hankel functions (4.11) indicate 
that the expressions for gl,2 reduce to the familiar 
WKB solutions 

g1,2 ~ ;1 exp (=Fik J.:q dZ). (4.13) 

It is interesting to note that (4.13) is an appropriate 
approximation for (4.11), for both positive and nega
tive values of fJ, provided that I fJJkn I « 1. 

We shall now derive generalized WKB solutions 
for the fields of the dipole immersed in a medium with 
a single critical coupling layer (otherwise, n2 is an 
arbitrary function; see Fig. 2). Thus, we require that, 
for large positive z, the solution behaves like an up
ward going wave and, for large negative z, the solution 
behaves as an evanescent wave (the net power flow is in 
the positive Z direction). We first solve (4.7), assuming 
(4.11) for gl,2 and neglecting all the coupling terms: 

rpl = glAl, rp2 = g2A2, 

= gl(Al - Dl), = g2(A 2 - D2), 

The discontinuity in rp1,2 at z = Zo is 

z > zo, 

Z < Zoo 

(4.14a) 

(4. 14b) 

Now, for Z - <Xl, h(z, '),,) must represent an upward 
traveling wave; thus, A2 = O. We have seen that, for 
the solution to represent an evanescent wave, h(z, '),,) 
must be proportional to Jv(v); thus, for z _ <Xl, 
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EVANESCENT 
WAVES 

4>1 + 4>2""' Jv(v). Summing up, we have 

J
., 0 

h(z, A) ~ Al exp - [In VH~2)(V)] dz, z> zo, 
'ooz 

h(z, A) ~ (AI - D1) exp - [In VH~2)(V)] dz i' 0 
'ooz 

+ D1 exp r' .! [In VH~l)(V)], z < Zo. Jzo OZ 
(4. 15a) 

For the case of the exponential profile, we obtain 

A _ 2D1Jv(vo) 
1 - H~l)(VO) . 

(4.15b) 

Thus, the solution (4.15) reduces to (3.2) for (3 = 
const. In a similar way, it can be shown that, if the 
boundary conditions are such that the solutions 
behave like outward going waves for large JzJ, the 
generalized WKB solution is 

i' 0 (2) 

h(z, A) = D1 exp - [In vH~ll(v)] dz, (4.16) 
'ooz 

where the orders of the Hankel functions are 2 and 1 
for z > Zo and z < zo, respectively. 

It is obvious that (4.17) reduces to (4.lOa) for 
slowly varying media with no regions of critical 
coupling and to (2.11) for homogeneous media ({3 = 
0). We may now proceed to derive higher-order 
solutions for h(z, A) in which the coupling coefficients 
are not neglected. Two distinct iterative methods to 
derive higher-order approximations to the c~upled 
differential equations have been discussed earlier in 
some detaiPo 

FIG. 2. Inhomogeneous refractive
index profile, regarded locally as an 
exponentially varying profile. 

5. CONCLUDING REMARKS 

It is shown that Maxwell's equations for inhomo
geneous dielectric media may be solved by transform
ing them into a set of loosely coupled first-order 
differential equations, if one chooses a set of auxiliary 
functions gl,2 that take into account the local features 
of the refractive index profile. These auxiliary func
tions gl,2 are chosen such that at every level they are 
linearly independent wave solutions for a medium 
with the same relative gradient of the refractive-index 
profile {3 as that of the medium under consideration. 
The logarithmic derivatives of these local solutions 
gl,2 are identified as the local propagation coefficients 
G12 • 

it is interesting to point out that the coupling 
between the new dependent variables 4>1,2 can be 
derived directly by considering the reflection and 
transmission coefficients at the interface between two 
media with exponentially varying refractive-index 
profiles, characterized by constant parameters {3 and 
{3 + d{3, respectively. The self- and cross-coupling 
terms Sn and S12, respectively, have therefore also 
been identified as differential reflection and transmis
sion coefficients.1o 

The generalized WKB solutions are valid for regions 
of critical coupling as well as for slowly varying 
regions in which they have been shown to merge with 
the familiar WKB solutions. The Green's function 
solutions for the first-order differential equations are 
readily solved by imposing a discontinuity in the 
value of the function at the source point Zo [equal to 
D (4.7d)] and the appropriate boundary conditions. 

In this paper it has been assumed for simplicity of 
presentation that n~ is real. However, these solutions 
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may be generalized in a straightforward manner for 
the case in which n~ is complex. Thus, for example, if 
the conductivity Ij of the medium is large (n~ ~ 
jljo/W€o), it is convenient to express the local solutions 
gl,2 in terms of the modified Bessel's functions.1.2 The 
generalization of the above solutions for anisotropic, 
inhomogeneous media can be approached by trans
forming Maxwell's equations into four coupled first
order differential equations for the upward and 
downward ordinary and extraordinary waves.!" 

Recently, Westcott16 derived solutions for the propa
gation of vertically polarized waves for several new 
refractive-index profiles in terms of standard tran
scendental functions. Among these profiles is 

n = no tanh el(z - zo), (5.1) 

in which no' el, and Zo are constants. Following the 
technique developed in the previous section, we may 
readily generalize these solutions for refractive-index 
profiles with two layers of critical coupling. In this 
case, we express n(z) as follows: 

n = no tanh r°el(z) dz, 
Joo 

in which el can be shown to be defined as 

dm 1 
C( = ----, 

dz 1 - m2 

n 
m=-. 

no 

(5.2a) 

(5.2b) 

In this case, coupling between the two local solutions 
is proportional to deljdz rather than dNdz [(4.12)]. The 
local solutions for this representation of the refractive
index profile (5.2) are the hypergeometric functions 
rather than the Bessel functions (3.2). In order to 

study the behavior of these local wave solutions as a 
function of the coordinate z, it is necessary to develop 
the expressions for the circuit relations for these 
hypergeometric functionsY 
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Two comp~ete sets .of bases are giv~n. for the general representation of 0(5), utilizing the SU(2) 
subgroup whIch classifies !lUclear semonty model states. The first set, which are analogous to the 
~!l(3? =: ~(3) states of Elhott and Harvey, are formed by projecting good SU(2) states out of certain 

mtrInSlC states. The. second set .are analogou~ to th~ SU(3) => 0(3) states defined by Moshinsky and 
Bargmann; each state IS characte!1zed by ~ partIcular SImple term which appears in the expansion of that 
state and no other. Tr~formatIon matnces. between the two sets of states are given. The utility of the 
states for the calculatIon of generator matnx elements and Clebsch-Gordan coefficients is discussed. 
The seniority model states of Hecht and Parikh are discussed briefly. 

I. INTRODUCTION 

The group 0(5) finds application in the treatment 
(seniority model) of the pairing force between parti
cles in the same nuclear shell,l-3 As often happens 
when group theory is used in nuclear physics, the 
physically significant states are not mathematically 
canonical ones, i.e., are not bases of subgroups which 
provide the maximum number of state labels (other 
examples are the Wigner supermultiplet scheme4 and 
Elliott's SU(3) classification of levels5). There are 
then not enough naturally occurring quantum numbers 
to identify the states completely, a circumstance 
referred to as the internal labeling problem. 

In this paper we present two complete sets of 0(5) 
basis states for the noncanonical but physically 
significant chain 0(5):::J SU(2). The first set are 
analogous to the SU(3) :::J 0(3) states of Elliott and 

. Harvey5 and are formed by projecting good SU(2) 
states from certain "intrinsic" states. These "Elliott" 
states are then utilized to derive a second set of 
"symmetric" states, which are analogous to the 
SU(3) :::J 0(3) states defined by Moshinsky and 
Bargmann.6 A feature of this second set is that, 
although each state may be a sum of many terms in a 
certain expansion, it is characterized uniquely by a 
single one of those terms. 

The basis states are derived in the next section. The 
simple bases (p, 0) and (0, q) are considered first and 
the general basis (p, q) is then constructed by com
bining (P,O) and (0, q). An appendix contains a 
brief interpretation of 0(5) in terms of the seniority 
model and discusses the Hecht-Parikh states.2.3 

II. POLYNOMIAL BASES 

Mathematically canonical bases, belonging to the 
chain 0(5):::> SU(2) X SU(2) have been discussed 
by, among others, Hecht2 and Kemmer, Pursey, and 
Williams7 ; the notation of Sharp and Pieper8 is 
followed here. Two sets of three generators, S±, Sa 

and T±, Ta, generate two independent SU(2) sub
groups, while the other four, U±, V±, transform by 
the (t, t) representation of SU(2) x SU(2). The four 
quantum numbers S, Sa, T, and Ts label the basis 
states completely. 

The 0(5):::J SU(2) scheme, which concerns us, 
utilizes basis states of the SU(2) subgroup generated 
by U±, Ua where Ua = Sa + Ta (the subgroup 
generated by V±, Va, where Va = Sa - Ta, is not 
independent since the U ± do not commute with the 
V±). Va is a U-scalar and its eigenvalue serves as a 
state label, along with U and Ua. The other generators 
form two U-vectors with respective components 
-2S+, V+, 2L and -2T+, V_, 2S_. A different 
SU(2) subgroup of 0(5), of interest in connection 
with nuclear surface quadrupole vibrations,2.9 is not 
considered here. We denote the general basis state by 

I 
p q \ 

0; Va U Ua/ 

The additional label 0; will be discussed later; for the 
simple representations (P,O) and (0, q), it is not 
required and may be suppressed. 

We use nine variables, 

_110\ _1 10 \ 
0; - i i il' () - i i -ii' 

_I 10) _I 10 \ 
Y - -i ii' fJ - -i i -ii' 

()=lloo
10). 

'YJ = 10°111). 
'=10°11_1). 

e = 1_1°010). 
A=lo%). 

(I) 

to represent the basis states of the two fundamental 

1112 
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representations (I, 0) and (0, 1). The variables may be identified with the same ones in Ref. 8, except", whose 
sign is reversed. 

(p,O) States 

The general (P,O) state, a polynomial of degree p in the (1,0) variables, may be written down immedi
ately by coupling the states of U-spin ip + i V3 in the variables ex, c5 to the states of U-spin ip - i V3 in 
the variables y, f3: 

I Va P U 0 U) = ~ exh+1va+u<5iP+fva-ulfJ-1va+ua-uph,-lva-ua+u [(ip + tV3 + u)! (iP + tV3 - u)! 

X (ip - tVa + Ua - u)! (tp - tVa - Ua + U)!]-i(iP + tVa ip - iVai U\ (2) 
u U3 - U uj 

V3 goes by integer steps from -ip to ip and U by integer steps from I Val to ip. The last factor in Eq. (2) 
is an ordinary SU(2) Clebsch-Gordan coefficient; we use this notation throughout. 

(0, q) States 

The states of (0, q) are polynomials of degree q in the (0, 1) variables. We find 

I 
0 q \ = (q + U + Va + I)!! (q + U - Va + I)!! [!(q - U + Va)]! [!(q - U - Va)]! (2U + I)!) 

Va U ul (2q+l)!!2 u 

",u ~1(q-Va-U)-"'ol(q+va-Ul-"'(A2 - 2",0'" 
X -I . (3) 

U! '" x! [!(q - U - Va) - x]! [!(q - U + V3) - x]! (2U + 2x + I)!! 

The state (3) is derived by means of the condition 

(0,,0, + Oe06 - toD I 0 q 1\ = 0 
V3 U U 

which implies orthogonality to "unwanted" states 
containing powers of the 0(5) scalar "" + ~o - iA2 
[they belong to representations lower than (p, q)]. 
Normalization is effected with the help of the equality 

I 0 q Is I 0 q \ 
\Va + 1 U + 1 U + 1 + Va U ul 

=(Va

O 
U

q uls-I Va + 1
0 

U+ 1 q U+ 1)

A state with Ua < U is found by cranking with U_ 
and may be obtained from (3) by the replacement 

U -40- (2U+U'(U + U3)! (U - Ua)!)l U! 
'" (2U)! 

'YjIlAu+Us-211, -Ua 
X I (4) 

Y 211y! (y - Ua)! (U + Ua - 2y)! 

Va goes by integer steps from -q to q and U by steps 
of 2 from q - I Val down to 1 or O. 

(p, q) States 

Before deriving general (p, q) states, we outline 
the procedure to be followed and describe the different 
types of state which arise. The method follows closely 
one used recently for SU(3) ;:, 0(3) states.10 

It is basic to our approach that states of (p, q) can 

be constructed out of products of the states of the 
simple representations (P,O) and (0, q),ll i.e., that 
they lie in the space spanned by the simple product 
states 

/(pVa~,u1>' q V3 - Va1> Uq)V3UU3) 

= I 1 P 0 \1 0 q \ 
U3P Va1/ UfJ U31>1 Va - V31/ UQ Ua - Ua1>1 

I U1> UQ I Uj (5) 
X \Ua1> U3 - Ua1/ U . 

These simple product states are orthonormal and have 
definite values of Va, U, U3 • The space which they 
span includes all representations in the Clebsch
Gordan series for (p, 0) ® (0, q). 

Next we introduce certain states /pqKV3 ) which 
belong to the representation (p, q) and which are 
eigenstates of V, Va, Ua with V = ip + q, Us = K; 
we call them intrinsic states since they play a role 
similar to the intrinsic states of EIliottS in SU(3) 
theory [however, they do not appear to have a direct 
physical interpretation as do their SU(3) analogs]. 
They may be obtained by cranking with V_ from 
states on the boundary of the weight diagram and 
present no multiplicity problem. 

To obtain states of good U, we expand the intrinsic 
states in simple product states and retain only those 
terms which belong to the desired value of U; in this 
way, the projected states 

I 
p q \ 

K Va U KI 
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are obtained. The second K in the state symbol is 
actually the Ua value and may be changed by cranking 
with U± to obtain 

I 
p q \ 

K Va U Ua/ 

The projected states are not linearly independent 
in general, but by suitably restricting the range of K 
a complete linearly independent set of bases is 
obtained. These nonredundant projected states we 
call Elliott states by analogy with those defined by 
EIliott5 for SU(3). 

Although the Elliott states solve the degeneracy 
problem, they are not the most convenient for 
applications. Hence, we introduce the symmetric 
basis which treats (p, 0) and (0, q) on much the same 
footing. Each symmetric state is characterized by the 
presence of a particular term in its simple-pro duct
state expansion. The characteristic term is stretched, 
i.e., has U'P = Q'P' Ua = Qq with U'P + ~ = U and 
has the largest consistent value of VS'P' The term 
which characterizes one symmetric state is absent from 
the expansion of all others. Hence the symmetric 
state may be labeled by Q'P and denoted by 

I p q \ 
Q'P Va U U3/ 

It is easy to express Elliott states in terms of symmetric 

states and, by inverting the equations, to express 
symmetric states in terms of EIliott states, thereby 
obtaining their expansion in simple product states. 

The intrinsic states are 

IpqKV3) 

= [(tp + q - Va)! (lp + K)! (tp - K)! qq-l 

X [21(;'Oe + ~o),) + yO~ - po,i'P+a-vs 

X (Xh+K~h-Koa; (6) 

to avoid unimportant factors later, they are normal
ized according to 

(pqKVal pqKVa) 

= (p + 2q)!/(tp + q + Va)! (tp + q - Va)! 

X (lp + K)! (ip - K)! q! . 

Now expand /pqKVa) in simple product states: 

IpqKVa) = 2 l(pVa'PU'P' q V3 - Va'P Uq)Va UK ) 
U,VsP'U"U. 

X B1J;vsu(Va'PU'PUq). (7) 

The coefficient B;VaU(Va'PU'PUa) is just the scalar 
product «(p Va'PU 'P' q Va - Vap U,) Va UK I pqKVa). To 
evaluate it, one substitutes the expanded form of Eq. 
(6) in the right side. In the left, the sum (5) is inserted, 
but only one term contributes, that with Ua'P = K; 
the expressions (2) and (3) with (4) are then substituted. 
The x-sum is evaluated with the help of the formula 

2'" 2--------------------------------
'" x! [t(q - U - V) - x]! [t(q - U + V) - x]! (2U + 2x + 1)!! 

= (2q + 1)!! , (8) 
(q + U + V + 1)!! (q + U - V + 1)!! [t(q - U + V)]! [t(q - U - V)]! 

which follows from the normalization of the state (3). The result is 

B'Pq (V; U U) = (_1)h-va.[ (2q + 1)!! (2Uq + 1)(Up - Va'P)! (U'P + Va'P)! J! 
KVaU a'P 'P q (q + Uq + Va - Va'P + 1)!! (q + Uq - Va + Va'P + 1)!! 

[ 
(U'P + K)! (U'P - K)! 2u .-u .+h J1 

X [t(q - Uq + Va - Yap)]! [t(q - Uq - Va + Va'P)]! (tp - U'P)! (tp + U'P + 1)! 

X /U'P Uq I U\:2 (-1)'" . (9) 
\K ° K/ '" (U'P - VS'P - x)! (U'P + K - x)! x! (Va'P - K + x)! 

The projected states are obtained by dropping the 
U-sum in Eq. (7): 

I K P Va U q U) 

= :2 l(pVa'PU'P' q Va - Va'P Uq)VaUUa) 
Va.,UP,U. 

K, Va, and U vary by integer steps in the ranges 

-tp ~ K~ ip, 

-tp - q ~ Va ~ ip + q, 
(11) 

max (E p , IVai - q) ~ U 

~ min (lp + q,p + q - \Va\), 
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where E1J is 0 or i, depending on whether p is even or 
odd; if Va + q is odd, U = 0 is excluded. 

To obtain the nonredundant set of Elliott states, K 
is further restricted to the range 

max (E1J , V - q, HU + \Vsl - q» 
s K S min (tp, U), 

K':;f:. 0, for U + Va + q odd. (12) 

Examination of the expansion (10) shows that the 
Elliott states are independent; for if K is in the range 
(12), the sum (10) contains certain stretched terms, 
those with U 1J = Q'P = K, and Uq = Qq = U - K 
which are not included in states of any higher K (and 
the same Va, U). That they are complete follows from 
counting them, for their total number is !(p + 1) x 
(q + 1)(P + q + 2)(P + 2q + 3), the dimensionality 
of the representation (p, q). The Elliott states there
fore form a basis. They are nonorthonormal with 
metric matrix given, according to Eq. (10), by 

<
p q Ip q\ 

K' V~ V' V~ K Va V Va/ 

= bv.'v.oU'UbU3'U3 L B;'V3U(V31J V1J Uq) 
V31lJU1HUq 

The symmetric states 

I 
p q \ 

V1J Va V vj 
= L l(pVs'PUp, q Va - Va1J Vq)VsVVs) 

V3P,U •. Uq 

x AQpv3u(Va1JVpVq) (14) 

are those states of (p, q) with eigenvalues Va, U, Ua, 
with the coefficients A chosen so that 

A.Qpv.u(YaiV;), U;, Vq(U;» = 6QpQp" (15) 

Ji'P has the same range as Kin Eq. (12), i.e., 

max (E1J' U-q,}(U+ \Val-q» 
S y.1J S min (ip, U), 

Q1J ':;f:. 0, for U + Va + q odd. (16) 

IZq(IZp), .!:sp(!l1J) have the meanings 

(17) 

.!:aiIZ1J) = min (Va - JIa + q, !!.1J - E'), (18) 

where E' = 0 or 1, depending on whether Va - Q1J + 
!!.q + q is even or odd. The significance of Eqs. (15), 
(17), and (18) is that each stretched term with maxi
mum Va1J appears (with unit coefficient) in only one 
symmetric state; the state is labeled by the !!.1J of 
the term in question. From the discussion in the 

preceding paragraph of the independence of the 
Elliott states, it is apparent that such symmetric states 
exist and are independent; since their number is 
equal to that of the Elliott states, they are complete 
and form a basis. 

Elliott states can be expanded in terms of symmetric 
states simply by examining the coefficients of the 
stretched terms in Eq. (10): 

I 
p q \ = LIp q \ D~VKU, 

K Va U Ua/ !!p Up Va U ual _P 

(19) 

Moreover, Eq. (19) can be solved for the symmetric 
states in terms of the Elliott states: 

I p q \-LI p q \ 
Up Va U ual - K K Va U uj 

. x (D-l)~rtpU. (20) 

Explicit formulas for D and D-l are given in Appendix 
B. Combining Eqs. (10) and (20) gives the coefficients 
A of Eq. (14) in the form 

AQpV3U(~~pU1JUQ) 

= L B;v3u(Va1JUpUq)(D-l);~3pU. (21) 
K 

The metric matrix for the symmetric states is 

Ip q I p q\ 
\U; V~ u' U~ Up Va U ual 

= 6vav.6u'u6ua'U3 L A~P'v3u(VapUpUq) 
V aj1 ,U'P;Uq -

x AQp,V3U(VS1JU1JUq). (22) 

This completes our results. The utility of the sym
metric states is that each is characterized by a unique 
stretched term in its simple-pro duct-state expansion; 
this facilitates the expansion of a compound state in 
terms of symmetric states-it is only necessary to 
examine the coefficients of the characteristic terms. 
In this way generator matrix elements, transforma
tion matrix elements, Clebsch-Gordan coefficients 
can all be evaluated directly in the noncanonical 
scheme with comparative ease; we leave such applica
tions for the future. Sebe's12 elegant method of 
obtaining SU(3) :::> 0(3) Clebsch-Gordan coefficients 
in the Elliott basis can be adapted to obtain 0(5) :::> 

SU(2) Clebsch-Gordan coefficients in the Elliott 
basis of this paper. 

ACKNOWLEDGMENTS 

We thank Professors H. C. von Baeyer and C. S. 
Lam for helpful discussions. 



                                                                                                                                    

1116 K. AHMED AND R. T. SHARP 

APPENDIX A 

Details of the application of 0(5) to nuclear states 
are given in the classic papers of Flowers, Edmonds 
and Flowers, Helmers,} Hecht,2 and Parikh3 ; see also 
Talmi and de Shalit.l3 A brief interpretation is given 
here chiefly to relate notations. 

The seniority model of pairing forces describes a 
system of neutrons and protons in the same j shell. 
A pair means two nucleons whose angular momenta 
are coupled to 0 and whose isospins are coupled to 1; 
the pairing contribution to the binding is effective 
between the particles of such pairs. 

The states of s unpaired nucleons with isospin t 
together with an arbitrary number of~airs (consistent 
with the Pauli principle) form a basls for the 0(5) 
representation (p, q) with P = 2t and q = j - is -
t + t. Then s is called the seniority, t the reduced 
isospin. The eigenvalues U, U3 specify the t.otal 
isospin and Va is related to the number of parbcles 
N by N = 2j + 1 + 2 V3 • The states with the smallest 
value of Va, i.e., Va = -ip - q = is - j - i have 
no pairs; those with the largest v~lue, V3 = ip + 
q = j + i-is, have as many paIrS as ar~ co~
sistent with the Pauli principle. The U± are lsospm 
ladder operators; S+, V+, L create a pair. with 
3-component of isospin I, 0, -1, respectively; 
S_ , V_ , T+ are the corresponding annihilation 

operators. .. . 
Hecht2 suggests using Tp , the palr lsospm, as the 

degeneracy label. Parikh's suggestiona of n~.' the oc
particle number, amounts to the same thmg; for 
there is just one operator of degree teN - s) = 
q + ip + V3 in S+, V+, L with isospin Tp, T3p , 
namely, 

n~!,T3P = [(Tp + T3P)! (Tp - T3P)!]! 
x (V! + 4S+L)t(2Q+P+2Vs-2Tp) 

( _I)"'S"'VT ,,+Tsp-2"'T:-Tsv ! -I- -I-

X '" x! (x - Tap)! (Tp + Tsp - 2x)! 

(AI) 

As pointed out by Parikh, V~ + 4S+T_ creates an 
"oc particle," four nucleons with zero angular momen
tum and zero isospin; so Parikh's n~ is related to 
Hecht's Tp by na. = i(2q + P + 2V3 - 2T1J)' All 
states can be reached by operating with 

OVa on I p q) 
Tp,Th -tP - q tP U' , 

the no-pair states with reduced isospin t = ip. In 
fact, the Hecht-Parikh state of definite Up, U31J is 

I 
p q \ 

T1J Va Up Usp/ 

= ~pn~!'TS.! -ip - q PiP q U
3 

- T3) 

x /T1J !p I u\ (A2) 
\Tsp U3 - Tap U3/ 

The Hecht-Parikh states present difficulties, how
ever. The label T1J is not unique; in general, many 
values of T1J yield the same nondegenerate state and 
the number of T1J values corresponding to a degenerate 
V3 , U exceeds the multiplicity in question (see Ref. l3, 
pp. 415 and 425). This redundancy could possibly be 
overcome by suitably restricting the range of T1J to 
give the correct multiplicity in each case. In general, 
each Tp state is a linear combination of all the !!.1J 
(symmetric) states in the degenerate subspace (in this, 
they contrast with the K states, each of which contains 
just one U 1J state not contained in states of higher K). 
This nontriangularity of the Tp - !!.p transformation 
matrix complicates the proof of the independence 
of T1J states and makes inherently more difficult the 
task of solving for !!.p states in terms of Tp states. 
Moreover, the coefficients which arise when a Tp 
state is expanded in simple product states contain 
many sums (seven). For these reasons, we abandoned 
the Hecht-Parikh states and followed Elliott's idea 
of projecting from intrinsic states. 

APPENDIX B 

The expansion coefficients Din Eq. (19) for the proje~t~d, and, in particu~ar, the Elliott states in terms of 
symmetric states are just the coefficients of the charactenstlc stretched terms m Eq. (10): 

D~:~U = B;v,u(l3,JlpUq), 

where Jl(l and Eap == E3P(Jl1J) are given by Eqs. (17)and (18). 
Equation (19) may be written 

( _l)K-u+!a 

IK)' = I I Up)' ~ (K _ u + fa)! (!a - K + u)! (U - !a + u)! (U - !a - u)! ' 

(B1) 

(B2) 
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where for brevity we have put 

IK)' = \ p q \ [ (2U)! J! (B3) 
K V3 U uj (2q + 1)!! (U + K)! (U - K)! ' 

U ' = I p q )( _1)h-!ZP+a[ (2U(/ + 1)a! (2U1) - a)! 2!z.-Qp+h J1 

L1» U 1) V3 U U U (/! (q + V3 + a + 1)!! (q + U - V3 - a + 1)!! 

[ 
(2U1»! (2U(/)! Ji (B4) 

X [t(q - U + V3 + a)]! [Hq + 2U1) - U - V3 - a)]! (tp - U1»! (tp + U1) + 1)! ' 

a = Up -l'p = max(U - V3 - q,E') (BS) 

and substituted x = K + ta - u. 
We rewrite Eq. (B2) as 

( 1)K-,,+ia 
IK)' = 11u) -, (B6) 

" (K - u + ta)! (ta - K + u)! 
with 

(B7) 

Then (B6) can be solved for lu) by noting that the expansion of IK)' in terms of lu) is equivalent to that of 
zK-1a(z - 1)a/a! in terms of z"; and (B7) can be solved for IQ1»' by noting that the expansion of lu) in terms 
of IQ1»' is equivalent to that of (_1)1' J2u(z) in terms of (-I)Qp-1a(tz)2~p-a. The results are 

lu) = 11K)' (-1ta(K - u + ta - 1)! , 
K (K - u -ta)! 

(BS) 

IU )' = 211u/ _1)!Zp-la-Uu(u + U1) -ta - 1)! . 
_1) I' (u - Up + ta)! 

(B9) 

Combining Eqs. (B3), (B4), (BS), and (B9) shows that D-l of Eq. (20) is given by 

(D-1)1)(/V3U = 2U ! (q + Va + a + 1)" (q + U - V3 - a + 1)!! [Hq - U + V3 + a)]!)l 
KQp -(/ (2Uq + 1)! (a - 1)! (2U

p 
- a)! 2!Z.-!Zp+h 

X ([Hq + 2Up - U - V3 - a)]! (tp - 1[1»! (tp + 1[71 + 1)! (2U)!)! 
(2U1»! (2q + 1)!! (U + K)! (U - K)! 

~ (_l)tt>--ta-uu(u + U1) - ta - 1)! (K - u + ta - 1)! 
X k . (B10) 

" (u - Up + ta)! (K - u -ta)! 

If a = 0 in Eq. (BlO), the factors (K - u + ta - 1)!/(a - I)! (K - u - ta)! should be replaced by CJK" and 
the u-sum carried out; if, in addition, K = Q1) = 0, the factors K(K + Q1) - ta - I)! should be replaced 
by unity. 
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We derive a simple expression for the functions encountered in electromagnetic form factor calcula
tions done with infinite-component fields. Our expression holds for the general case of SL(n, C). We 
relate our functions to Gegenbauer polynomials. 

INTRODUCTION 

One of the unsolved problems in particle physics is 
predicting the electromagnetic form factors of 
particles. A theoretical understanding of the electro
magnetic structure of strongly interacting particles 
would be quite desirable. In this paper we shall deal 
with one approach to this subject, namely, infinite
component field theory. 

Infinite-component fields have been used to derive 
the electromagnetic form factors of particles. 1 In 
particular, Fronsdal et al. 2•3 have computed the 
electromagnetic form factors for the case of spin 0 
and for the proton. For the proton the calculation 
was done in an SL(6, C) framework, and one had 
to deal with the ultraspherical functions appropriate 
to SL(6, C). The analogous functions that arise 
in an SL(n, C) framework are dealt with in the 
present paper. Our results should prove useful to 
anyone doing calculations with infinite-component 
fields in the framework of SL(n, C). 

Our main result is an expression for the SL(n, C) 
functions in terms of the mth derivative of a rather 
simple term. This result was conjectured by Fronsdal 
and White3 and proved by them2•3 for n = 2, 4, and 
6; it is proved for general n (n even) in the present 
paper. We also relate our expression to the well
known Gegenbauer polynomials. One may notice 
that our results may be directly used to illustrate why 
particles with integral spin and nonzero baryon 
number should not exist in nature.' 

In Sec. I, we explain the problem and review the 
infinite-component-field formalism. The application 
of this formalism to the physical problem of electro
magnetic structure of particles is discussed, and the 
symbols are defined. In Sec. II, we define and discuss 
the functions to be used in the actual calculation. 
Section III contains the derivation of our results. In 
Sec. IV, we summarize our results and remark on a 
simple application of these results illustrating why 
certain particles should not exist in nature. 

I. INFINITE-COMPONENT FIELDS AND 
ELECTROMAGNETIC FORM FACTORS 

The problem we are dealing with is the calculation 
of an electromagnetic vertex, shown in Fig. I. A 
strongly interacting particle interacts with a photon; 
the "blob" represents the interaction. The strongly 
interacting particle has initial momentum p and final 
momentum p'. We are interested in the electro
magnetic form factor associated with the transition 
of the particle from momentum p to momentum p'. 

To set up the problem, we represent the strongly 
interacting particle by a wavefunction in momentum 
space. Ordinarily, one would expect this function to 
be a scalar (under Lorentz transformations) for a 
spin-O particle, a function "Pil with one Lorentz index, 
satisfying pll"Pll = 0, for a spin-l particle, and so 
on. In the infinite-component-field formalism this 
idea is generalized. Instead of having a wavefunction 
that contains only one spin (i.e., spin-O or spin-I, etc., 
one now takes a generalized wavefunction having, 
say, N indices: "Pill'" '.Il N' This generalized wavefunc
tion contains many spins; i.e., it can be written as a 
sum of pieces, where each piece corresponds to a 
particle with a definite spin. For a physical particle 
with a given spin, one simply projects out the piece 
of "Pill" . '.IlN that corresponds to this spin. 

To describe the physical process in Fig. I, namely 
the electromagnetic vertex of a strongly interacting 
particle with a given spin, we thus write down 
the generalized wav~functions "Pill'" .. IlN(P) and 
ip/l.· .. . PN(p') and take tfteir projections. [Here p and p' 
are the initial and final momenta of the strongly 
interacting particles, and ipPlo'" .PN transforms like 
(':Ypl ." .• IlN)*'] The charge part of the vertex in Fig. I 
is then given, in first Born approximation, by 

where m is the mass of the strongly interacting 
particle, Q is the charge operator, and P is the 

1118 
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FIG. 1. Vertex for 
electromagnetic form 
factor. The solid lines 
represent the strongly 
interacting particle. 

projection operator that projects out the desired spin 
of the particle. 

We now direct our attention to the more general 
case, where the strongly interacting particle belongs 
to a specjfic representation of SU(6). In this case, 
one uses a slightly more general wavefunction, 

iIt ... EN ( ) 
11'..1.1:" ':AN+k P , 

to replace the wavefunction V'}Ll'" '.}LN' [For SU(6) one 
sets k = 3; N is as yet unspecified.] The indices 
AI, ... , A N+k' B1 , ••• , B N' are spinor indices; the 
A's are undotted, while the B's are dotted spinor 
indices. If the strongly interacting particle belongs 
to the 56-dimensional representation of SU(6), then 
the appropriate projection of the general wave
function turns out to be2: 

Here m is the mass of the strongly interacting particle, 

P is its momentum, and 11J. . ..' (p) is a wave-
T.<':lN+l· • .LJ..N+k 

function with three indices and corresponding to 

momentum p. p1 is a 6 x 6 matrix defined as 

p1 = (Po - p. a)~c5!, 

where (Po, p) is the four-momentum of the strongly 
interacting particle, a is the set of 2 x 2 Pauli spin 
matrices, and a and b run from 1 to 3. The symbol S 
stands for symmetrization in the indices AI, •.• AN+k' 

Thus, for the case of a particle scattering from 
momentum P to momentum p', assuming the particle 
belongs to the completely symmetric (56) representa
tion of SU(6), one obtains for the charge part of the 

vertex of Fig. I (to lowest Born approximation): 

El" ",EN ( ) ~ -NS EI... EN ( ) V'A1 .... ,AN+k P m PAl PANV'AN+1 ... ·,AN+k P , 
ij/~·t.·· ',4N+k(p') ~ m-N SiiiA1 .. ",Ak(p')p',dHI ... p''''-HN 
1 BI .. ",BN T BI BN' 

(2) 

Vertex 

= (p + p')" -410" ·,4-N+k( ')Q EI'" ·,EN ( ) 
2m V'Bl .. ",BN P V' AI" ",ANH P 

(p + p')}L m-2N(S -AI,' ",Ak(p') ,Ak+l ,Ak+N) 
~ 2m V' PEl' .. PEN 

x Q(Sp1~· .. P1;V'AN+l .... ,AN+k(P». (3) 

Here 

p! = (Po - P • a)!c5!, and p'f = (p~ + p • a)!c5!, 

where the initial momentum of the strongly interacting 
particle is (Po, p), and the final momentum is (p~, p'). 

For a strongly interacting particle belonging to 
the completely symmetric representation of SU(n) 
[instead of SU(6), as discussed above], exactly the 
same form of the vertex holds true. The only difference 
is that, whereas in the SU(6) case we put the index 
k = 3, in the case of SU(n) we now put k = in in 
Eq. (3). 

The vertex obtained for the case of a proton
SU(6) has in fact been explicitly evaluated by Cocho 
et a[.2 We shall not attempt an evaluation of the vertex 
for SU(n) here,s but rather derive a simple expression 
for some of the complicated functions arising in this 
context. These functions are defined in the following 
section. 

II. DEFINITION OF FUNCTIONS 

In the previous section we discussed and wrote 
down the expression for the charge part of electro
magnetic vertex of Fig. 1, namely Eq. (3). This ex
pression is rather complicated, but it can be written 
in a simpler form,2 namely, 

Vertex = (p ;':')" ViAl .. ",Ak(p')(Joc51/ ... c51~k 

+ Ilc51~1 ... c51~~IT1~k 
A' A' + ... + IkT A/' .. T Akk)V'A'I .... ,A'k(P)' 

(4) 

where T1' = m-2p1p'~' and ji are functions of p . p'. 

Cocho et al. 2 are then able to show (the proof is 
rather long) that the functions ji are given by 

Ii = (N t krli~ (~) C)( -1)i-ikQ~~i+i' (5) 
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where the Q functions are defined by 

Here 
y = m-2{p . p' + [(p . p')2 _ m']l}. 

It is these functions kQ») that we wish to investigate 
in the present paper. It turns out that they can be 
expressed in a rather simple form: 

kQW = [(i + k - 1)/t1 
- - -1 ' ( 
d )I+k-I (yNH y-N-k) 

dw y - Y 

i ~ 0, (7) 
where 

w = y + y-l + 2, and k = tn, 
This form has been derived by Fronsdal et al. 2•8 for 
k = 1, 2, and 3; it is derived in the present paper for 
general k. 

We wish to remark that the result (7) (to be 
derived in the following section) is quite useful: 
using Eq. (7) it is easy to show' that particles with 
integral spin and nonzero baryon number have no 
charge coupling (Le., the charge vertex considered in 
this paper vanishes for such particles). 

m. DERIVATION FOR kQW 

In this section we derive Eq. (7) for SL(n, C). Our 
first step is to obtain a recursion relation relating the 
QJO) to each other. (For ease in writing, the index k 
will be temporarily suppressed.) To do this we look 
at the definition of Q; [Eq. (6)] to obtain 

QN = (l/N!)[(N - I)! Qo Tr (pp')Nm-2N 

+ (N - 1)! Ql Tr(pp,)N-lm-2(N-l) 

+ ... + (N - I)! QN-l Tr (pp')lm-2]. (8) 

But Tr (pp'); = km2i(yi + y-i), as can be easily shown 
by induction. Thus, 

QN = (k/N)[Qo(yN + y-N) + Ql(yN-l + y-N+l) 

+ ... + QN-l(y + y-I)]; 

i.e., we have obtained the recursion relation6 

N-l 
QN = (kiN)! (yN-i + y-N+i)Qi' 

;=0 

Our next step is to show that? 

Q~+1) = (i + k)-1 ~ QW. 
dw 

(9) 

(10) 

This is shown by induction on N: The case N = I is 
easy to verify, using the definition of QW [Eq. (6)]. 
Assuming Eq. (10) to be true for N = 2, 3, ... , .N', 
we then prove Eq. (10) is also true for N = .N' + 1. 
Here we obtain an equation containing the index (i); 
the equation is verified by induction on (i) [the case 
i = 0 is verified separately, using Eq. (6) and the 
induction formula Eq. (9)]. The actual details are 
fairly straightforward, but very messy. 

We now proceed with the proof of our general 
formula Eq. (7), using induction on k. For k = 1, we 
need to show that 

d)i N+1 -N-I) k=lQW = (iO-l(- (Y - y_ . (11) 
dw y _ Y I 

But it is easy to show, using Eq. (9) with k = 1, that 

N+l -N-I k=IQ(O) _ Y - Y 
N - -1 y-y 

(12) 

(This expression is also normalized correctly: Q~O)= 
1.) Taking the ith derivative of both sides and using 
Eq. (10), we easily verify Eq. (11). 

Proceeding with the proof by induction, we next 
assume Eq. (7) for k = 2, 3, ... ,K, and proceed to 
prove Eq. (7) for k = K + I. First we show that 

d)K N+K+I -N-K-l) 
k=K+1QJS) = (K!)-I(- (Y - y_ . 

dw y _ Y I 

(13) 

[If we can show this, then Eq. (7) for k = K + I 
follows immediately from Eq. (10).] Now the right
hand side ofEq. (13) is equal to k=KQ~~l by induction 
hypothesis; i.e., we must show that 

k=K+1Q(O) _ k=KQUl (14) 
IV - IV+I' 

This equation is easily seen to hold for N = O. Now 
assume Eq. (14) for N = 1,2, ... , .N' - 1, and prove 
Eq. (14) for N = .N'. 

Using Eq. (9) for k=K+1Q~ and Eq. (6) for 
k=KQ(ll we thus need to show that 

.N'+l ' 
.N'-1 

[(K + 1)/.N'] ! (y'N' -i + y -.N' +i)("=K +IQ}O» 
i=O 

.N' ." = (y _ y-l)-1 !(y.N'+1-i _ y-'" -1+1)("=KQ~0». (15) 
j=O 

But by induction hypothesis on N, 

k=K+IQ(O) _ k=KQ(1) J' < ~(l - 1 
i - 1+1, _ <11 • 

Putting this into Eq. (15) and expanding k=KQWl by 
use of Eq. (6), we obtain a double sum on the left
hand side of Eq. (15). Interchanging the order of 
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summation, we do the sum over j explicitly. We 
obtain the following equation that needs to be shown 
true: 

.N' 
[(K + l)/X] Lk=KQlO)(X _ 1)(y.N'+1-1_ y-.N'-1+/) 

But 

.N' 

1=0 

I W=KQlO»)(y.N' +1-1 _ y-.N' -1+1) 
1=0 

.N' 
= K Ik=KQlO)(X - 1)(y.N'+1-I_ y-.N'-l+l), (17) 

1=0 

as can be seen by using Eq. (9) for lQ:O) on the left
hand side, inverting the order of summation on the 
left-hand side, and then doing the sum over I explicitly. 
Thus, [from Eq. (17)] 

.N' 
LW=KQlO»)(y.N'+l-l- y-.N'-1+1) 

1=0 
.N' 

= [K/(l + K)] I xe=KQlO»)(y.N'+1-1 _ y-.N'-1+/) 
1=0 

and, hence, Eq. (16) is true. 
Thus, we have finished the proof of Eq. (7). This 

is our main result; we, thus, have obtained a rather 
compact expression for the functions kQW encountered 
in an infinite-component field formalism. For the 
special case of i = 0, our general result reduces to 

kQ~) = [(k - l)W1 - Y - y_ . (18) 
( 

d )k-l (N+k -N-k) 
dw y _ Y 1 

The functions kQW can also be related to Gegen
bauer polynomials. In fact, in the notation of Ref. 8, 

k=lQ~) = U N(x) = CW(x) 
= (yN+l _ y-N-l)/(y _ y-l), 

x+--+ t(w - 2) = iCy + y-l). 

Here UN is a Tschebycheff polynomial of the second 
kind and CAP is a Gegenbauer polynomial (also called 
ultraspherical polynomial). We then immediately 
have 

kQW = [(i + k - l)n-l(d~)i+k-lC}y+k_l(X). 

Thus, 
kQW = C:vr~i(X), x +--+ l(w - 2), 

and C}~i is a Gegenbauer polynomial. 

IV. SUMMARY 

(19) 

We have thus derived an expression for the func
tions kQW that arise in calculations of form factors 
using infinite-component fields. This expression 
[Eq. (7)] has been conjectured by Fronsdal and 
White, but had been proved only for k = 1, 2, and 
3.2,3 It is proved in the present paper for general k . 
In addition, we show that 

kQW = Ck+i.(X) N N-., x +--+ t(w - 2), 

where C}+~i(X) is a Gegenbauer polynomial. Using 
the main result CEq. (7)], one can directly show that 
particles with integral sign and nonzero baryon 
number have no electromagnetic charge coupling.' 
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It is shown that the problem of TCP noninvariance of the equations of motion in odd-dimensional 
spaces is connected with the irreducibility of the representations of the Clifford algebra C2n+1' It is 
further shown that the above difficulty can be overcome by using representations of C2i+l, j > n,whether 
the particle is massive or massless. 

Recently there have been attempts to look into 
the problem of TCP invariance of the equations of 
motion in odd-dimensional spaces. In particular it has 
been shown l that the TCP theorem may break down in 
an odd-dimensional space-time. In this paper we show 
that this problem is connected with the irreducibility 
of the representations of the Clifford algebra C 2n+1' 

and is independent of the question of the mass of the 
particle. It is further argued that the above difficulty 
can be overcome by using representations of C2i+l, 

i > n, which become reducible representations of 

C2n+1' 
It is well known2 that only 2n + I matrices r I' 

(fl = 1, ... , 2n + 1) exist of dimension 2n X 2n 

satisfying the Clifford algebra 

{rl" r.}+ = 2b lt ., fl, v = 1,' . " 2n + 1, (la) 

r 2 = I, (lb) 
and 

(Ic) 

These (2n + I) matrices of dimension 2n x 2n form 
the irreducible base elements of C2n+1 which is of 
dimension 2n. The complete set of 2n elements of 
CZn+1 can be obtained through the product 

X(Pl'''P2'') = (r1)pl(r2)p2 ... (fzn)p2n, (2a) 

where the integers p satisfy 

o ~ P. ~ 1, v = 1, ... ,2n. (2b) 

The explicit construction of the r it's in terms of Pauli 
matrices is known3 and, more recently, an elegant 
algorithm has been given4 for this. 

The equation of motion in (2n + 1 )-dimensional 
space-time can be written ass 

(fill' + m)V'(r1 ," " r2n , t) = 0, 
fl = 1, ... , 2n + 1. (3) 

The TCP operator can be defined1 as the one which 
takes the differential operator 0lt into -alt. If one 
uses all the (2n + I)rl"s in Eq. (3), in view ofEq. (1), 
no operator S exists which satisfies 

srlts-l = -rl" (4) 

This is the conclusion of Ref. 1. So it looks as if one 
cannot write an equation in odd space-time which is 
TCP invariant. It may be easily seen that this difficulty 
can be traced to the simple fact that r I"s form a 
complete set satisfying Eq. (1) and if they are irreduc
ible no operator S exists which will anticommute with 
all rl"s, independent of whether or not the particle 
has mass. 

On the other hand, if one uses reducible representa
tions for the r I"s one can find an S which satisfies 
Eq. (4). To fix the point, if the r it's are of dimension 
2n+1x2n+1, fl=I,"',2n+I; then any of the 
other two matrices of dimension 2n+1 x 2n+1 from 
the complete set of 2n + 3 matrices satisfying Eq. (1) 
can be used as the TCP operator. For example, if the 
Dirac equation is written in (4 + I)-dimensional 
space-time, fl = 1, ... , 5, using not the irreducible 
4 x 4 matrices but the reducible 8 X 8 matrices, then 
anyone of the other two anticommuting matrices 
of dimension 8 x 8 from the complete set of seven 
matrices can be used as the TCP operator. Thus there 
is no problem of TCP invariance in odd space-time 
if we use representations of C2i+l' i > n,which become 
the reducible representations of C2n+1 .6 

ACKNOWLEDGMENTS 

The author is grateful to Professor Abdus Salam 
and Professor P. Budini, and the International 
Atomic Energy Agency for hospitality at the Inter
national Centre for Theoretical Physics, Trieste. 

• On leave of absence from Matscience, Institute of Mathematical 
Sciences, Madras, India. 

1 S. P. Rosen, J. Math. Phys. 9, 1593 (1968). 
2 See, for example, H. Boerner, Representation of groups (North-

Holland Publ. Co., Amsterdam, 1963), Chap. 8. 
3 R. Brauer and H. Weyl, Am. J. Math. 47, 447 (1935). 
• A. Ramakrishnan, J. Math. Anal. Appl. 20, 9 (1967). 
• T. S. Santhanam and P. S. Chandrasekaran, Progr. Theoret. 

Phys. (Kyoto) 41, 264 (1969). 
• Similar conclusions have recently been advanced by more 

indirect arguments by V. I. Fushchich (Academy of Sciences of 
Ukrainian SSR, Institute for Theoretical Physics, Kiev, Preprint 
69-17,1969). Actually, an equation in 5-dimensional space-time has 
been given by M. Bakri, J. Math. Phys. 10, 298 (1969), which is 
CPT invariant. See also A. Ramakrishnan, J. Math. Anal. Appl. 22, 
39 (1968). 

1122 


	JMP, Volume 11, Issue 03, Page 0741
	JMP, Volume 11, Issue 03, Page 0748
	JMP, Volume 11, Issue 03, Page 0761
	JMP, Volume 11, Issue 03, Page 0766
	JMP, Volume 11, Issue 03, Page 0771
	JMP, Volume 11, Issue 03, Page 0775
	JMP, Volume 11, Issue 03, Page 0784
	JMP, Volume 11, Issue 03, Page 0790
	JMP, Volume 11, Issue 03, Page 0796
	JMP, Volume 11, Issue 03, Page 0805
	JMP, Volume 11, Issue 03, Page 0815
	JMP, Volume 11, Issue 03, Page 0818
	JMP, Volume 11, Issue 03, Page 0820
	JMP, Volume 11, Issue 03, Page 0822
	JMP, Volume 11, Issue 03, Page 0824
	JMP, Volume 11, Issue 03, Page 0827
	JMP, Volume 11, Issue 03, Page 0829
	JMP, Volume 11, Issue 03, Page 0832
	JMP, Volume 11, Issue 03, Page 0842
	JMP, Volume 11, Issue 03, Page 0851
	JMP, Volume 11, Issue 03, Page 0855
	JMP, Volume 11, Issue 03, Page 0867
	JMP, Volume 11, Issue 03, Page 0870
	JMP, Volume 11, Issue 03, Page 0896
	JMP, Volume 11, Issue 03, Page 0917
	JMP, Volume 11, Issue 03, Page 0924
	JMP, Volume 11, Issue 03, Page 0931
	JMP, Volume 11, Issue 03, Page 0941
	JMP, Volume 11, Issue 03, Page 0952
	JMP, Volume 11, Issue 03, Page 0960
	JMP, Volume 11, Issue 03, Page 0975
	JMP, Volume 11, Issue 03, Page 0986
	JMP, Volume 11, Issue 03, Page 0995
	JMP, Volume 11, Issue 03, Page 1001
	JMP, Volume 11, Issue 03, Page 1003
	JMP, Volume 11, Issue 03, Page 1018
	JMP, Volume 11, Issue 03, Page 1029
	JMP, Volume 11, Issue 03, Page 1037
	JMP, Volume 11, Issue 03, Page 1041
	JMP, Volume 11, Issue 03, Page 1048
	JMP, Volume 11, Issue 03, Page 1050
	JMP, Volume 11, Issue 03, Page 1059
	JMP, Volume 11, Issue 03, Page 1069
	JMP, Volume 11, Issue 03, Page 1085
	JMP, Volume 11, Issue 03, Page 1104
	JMP, Volume 11, Issue 03, Page 1112
	JMP, Volume 11, Issue 03, Page 1118
	JMP, Volume 11, Issue 03, Page 1122

